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Abstract MapReduce is a parallel programming model for processing the data-intensive

applications in a cloud environment. The scheduler greatly influences the performance of

MapReduce model while utilized in heterogeneous cluster environment. The dynamic nature of

cluster environment and computing workloads affect the execution time and computational

resource usage in the scheduling process. Further, data locality is essential for reducing total job

execution time, cross-rack communication, and to improve the throughput. In the present work, a

scheduling strategy named efficient locality and replica aware scheduling (ELRAS) integrated

with an autonomous replication scheme (ARS) is proposed to enhance the data locality and

performs consistently in the heterogeneous environment. ARS autonomously decides the data

object to be replicated by considering its popularity and removes the replica as it is idle. The

proposed approach is validated in a heterogeneous cluster environment with various realistic

applications that are IO bound, CPU bound and mixed workloads. ELRAS improves the

throughput by a factor about 2 as comparedwith the existing FIFO and it also yields near optimal

data locality, reduce the execution time, and effective utilization of resources. The simplicity of

ELRAS algorithm proves its feasibility to adopt for a wide range of applications.

Keywords MapReduce programming model � Data locality � Heterogeneous clusters �
Virtualization

1 Introduction

Big data analysis is a process of handling complex data set that is generated by online

social networks and scientific research [1, 2], using advanced tools to produce meaningful

information in a cloud environment [3]. The huge volume of data are processed using a
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MapReduce programming model [4] that executes large number of parallel task on the

cluster of physical machines (PM). MapReduce divides the job into multiple tasks that are

executed in parallel manner on data elements placed in various PM in a cluster. Apache

Hadoop is an open source software framework that exploits the MapReduce programming

model for processing big data in a cloud environment such as Amazon, Oracle, Microsoft,

and IBM [5].

A scheduling algorithm influences the performance of MapReduce framework in a

computing environment as it manages the large cluster of hardware machines, controls the

allocation of data and task on these hardware machines [6]. The scheduler is expected to

satisfy various quality metrics such as data locality, fairness, throughput, response time,

availability, Energy efficiency, CPU utilization, memory utilization, disk utilization, and

security metrics [6]. Here, data locality is one of the important quality metrics and a critical

factor that affects the performance of MapReduce clusters [7]. It reduces the cross-rack

data movement and improves the throughput as a task is executed in a data-local manner.

Fairness is providing equal opportunity to users by sharing the resources among them in a

fair manner. For each user, the scheduler must ensure fairness by assigning the required

number of computational resources. Throughput involves the number of request (job-

s/tasks) completed over a specific period of time and it is achieved by improving the data

locality and effective utilization of resources [8]. Effective resource utilization involves

improving the resource usage and minimization of the system states being idle in a cluster.

The MapReduce scheduler plays a key role for meeting the quality metrics to confer a

consistent performance in the heterogeneous environment. However, designing a scheduler

to satisfy all the quality metrics is a challenging and complex process. For example, if a

scheduling policy enforces strict data locality constraints then it has to compromise fair-

ness since, a node having the data of jobs may not exist at the head of the queue based on

fairness constraints [5]. In a MapReduce model, scheduling is a multi-objective opti-

mization problem that is NP-hard in nature [9]. Further, a scheduler is also expected to be

adaptive for allocating the resources based on availability of the system and capacity of PM

in the cluster. Hence, an effective locality and replica aware scheduling (ELRAS) strategy

is proposed based on the requirements with the following features:

• ELRAS strategy adapts itself for the heterogeneous clusters and achieves higher data

locality rates during data intensive computations.

• A data placement strategy is formulated to compute the available space in the nodes

dynamically and for positioning the data. Then, the task scheduling algorithm is

designed to satisfy the data locality constraints and placing the task in the node that

holds the data.

• An autonomous replication scheme (ARS) is proposed and it is used in combination

with ELRAS to perform effective replication decision.

• ELRAS strategy satisfies the quality metrics such as execution time, data locality,

resource utilization and throughput.

2 Background Research

2.1 Hadoop MapReduce Model

The Hadoop system architecture is illustrated in Fig. 1 and it is based on two important

components: Firstly, the MapReduce programming model is utilized for parallel
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computations and then Hadoop Distributed File System for storing the data [10]. The

MapReduce framework offers the execution environment for MapReduce jobs and a

cluster of task trackers are employed for computations that is controlled by one centralized

job tracker. All jobs are submitted to the job tracker and subsequently it is divided into

multiple map and reduce tasks. The scheduler in the job tracker allocates the tasks to

various task trackers for execution. Hadoop also implements the shuffle service using two

phases such as shuffle and reduce tasks. Shuffle phase fetch the map outputs related with a

reduce task from several nodes and combine them into one reduce input. An external

merge sort algorithm is utilized as the intermediate data is too large to fit in memory.

Hadoop distributed file system (HDFS) has one name node to save the metadata and

multiple data nodes and that are used for storing the data blocks. Hadoop is deployed on

physical clusters in which typical deployment includes two master nodes (job tracker and

name node) and several slave nodes to run the task tracker. Here, a slave node is divided

into a fixed number of map and reduce slots, also a slot-based task scheduler is applied for

scheduling. During the execution of a MapReduce job, the slave nodes periodically check

the availability of task slots and requesting the master node for new tasks.

2.2 Related Work

MapReduce Scheduling is a multi-dimensional problem as it needs to optimize a set of

quality metrics in a heterogeneous environment and workload constraints. The data

placement, task scheduling and replication mechanism also influence the performance of

the schedulers. Related work is presented by focusing the various dimensions of the

scheduling strategies.
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Fig. 1 The overview of Hadoop architecture
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2.2.1 Scheduling Policies Based on Quality Metrics

Hadoop uses three basic scheduling policies namely FIFO, fair-share and capacity

scheduler. The FIFO algorithm [11] gives preference to the workload that arrives earlier

and here starvation problem occurs because of small jobs has to wait for longer jobs to

complete execution. The fair-share (FS) [12] and capacity scheduler (CS) [13] equally

distributes the computing resources among the users to ensure strict fairness. FS allocates

one pool to each user in the system, and the resources are shared equally among all the

pools. CS employs queues as an alternative method instead of pools, where each queue is

allotted to a user and resources. In the recent literatures, several scheduling strategies are

proposed by optimizing the basic schedulers or new scheduling strategies based on the

combination of various quality metrics as an objective. Data locality is essential for data

intensive computations to reduce the data transfer and for improving the throughput [14].

Further, the overall throughput can be improved by reducing the response time during

execution. It is a complicated process to ensure a high throughput while adapting to

varying workloads and fluctuating resource characteristics.

Earlier, delay scheduling [15] was proposed to deal with the conflict between locality

and fairness needed for sharing the resources. According to the fairness constraints, a

scheduled job couldn’t initiate a local task and further it delays the execution and launches

the other task. Recently, Purlieus architecture [16] is used for allocating resources while a

MapReduce application is executed in a cloud environment. It also suggests that data

placement and virtual machine placement greatly influence the execution time of

MapReduce application. The classification and optimization scheduler for Hadoop

(COSHH) [17] classifies jobs using a k-means clustering algorithm concerning to the

recorded execution times. Then, it determines the allocation matrix for jobs using a linear

programming approach by maximizing the resource utilization. A hybrid algorithm [18]

maintains the throughput of dynamic MapReduce by various scheduling algorithms for

different combinations of workload volumes. During low workload periods, it uses the

FIFO policy to achieve lower completion times and FS as the system load is balanced. As

the workload volume is high, it uses the COSHH approach to achieve significant fairness

level and better average completion time (ACT).

The Quincy scheduling algorithm [19] maintains a balance between data locality and

fairness for the incoming workload. Here, a bipartite graph is used to represent nodes, jobs,

and tasks while a weight is assigned based on the amount of data transferred for the edge

that connects the node and task. Then, a scheduling plan is devised by computing the

minimum flow cost in the graph under the fairness constraint. In a baseline scheduler [20],

the scheduling decisions are made without any global cluster information and the dupli-

cations are made to the idle nodes for load balancing and ensuring locality constraint.

2.2.2 Scheduling Policies Adapting to Heterogeneous Environment

The presence of large number of heterogeneous nodes causes various difficulties for

effectively utilizing the resources such as CPU, network I/O, and disk I/O [21]. Reducing

the task execution time also significantly improves the resource utilization [22]. The

scheduling algorithm focusing resource utilization verifies the available bandwidth of

different types of resources on a machine against the requirements of a job before

scheduling to minimize busy waiting and resource utilization skewness.
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Late scheduler [23] enhances the performance of MapReduce framework by reducing

the overhead of speculative task in a heterogeneous environment and also it computes the

completion time of an application speculatively. The triple-queue scheduler [24], first

allocates the map tasks of a fresh job to an available slot then, using the execution data, the

scheduler moves the job to a CPU-bound or a disk IO-bound queue. The scheduler con-

tinuously monitors the execution times of tasks to move jobs dynamically from one type of

queue to another. This scheme is proven to achieve an overall improvement in throughput.

2.2.3 Replication Mechanism

Data replication is an important optimization methodology to handle large volumes of data

thereby replicating the data at different locations and achieves higher data availability.

Hierarchical cluster scheduling (HCS) algorithm is proposed for data intensive computa-

tions in a grid environment [25]. HCS algorithm is also used in combination with hier-

archical replication scheme (HRS) to achieve improvement in the execution time when

used for data intensive computations. Here, the author(s) had suggested that an effective

replication scheme and a scheduling strategy reduce the overhead and job execution time

irrespective of the environment (homogeneous or heterogeneous).

HRS [25] decides the number of replica based on the previously executed data set and it

is used with HCS to attain optimal results. bandwidth hierarchy based replication (BHR)

[26], [27] tries to increase the necessary data in the same region to fetch the replica easily

since, the bandwidth within the region is high. Moreover, the regional popularity of files is

computed and the best replica for a job is identified through BHR. Least recently used

(LRU) replication mechanism replicates all the files and it removes the file that has been

used recently [28]. Some of the related works from the recent literatures are listed in

Table 1.

3 Problem Analysis and System Design

Data locality improves the performance of MapReduce framework in heterogeneous

clusters by placing the computations in nodes that hold the data blocks. Heterogeneity has

an impact on Hadoop scheduler because in a cluster, the node parameter always fluctuates.

Hence, the solutions proposed for improving the data placement, task scheduling and

replication mechanism is summarised as follows:

• An adaptive scheduling algorithm named ELRAS that identifies the capacity of node in

a heterogeneous cluster environment is proposed. A three layer mapping relationship is

used to acquire cluster configuration and node statistics information dynamically.

Further, a method for tracking the data objects is integrated with the scheduler.

• An ARS is proposed to determine the data objects to be replicated and the location for

placing the replica.

• The environment and task are heterogeneous because hardware parameters and

workloads always vary with respect to time. Hence, the cluster setup for evaluation is

configured with heterogeneous nodes and the workload characteristics.

Performance Improvement of MapReduce for Heterogeneous… 2713

123



T
ab

le
1

C
o
m
p
ar
is
o
n
am

o
n
g
th
e
ex
is
ti
n
g
sc
h
ed
u
li
n
g
p
o
li
ci
es

in
M
ap
R
ed
u
ce

F
ra
m
ew

o
rk

M
et
h
o
d
/r
ef
er
en
ce
s

P
er
fo
rm

an
ce

m
et
ri
cs

ev
al
u
at
ed

T
es
t
b
ed

an
d

en
v
ir
o
n
m
en
t

P
er
fo
rm

an
ce

o
b
je
ct
iv
e
an
d
li
m
it
at
io
n
o
f
th
e
ap
p
ro
ac
h

L
im

it
at
io
n
s
ad
d
re
ss
ed

b
y
p
ro
p
o
se
d
m
et
h
o
d

D
el
ay

sc
h
ed
u
li
n
g
[1
5
]

D
at
a
lo
ca
li
ty

an
d
fa
ir
n
es
s

P
ri
v
at
e
cl
u
st
er

an
d
A
m
az
o
n

E
C
2

F
ac
eb
o
o
k

w
o
rk
lo
ad

H
et
er
o
g
en
eo
u
s

S
ch
ed
u
li
n
g
is
p
er
fo
rm

ed
in

a
d
at
a
lo
ca
l
m
an
n
er

b
y

sl
ig
h
tl
y
re
la
x
in
g
th
e
fa
ir
n
es
s

M
ax
im

u
m

d
at
a
lo
ca
li
ty

ac
h
ie
v
ed

is
o
n
ly

ab
o
u
t
9
4
%

fo
r
1
0
0
M
ap

ta
sk
s

In
th
e
p
ro
p
o
se
d
E
L
R
A
S
,
d
at
a
lo
ca
li
ty

is
ac
h
ie
v
ed

u
p
to

9
9
%

fo
r
1
0
0
M
ap

ta
sk
s

R
es
o
u
rc
e-
aw

ar
e
ad
ap
ti
v
e

sc
h
ed
u
li
n
g
(R
A
A
S
)
[2
9
]

R
es
o
u
rc
e

u
ti
li
za
ti
o
n

an
d

co
m
p
le
ti
o
n

ti
m
e

P
ri
v
at
e
cl
u
st
er

G
ri
d
m
ix

b
en
ch
m
ar
k

H
o
m
o
g
en
eo
u
s

T
as
k
sc
h
ed
u
li
n
g
is

d
o
n
e
b
as
ed

o
n
th
e
av
ai
la
b
il
it
y
o
f

re
so
u
rc
es

an
d
fo
cu
se
d
fo
r
im

p
ro
v
in
g
th
e
re
so
u
rc
e

u
ti
li
za
ti
o
n

In
R
A
A
S
,
m
ax
im

u
m

re
so
u
rc
e
u
ti
li
za
ti
o
n
is

at
ta
in
ed

ab
o
u
t
4
5
%

fo
r
m
ix
ed

w
o
rk
lo
ad

ca
se

E
L
R
A
S
o
ff
er
s
m
ax
im

u
m

re
so
u
rc
e
u
ti
li
za
ti
o
n
(u
p
to

9
2
%
)
fo
r
m
ix
ed

w
o
rk
lo
ad

ca
se

C
O
S
H
H

[1
7
]

D
at
a
lo
ca
li
ty

an
d
m
ea
n

co
m
p
le
ti
o
n

ti
m
e

P
ri
v
at
e
cl
u
st
er

G
ri
d
m
ix

b
en
ch
m
ar
k

H
et
er
o
g
en
eo
u
s

T
as
k
is
cl
as
si
fi
ed

an
d
sc
h
ed
u
le
d
in

th
e
cl
u
st
er

as
d
at
a

lo
ca
l
m
an
n
er

In
C
O
S
H
H
,
d
at
a
lo
ca
li
ty

is
ac
h
ie
v
ed

ar
o
u
n
d
9
8
%

fo
r

1
0
0
M
ap

ta
sk
s
an
d
ti
m
e
co
n
su
m
ed

fo
r
ex
ec
u
ti
o
n
is

h
ig
h
b
ec
au
se

o
f
th
e
cl
as
si
fi
ca
ti
o
n
p
ro
ce
ss

D
at
a
lo
ca
li
ty

is
ac
h
ie
v
ed

ab
o
u
t
9
9
%

fo
r
1
0
0
M
ap

ta
sk
s.
F
u
rt
h
er
,
to
ta
l
jo
b
co
m
p
le
ti
o
n
ti
m
e
o
f

E
L
R
A
S
is
le
ss

as
co
m
p
ar
ed

to
C
O
S
H
H

L
o
ca
li
ty
-a
w
ar
e
re
d
u
ce

ta
sk

sc
h
ed
u
li
n
g
(L
A
R
T
S
)
[3
0
]

D
at
a
lo
ca
li
ty

P
ri
v
at
e
cl
u
st
er

W
o
rd

co
u
n
t

an
d
so
rt

b
en
ch
m
ar
k

H
o
m
o
g
en
eo
u
s

S
ch
ed
u
li
n
g
is
d
o
n
e
in

a
d
at
a
lo
ca
l
m
an
n
er

b
y

av
o
id
in
g
sc
h
ed
u
li
n
g
d
el
ay
,
n
et
w
o
rk

tr
af
fi
c
an
d

C
o
m
p
le
ti
o
n
ti
m
e

In
L
A
R
T
S
,
d
at
a
lo
ca
li
ty

is
o
b
se
rv
ed

o
n
ly

ab
o
u
t
6
0
%

fo
r
1
1
M
ap

ta
sk
s

In
E
L
R
A
S
,
m
ax
im

u
m

d
at
a
lo
ca
li
ty

is
at
ta
in
ed

(u
p

to
9
9
%
)
fo
r
1
1
M
ap

ta
sk
s

H
is
to
ry
-b
as
ed

au
to
-t
u
n
in
g

(H
A
T
)
[3
1
]

C
o
m
p
le
ti
o
n

ti
m
e
an
d

sc
al
ab
il
it
y

P
ri
v
at
e
cl
u
st
er

S
o
rt
an
d
w
o
rd

co
u
n
t

ap
p
li
ca
ti
o
n

H
o
m
o
g
en
eo
u
s

T
h
e
o
b
je
ct
iv
e
o
f
H
A
T
is
to

re
d
u
ce

th
e
ex
ec
u
ti
o
n
ti
m
e

F
o
r
1
0
jo
b
s,
H
A
T
co
n
su
m
es

8
0
0
0
s
as

th
e
ex
ec
u
ti
o
n

ti
m
e

In
E
L
R
A
S
,
to
ta
l
jo
b
ex
ec
u
ti
o
n
ti
m
e
is

co
m
p
ar
at
iv
el
y
le
ss

th
an

th
e
H
A
T
(i
.e
.)
,
fo
r
1
0

jo
b
s,
it
re
q
u
ir
es

o
n
ly

3
5
0
0
s

2714 J. V. Bibal Benifa, Dejey

123



T
ab

le
1
co
n
ti
n
u
ed

M
et
h
o
d
/r
ef
er
en
ce
s

P
er
fo
rm

an
ce

m
et
ri
cs

ev
al
u
at
ed

T
es
t
b
ed

an
d

en
v
ir
o
n
m
en
t

P
er
fo
rm

an
ce

o
b
je
ct
iv
e
an
d
li
m
it
at
io
n
o
f
th
e
ap
p
ro
ac
h

L
im

it
at
io
n
s
ad
d
re
ss
ed

b
y
p
ro
p
o
se
d
m
et
h
o
d

S
el
f-
ad
ap
ti
v
e
M
ap
R
ed
u
ce

sc
h
ed
u
li
n
g
(S
A
M
R
)
[3
2
]

R
ed
u
ce

ru
n
ti
m
e
an
d

sc
al
ab
il
it
y

P
ri
v
at
e
cl
u
st
er

S
o
rt
an
d
W
o
rd

C
o
u
n
t

ap
p
li
ca
ti
o
n

H
et
er
o
g
en
eo
u
s

T
h
e
ai
m

o
f
S
A
M
R
is
to

m
in
im

iz
e
th
e
ex
ec
u
ti
o
n
ti
m
e

b
y
fo
cu
si
n
g
o
n
sc
al
ab
il
it
y
an
d
w
it
h
o
u
t
d
at
a
lo
ca
li
ty

co
n
st
ra
in
ts

T
h
e
ex
ec
u
ti
o
n
ti
m
e
is
d
ec
re
as
ed

m
er
el
y
ab
o
u
t
1
7
%

as
co
m
p
ar
ed

to
F
IF
O

E
L
R
A
S
co
n
si
d
er
s
d
at
a
lo
ca
li
ty

an
d
it
is
h
ig
h
ly

sc
al
ab
le

in
a
d
y
n
am

ic
cl
u
st
er

en
v
ir
o
n
m
en
t.
H
er
e,

ex
ec
u
ti
o
n
ti
m
e
is
d
ec
re
as
ed

u
p
to

7
6
%

w
h
il
e

co
m
p
ar
ed

w
it
h
F
IF
O

M
ae
st
ro

[3
3
]

N
et
w
o
rk

tr
af
fi
c,

d
at
a

lo
ca
li
ty

an
d

ru
n
ti
m
e

P
ri
v
at
e
cl
u
st
er

an
d
G
ri
d
5
0
0
0

G
ri
d
m
ix

b
en
ch
m
ar
k

H
et
er
o
g
en
eo
u
s

(o
r)

h
o
m
o
g
en
eo
u
s

It
m
ax
im

iz
es

th
e
co
m
p
u
ta
ti
o
n
s
in

a
d
at
a
lo
ca
l
m
an
n
er

b
y
re
d
u
ci
n
g
th
e
n
et
w
o
rk

tr
af
fi
c
an
d
ex
ec
u
ti
o
n
ti
m
e

In
M
ae
st
ro
,
9
5
%

d
at
a
lo
ca
li
ty

o
n
ly

ac
h
ie
v
ed

fo
r
th
e

g
iv
en

1
0
0
M
ap

ta
sk
s

B
ec
au
se

o
f
th
e
h
ig
h
er

d
at
a
lo
ca
li
ty

ac
h
ie
v
ed

in
E
L
R
A
S
,
cr
o
ss
-r
ac
k
co
m
m
u
n
ic
at
io
n
an
d

ex
ec
u
ti
o
n
ti
m
e
ar
e
k
ep
t
in

m
in
im

u
m

C
o
n
te
x
t
aw

ar
e
sc
h
ed
u
le
r
fo
r

H
ad
o
o
p
(C
A
S
H
)
[3
4
]

E
x
ec
u
ti
o
n

ti
m
e
an
d

th
ro
u
g
h
p
u
t

P
ri
v
at
e
cl
u
st
er

T
er
as
o
rt

b
en
ch
m
ar
k

H
et
er
o
g
en
eo
u
s

T
h
e
in
te
n
ti
o
n
o
f
C
A
S
H

is
to

re
d
u
ce

th
e
ex
ec
u
ti
o
n

ti
m
e
an
d
to

im
p
ro
v
e
th
e
th
ro
u
g
h
p
u
t

T
h
e
ex
ec
u
ti
o
n
ti
m
e
is
re
d
u
ce
d
o
n
ly

ab
o
u
t
2
0
%

-
3
6
%

as
co
m
p
ar
in
g
w
it
h
F
IF
O
.
M
o
re
o
v
er
,
d
at
a
is
si
m
p
ly

b
al
an
ce
d
ac
ro
ss

th
e
n
o
d
es

in
th
e
cl
u
st
er

In
E
L
R
A
S
,
an

ef
fi
ci
en
t
d
at
a
p
la
ce
m
en
t
st
ra
te
g
y
is

p
re
se
n
te
d
an
d
ex
ec
u
ti
o
n
ti
m
e
is
re
d
u
ce
d
u
p
to

7
6
%

w
h
il
e
co
m
p
ar
in
g
w
it
h
F
IF
O

Q
u
in
cy

[1
9
]

D
at
a
lo
ca
li
ty
,

th
ro
u
g
h
p
u
t

an
d
fa
ir
n
es
s

P
ri
v
at
e
cl
u
st
er

D
at
ab
as
eJ
o
in
,

S
o
rt
,

P
ag
eR

an
k
,

P
ri
m
eS
m
al
l

an
d

P
ri
m
eL

ar
g
e

H
et
er
o
g
en
eo
u
s

S
ch
ed
u
li
n
g
is
d
o
n
e
b
y
fo
cu
si
n
g
d
at
a
lo
ca
li
ty

an
d

im
p
ro
v
in
g
th
e
th
ro
u
g
h
p
u
t

T
h
ro
u
g
h
p
u
t
ac
h
ie
v
ed

is
o
n
ly

ab
o
u
t
4
0
%

w
h
il
e

co
m
p
ar
ed

to
n
at
iv
e
H
ad
o
o
p
an
d
D
at
a
lo
ca
li
ty

is
fo
u
n
d
to

b
e
ar
o
u
n
d
5
0
%

b
ec
au
se

o
f
fa
ir
n
es
s

co
n
st
ra
in
ts

In
E
L
R
A
S
,
m
ax
im

u
m

T
h
ro
u
g
h
p
u
t
is
ac
h
ie
v
ed

(u
p

to
8
9
%
)
th
at

is
g
re
at
er

th
an

th
e
n
at
iv
e
H
ad
o
o
p

H
y
b
ri
d
al
g
o
ri
th
m

[1
8
]

A
C
T
an
d

fa
ir
n
es
s

M
R
S
IM

Y
ah
o
o
an
d

fa
ce
b
o
o
k

tr
ac
e

H
et
er
o
g
en
eo
u
s

H
y
b
ri
d
sc
h
ed
u
le
r
fo
cu
se
s
o
n
th
e
re
d
u
ct
io
n
o
f
A
C
T

an
d
fa
ir
n
es
s
im

p
ro
v
em

en
t

It
co
n
si
d
er
s
o
n
ly

h
et
er
o
g
en
eo
u
s
en
v
ir
o
n
m
en
t

T
h
e
co
m
p
le
ti
o
n
ti
m
e
o
f
E
L
R
A
S
is
le
ss

th
an

th
e

H
y
b
ri
d
sc
h
ed
u
le
r
in

a
re
al

en
v
ir
o
n
m
en
t.
It

su
p
p
o
rt
s
b
o
th

h
et
er
o
g
en
eo
u
s
an
d
h
o
m
o
g
en
eo
u
s

en
v
ir
o
n
m
en
ts

Performance Improvement of MapReduce for Heterogeneous… 2715

123



T
ab

le
1
co
n
ti
n
u
ed

M
et
h
o
d
/r
ef
er
en
ce
s

P
er
fo
rm

an
ce

m
et
ri
cs

ev
al
u
at
ed

T
es
t
b
ed

an
d

en
v
ir
o
n
m
en
t

P
er
fo
rm

an
ce

o
b
je
ct
iv
e
an
d
li
m
it
at
io
n
o
f
th
e
ap
p
ro
ac
h

L
im

it
at
io
n
s
ad
d
re
ss
ed

b
y
p
ro
p
o
se
d
m
et
h
o
d

C
o
st
-e
ff
ec
ti
v
e
S
ch
ed
u
li
n
g

ac
ro
ss

m
u
lt
ip
le

h
et
er
o
g
en
eo
u
s

M
ap
R
ed
u
ce

cl
u
st
er
s

(C
h
E
sS
)
[3
5
]

E
x
ec
u
ti
o
n

ti
m
e
an
d

d
at
a

lo
ca
li
ty

P
ri
v
at
e
cl
u
st
er

P
U
M
A

b
en
ch
m
ar
k

H
et
er
o
g
en
eo
u
s

C
h
E
sS

is
a
P
ar
et
o
b
as
ed

sc
h
ed
u
li
n
g
fr
am

ew
o
rk

fo
r

as
si
g
n
in
g
Jo
b
s
to

th
e
cl
u
st
er

P
ar
et
o
fr
o
n
ti
er

m
et
h
o
d
u
se
d
in

C
h
E
sS

is
an

ex
p
en
si
v
e

co
m
p
u
ta
ti
o
n
al

p
ro
ce
ss
.
T
h
e
se
ar
ch

sp
ac
e
g
ro
w
s

ex
p
o
n
en
ti
al
ly

w
it
h
th
e
n
u
m
b
er

o
f
jo
b
s
an
d
th
e

cl
u
st
er

th
at

le
ad
s
to

h
ig
h
er

ex
ec
u
ti
o
n
ti
m
e

E
L
R
A
S
is

a
si
m
p
le

an
d
co
st

ef
fe
ct
iv
e
al
g
o
ri
th
m

th
at

re
d
u
ce
s
th
e
ex
ec
u
ti
o
n
ti
m
e,

im
p
ro
v
es

th
ro
u
g
h
p
u
t
an
d
re
so
u
rc
e
u
ti
li
za
ti
o
n

2716 J. V. Bibal Benifa, Dejey

123



3.1 Proposed Work

3.1.1 Overview of Proposed Work

The architecture of the ELRAS strategy is presented in Fig. 2 and sequence of operations is

described in Fig. 3.

• In Fig. 2, the JobTracker holds the node statistics table (NST) that includes entries such

as rack id, physical machine id, data object id, replica object id, task id of running task,

CPU utilization rate, unused storage space (Si) and status flag.

• Scheduler is located in JobTracker to make data placement decisions, task scheduling

decision, replica node decision and to collect the results from the slave nodes.

• The job queue maintains the list of jobs and task that is ready for execution.

TaskTracker (slave node/data node) executes the task and returns the results. Further,

each slave node executes the ARS for deciding the object for replication and issue

replication request to the JobTracker.

Task

Data Objects

Replica Objects

ARS

Task

Data Objects

Replica Objects

ARS

Physical Machine 1 
/ Data Node 1

Physical Machine n / 
Data Node n

Scheduler
Data and Replica 

Placement

Task Scheduling

Replica_Node_Decision

Collect Results

JobTracker
Node statistics Table

Scheduler

Job Queue

ARS- Autonomous 
Replication Scheme
Si- Unused storage 
space
SF- Status Flag

Node Statistics Table
Rac
k_Id

PM 
Id

Data 
Object

Replica 
Objects

Task 
Id

CPU
_Utl

Si SF

R1 PM10 D61,D31

, D82

RP54 T73,T213

, T27

76 1.8 1

J1 .........   Jn

T11 .......... T1m

Tn1 ........ Tnm

Fig. 2 Architecture of ELRAS strategy
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3.1.2 Efficient Locality and Replica Aware Scheduling Strategy (ELRAS)

(1) Creation and Modification of Node Statistics Table (NST)

The nodes in a cluster are organized according to a three layer mapping relationship (rack

layer—physical machine layer—virtual machine layer) as illustrated in Fig. 4. When new

PM are added to the network, the parameters such as Rack Id, Node_Id of the physical

Machine, identity of currently running task, data objects stored, CPU utilization rate, status

of the physical machine (1-for overloaded), and available free space (Si) are added to the

NST. The NST is located in the JobTracker and it frequently updates the information as a

User
submit

File (Data for processing)

Job

Identify the physical 
Machines having unused 
storage space compatible for 
storing the data and task

Randomly distribute all the 
data objects in the physical 
machines in different racks. 
If the condition is not 
satisfied then store the data 
in available physical 
machines

Update Node Statistics Table

Divide the file into multiple 
data objects based on the 
block size specified

Job is divided 
into multiple 
task and stored 
in Task Queue

Schedule the task in 
the physical Machines 
having data objects or 
its replica

When a task arrives 
for execution in a 
data object, check 
for the popularity of 
the object

Issue replication 
request for the 
data object

If popularity of data 
object exceeds ideal 
request rate

Execute the task and 
submit the results

Trigger time stamp 
and wait for task
arrival

If time stamp 
exceeds the limit 
then remove the 
replica

// Executed at each Physical 
Machines or data nodes

Autonomous_Replication_Scheme
Data Placement

Task Scheduling

Fig. 3 Sequence of flow of operations in the ELRAS architecture
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new physical machine (PMi) is added or whenever an update request (URi) arises from the

existing PM. Algorithm 1 describes the dynamic creation and modification of NST and

Table 2 is an illustrative example for NST.

Fig. 4 Mapping relationship
between different layers

Table 2 Example for node statistics table

Node statistics table

Rack_Id PM_Id Data
objects
(Dij)

Replica
objects
(RPij)

Running
Task_Id

CPU_Utilization Unused storage
space (Si)

Status
flag

R1 PM10 D61, D31,
D82

RP54 T73, T213,
T27

76 1.8 1

R7 PM7, D42, D71,
D62

T15 43 1.9 0

PM9 D93 RP82 T68, T91,
T314

58 2.5 0

Algorithm 1: Dynamic Creation and Modification of NodeStatisticsTable
Input: Incoming Physical Machines, UpdateRequest for entries
Output: NodeStatisticsTable Updated
Create entries in the Table for each Physical Machine PMi
Node_Id= PMi //Physical Machine Id
CPU_Util=  0 // Cpu Utilization                      

Task_Id=0 // Running Task Id

Data Object Dij= 0 // Data Chunk j of File i

Si=0, StatusFlag=0 // Unused Storage Space Si of PMi and status flag}
For each new Physical Machine PMi do

Update_NodeStatisticsTable(URi)
End For
For each Update Request URi do

Insert_ NodeStatisticsTable (Node_Id, CPU_Util, Task_id, DataObject Dij, Si, 
StatusFlag)

End For
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(2) Initial Data Placement and Replica Placement

Once a file is submitted by a user for processing, it is divided into multiple blocks based

on the size specified by the user or fixed default size. The number of data objects depends

on the file size and the specified block size. Each data objects are placed in the available

free space of the PM, starting from the first rack and the available capacity is identified

through the NST. For each data placement decisions, the NST is updated and when

replication request comes for a data object, the replica is placed in a node wherever the

primary copy of the data object does not exist.

The proposed algorithm solves two key issues associated with data locality, namely (1)

identifying the PM compatible for a data set (data placement), (2) placing the virtual

machines in the identified node. The tasks are placed in the form of virtual machines (VM)

in the computing nodes. For example, the data object placement strategy in a compatible

free slot is displayed in Fig. 5. At this point, PM5 consists of free space and the data objects

A3, B3 and C3 are placed in PM5. Algorithm 2 describes the process involved in the data

placement. Here, cDij is the computing and storage space required for placing data and

task. Where,cDij is identified from the ACT divided by the number of task slot.

Algorithm 2: Data and Replica Placement
Input: File, NodeStatisticsTable
Output: Data placement in Physical Machines { PM1,.... PMn}

iF =0 , ijD , sf=0 , bs=0 , 0iω = // {File Id, Data Chunk Id, File Size, block size 

specified and number of data chunks for file Fi}//

For each File Fi do

( )isf Sizeof F←⎯⎯ // Obtain from File Information
bs Set by User←⎯⎯ // {Block Size Default-64MB}

/i sf bsω = // Compute number of blocks or data chunks for a File Fi
While ( iω !=0)

Data_Placement();

iω ++;

End While
End For
Data_Placement(Dij or RPij)
For each Rack Ri in NodeStatisticsTable do

For each Physical Machine PMi do
Search for the nodes with unused storage space Si

If ( )i ijS Dγ>
Then Place the data chunk Dij or Replica RPij in PMi with unused storage 
space Si

Update_NodeStatisticsTable(URi)
End If

End For
End For

(3) Task Scheduling in Physical Machines
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In the task scheduling process, the user submits a job for execution and each job is placed

in a job queue. It is further divided into sub-tasks and placed in the task queue and a

Task_Id is allocated. Then, the tasks are scheduled in the PM that are not overloaded and

hold the data objects or replica. Overloaded status is identified from the NST where the

status flag of the corresponding overloaded node is set to one. Algorithm 3 describes the

process involved in the task scheduling to the corresponding PM in clusters.

Algorithm 3: Task Scheduling in Physical Machines PMi

Input: NodeStatisticsTable, Job {J1,....Jm}
Output: Task Scheduled to Physical Machines PMi

For each Job Ji in JobQueue do
Split the Job Ji into multiple Task and store into TaskQueue
Assign Task Id Ti to each Task in TaskQueue
For each Task Ti in JobQueue do

Scan NodeSatisticsTable()
Determine the list of nodes holding Dij or RPij // Data Chunk or Replica of data 
chunk
Randomly Schedule the Task in the Node where Dij or RPij exists
While (PMi flag is ‘1’)

Set the Task as ‘Wait’ in the JobQueue 
Until PMi holding Dij is set to ‘ 0 ’

End While
End For

End For

(4) Replica Node Decision

The algorithm 4 describes the mechanism for identifying a PM to place the replica object.

If NST receives a replication request of a data object, then a node is selected based on the

availability with a constraint. Initially, the replica object and data objects will be scheduled

in PM at different racks, and if it is not possible then an alternate PM in the same rack is

Fig. 5 Data placement strategy
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identified. Subsequently, if a node is not available for placing the replica, then the task

waiting for execution is set to wait status until the PM holding the data object is freed from

overloaded status.

Algorithm 4: Replica_Node_Decision
Input: Request for Replication of Dij

Ouput: Dij Replicated to the physical Machines PMi

For each Rack Ri in NodeStatistics Table do
If PMi in Ri holds the data chunk Dij

Then Proceed to next Rack Ri+1

Identify the Physical Machine where Si > bs
Replicate the data chunk Dij

TaskScheduling()
Else 

Scan Ri and identify where PMi doesnot hold Dij

Replicate the data object Dij

TaskScheduling()
End If

End For

(5) Autonomous Replication Scheme (ARS)

Assumption 1 Replicating the data objects only when it is necessary, consistently

reduces the overhead.

Assumption 2 It is possible to replicate the data objects possess high hit rates by

computing its popularity.

The algorithm 5 (ARS) is executed at each node and it decides to issue the replication

request for a data object based on the load processing capacity of the PM. When the task

arrival for the data object is too high, it decides further to replicate. The popularity of the

data object k(Dij) is computed by adding the request arrival rate. When it exceeds the ideal

request arrival rate of the physical machines (k(PMi)), then the replication decision is

made. As the decision for replication is made, a request is issued to NST and the task in the

queue with the wait status is triggered for scheduling. The ideal request rate of a PMi is

expressed as

kðPMiÞ ¼
Ci

PM
k¼1 Ck

k ð1Þ

where, C is the computing capacity of the node and k is the average arrival rate. The

popularity of the data object Dij is computed as follows using Eq. (2),

k ðDijÞ ¼
XN

j¼1

kij ð2Þ

In a PM, once a replica is placed the time stamp is triggered automatically and it checks for

the arrival of task within the limit of time stamp. As soon as the time stamp exceeds the

limit, the replica is removed automatically.
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Algorithm 5: Autonomous_Replication_Scheme
Result: Replica Removal or Issuing Replication request
// Executed at each Physical Machine PMi

For each Physical Machine PMi in Rack Ri do
While (Ti arrives for Dij or RPij)

Compute the popularity of the data chunk Dij

// where is the request rate of the data chunk Dij

If ( )ijDλ >=  ( )iPMλ // ( )iPMγ is the ideal request rate of the physical Machine PMi

Set Flag (1 iPM ) // PMi Overloaded

Update NodeStatisticsTable(URi)
Issue_ReplicationRequest(Dij)

Else If( (Dij or RPij )and Ti exists)
StartExecution()
SubmitResults()
Remove the ‘overload’ flag if exists
Poll TaskQueue
Trigger TimeStamp TS;
While( TS=0)

Remove dataChunk Dij or RPij

Update_NodeStatisticsTable(URi)
End While

End If 
End While 
End For

4 Testbed and Evaluation

4.1 Experimental Setup

In the experimental work, a heterogeneous cluster is built in the Amazon EC2 environment

and the corresponding node configuration is presented in Table 3. The Hadoop 1.0.0 is

used for all the experiments and the block size of file system is configured as 64 MB. The

ELRAS algorithm is implemented and its performance is evaluated in a heterogeneous

environment with 28 nodes and different configurations. Here, the scheduler in the Hadoop

package is modified with ELRAS for the evaluation of proposed approach.

4.2 Benchmark used for Analysis

HiBench [36] is a benchmarking suite and its workloads such as WordCount, TeraSort,

Grep and K-Means clustering are used to test the performance of proposed framework in

the Hadoop environment. The WordCount benchmark reads the input text files and

computes the occurrences of each word from the input file. The grep command is

employed for matching the patterns in plain-text datasets [36]. The TeraSort benchmark is

used to sort the huge dataset as quick as possible and it involves the following processes:

(1) Generating an input data set by TeraGen module, (2) Executing the task on the input

dataset, and (3) Validating the result using TeraValidate module. The k-Means clustering is

an iterative approach that is implemented as a series of MapReduce rounds. It partitions ‘n’
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objects into k-clusters where each object belongs to the cluster with the nearest distance.

The input to the algorithm is an initial set of cluster centres and a set of objects represented

as d-dimensional vectors.

4.3 Results and Discussion

4.3.1 Heterogeneous Cluster

To evaluate the performance of ELRAS approach using Hadoop, a default scheduler is

modified with the proposed method in the Hadoop package. The proposed method is

evaluated by using workloads presented in Table 4. Firstly, to analyse the efficiency of the

schedulers in a lightly-loaded system, a sample workload with ten jobs is evaluated. Then,

multiple experiments are conducted using various workloads by increasing the total

number of jobs in the workload to investigate the performance variation.

The ELRAS algorithm is compared with various scheduling policies for different

performance metrics. The existing competent algorithms such as Maestro, HCS, Apollo,

Baseline, and delay schedulers are compared with ELRAS for validating the results and it

is discussed in the subsequent sections. In addition, the existing replication schemes such

as LRU, BHR, and HRS are compared with the proposed ARS for comparing the per-

formance variations. The heterogeneity in workloads is proved by testing the algorithms

for mixed workloads (i.e.), combination IO bound and CPU bound workloads. It is

observed that the algorithm performs smoothly for mixed workloads and the results are

presented with respect to the total job execution time, cross rack communication, com-

putational resource usage, data locality, and throughput.

4.3.2 Total Job Execution Time

The total job execution time is the combination of queuing time, access time and execution

time. It also includes the time required for moving a file to a desired location until the

execution process completes. Figure 6 presents the total execution time of a job for an

input data size 100 GB and 120 jobs. The replication schemes such as LRU, BHR, HRS

and the proposed ARS are used in combination with ELRAS and hierarchical cluster

scheduling (HCS) strategy. ELRAS scheduling strategy with the ARS provides excellent

results as compared with other strategies.

In the proposed ELRAS scheduling strategy, while it is accompanied with BHR and

HRS replication mechanisms a small deviation in the total execution time is observed. If

the HCS ? ARS combination is compared with HCS ? HRS strategy, then it is noticed

that no improvement in the total job execution time. Moreover, the file transmission time is

the major factor to influence the total job execution time. Here, accurate scheduling and

data placement approach in ELRAS effectively reduces the file transmission time. Thus,

the presented results indicate the vital role of scheduling strategy and replication scheme in

MapReduce model to reduce the total job execution time.

Figure 7a presents the total job execution time of the ELRAS scheduler as it is used

with LRU, BHR, HRS, and ARS for multiple numbers of jobs (ranging from 10 to 120). It

is observed that, ELRAS ? ARS combination has less job execution time because of the

replication scheme employed. The results indicate that replication is also one of the major

factors affecting the scheduler in a fluctuating environment. Figure 7b presents the various

existing scheduling schemes such as HRS ? HCS, Apollo, Maestro, and Baseline com-

pared with the ELRAS ? ARS scheduler in terms of total job execution time. Here,
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ELRAS ? ARS gives best performance as it is compared with existing scheduling poli-

cies. Figure 8 illustrates the performance of ELRAS scheduler in the heterogeneous and

the homogenous environment and the observation shows that the proposed method is

adaptable to fluctuating environment. For the heterogeneous environment, the configura-

tion shown in Table 3 is used and for the homogenous environment Type 1 nodes shown in

Table 3 (number of nodes—28) is selected.

4.3.3 Computing Resource Usage

The computing resource usage is the percentage usage of all computing elements exists in

the cluster. Scheduling the task to a node at which no required data exists that leads to

increase in the access latency because of redundant data transfer. Figure 9a, b illustrate the

computing resource usage for the mixed workload with 100 and 50 GB data size. ELRAS

with ARS gives the maximum computational usage about 92% and while ELRAS is

combined with HRS the computational usage is only about 82%. The maximum compu-

tational usage increases about 1% than the previous case as HCS strategy is combined with

the ARS scheme. Figure 10 displays the computational resource usage for (100 GB dataset

and 120 jobs) various existing schedulers that are compared with the ELRAS strategy. The

results indicate that for a mixed workload category, ELRAS ? ARS can be exploited to

achieve a better performance gain in terms of computational resource usage.

4.3.4 Cross-Rack Communication

The number of cross-rack communications for each scheduling and replication mechanism

is illustrated in Fig. 11. As the ELRAS ? ARS scheme is used in combination, the number

of cross-rack communications is reduced because of excellent data locality. The data object

is replicated as the node holding the data object is in overloaded state and there is no space

for scheduling the task. ELRAS approach balances the load properly and reduces com-

munication overhead to the maximum thereby scheduling the task as well as data

effectively.

Table 3 Amazon EC2 configuration

Node type # Nodes CPU type RAM (GB) #m, r slots

Type 1 8 3. 40 GHz, 4 cores 4 GB 4, 2

Type 2 6 3. 40 GHz, 4 cores 8 GB 4, 2

Type 3 10 3.20 GHz, 4 cores 4 GB 4, 2

Type 4 4 2.00 GHz, 4 cores 4 GB 4, 2

Table 4 Application character-
istics of workload in terms of
data size

Sl. no Application Data size (GB) # Jobs

1 Word count 10, 50, 100 10–120

2 TeraSort 10, 50, 100 10–120

3 Grep 10, 50, 100 10–120

4 K-means clustering 10, 50, 100 10–120
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4.3.5 Data Locality

Data locality is placing the task in the nodes where the input data resides. Locality is

crucial for performance in large clusters because of network bisection bandwidth becomes

a bottleneck [15]. Running the task in the same node where the data exists (data locality/

node locality) is efficient and if it is not possible then running the task in the same rack

(rack locality) is adopted. Figure 12 illustrates the data locality and rack locality of mul-

tiple map task as the experimentation are done with the mixed workload. Locality is

achieved by replicating the hot files obviously that leads to queuing delay. Hence, for each

Job separate task queue is maintained and the tasks are handled in parallel aspect.

Networks in large clusters are organized in a hierarchical fashion as the nodes are

grouped under series of racks. Each rack or switch can hold a maximum of 80 nodes at the

lowest level [19] and the bandwidth inside a rack is higher than bandwidth between the

racks. Table 5 shows the data locality and the rack locality of various Map task while

executing ELRAS compared to delay scheduling. The delay scheduling yields 99% data

locality and 100% rack locality for 10 Map task. Then, as the number of Map task is

increased to 100, the locality rate decreases. When ELRAS is investigated for data locality,

it achieves 99% data locality and 100% rack locality for 10 to 100 Map task. As the

number of Map task is increased above 100, the data locality and rack locality decreases

and it is negligible. Figure 12 illustrates the node and rack locality from 3 to 1000 Map

task for various scheduling schemes. Different strategies such as FIFO, delay scheduling,

and ELRAS are compared and the overall performance statistics are presented in Fig. 13.

Fig. 6 Total job execution time of ELRAS and HCS with different replication schemes for workload.
a Word count, b TeraSort, c Grep, d K-means
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Figure 13 displays the data locality rate for a mixed workload case represented in

Table 6. When the number of jobs is less, the data locality rate is below 30% for FIFO and

FS schedulers. Delay scheduling performs better than FIFO and FS by achieving a locality

rate of 72%. Nevertheless, the ELRAS outperforms delay scheduling by yielding an

optimal locality rate about 82% for a minimum workload.

4.3.6 Throughput

The throughput of existing schedulers HCS ? HRS is less because of data locality problem

and interdependence between Map and reduce tasks. As the strict fairness constraint is

enforced the data-locality becomes degraded [8]. In ELRAS ? ARS, the load across the

cluster is completely balanced that ensures high throughput since, there is no task waiting

in the queue. Figure 14 shows the throughput for the time period about 10 min while

running a single workload and mixed workload cases. ELRAS achieves highest throughput

rate of handling 120 jobs within 10 min in a 100 GB dataset. In addition, ELRAS achieves

competitive performance in throughput as compared with Delay scheduling.

From the experiments conducted and based on the observations the highlights of

ELRAS are summarized as follows

• The proposed work (ELRAS) suggests that enhancing data locality and reducing the

cross-rack communication significantly decrease the total job execution time of data

intensive computations.

• A tracking method integrated identifies the data objects that enable efficient scheduling

and reduction in cross-rack communication. Further, ARS integrated with ELRAS

decides the data object for replication and adaptively removes the replica when it is

idle.

• The computing resource usage rate is high for ELRAS strategy while compared with

the existing scheduling and replication approaches.

• The algorithm is designed for heterogeneous cluster environment as the node

characteristics are varying and dynamic in nature. The presented results show that

the total job execution time for varying workload characteristics is reduced as

compared to other scheduling schemes.

Fig. 7 Total job execution time for mixed workload and 100 GB dataset. a Replication Schemes ? EL-
RAS strategy, b different scheduling schemes
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Fig. 8 Total job execution time for mixed workload and 100 GB dataset of ELRAS strategy in
heterogeneous and homogenous environment

Fig. 9 Computational resource usage of ELRAS compared with HCS for different replication schemes.
a 100 GB data and 120 jobs, b 50 GB data and 50 jobs

Fig. 10 Computational resource
usage for different scheduling
strategy for mixed workload
(data size—100 GB and #jobs—
120)
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Fig. 11 Number of cross-rack communications of ELRAS compared with HCS. a Word count, b TeraSort,
c Grep, d K-means

Fig. 12 Data-locality of different schedulers

Table 5 Performance comparison of delay scheduling and ELRAS for node and rack locality

Job size Node or rack locality
with delay scheduling

Node or rack locality
with ELRAS

3 Maps 75%/96% 82%/99%

10 Maps 99%/100% 99%/100%

50 Maps 97%/99% 99%/100%

100 Maps 94%/99% 99%/100%

1000 Maps 92%/94% 94%/99%
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Fig. 13 Data locality for each bin (Table 5) under mixed workload

Table 6 Number of Jobs in
mixed workload used for data
locality measurement

Sl. no # Maps # Jobs in BenchMark

1 1 1

2 10 10

3 20 15

4 50–100 30

5 101–250 50

6 251–500 70

7 501–1000 100

8 1001–1500 120

Fig. 14 Throughput comparison for K-means and mixed workload
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5 Conclusions

The ELRAS algorithm presented in this article is simply adapted for MapReduce appli-

cations in Heterogeneous cluster environment. It focuses on locality and replica aware

scheduling and demonstrates that the data locality improves the throughput and reduces the

cross-rack communications. This algorithm is flexible to adapt for the dynamic environ-

ment while the new nodes are added or removed. An ARS is used to make decision on

replication and replicas are tracked effectively using the NST. The various performance

metrics such as total job execution time, computing resource usage, number of cross-rack

communication and throughput are studied individually for the combination of ELRA-

S ? ARS in a heterogeneous cluster environment. It is also concluded that the data

placement method, scheduling strategy and replication scheme play a vital role for

improving the performance metrics. The results proved the efficiency of the algorithm for

heterogeneous clusters and workloads. As a future work, the algorithm can be integrated

with Auto-Scaling applications that are used in the commercial cloud environments.
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