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Abstract The location determination technique using time difference of arrival (TDOA)

measurements has been widely used in the military and observation industry. The accuracy

of geolocation estimation is a very significant problem because measurement data are

affected by environmental noise. Environmental noise occurs due to measurement error

and the non-line of sight (NLOS) problem. This paper presents a Kalman filter-based

NLOS section identification method and an iterative estimation of emitter location using

the recursive weighted least square (RWLS) algorithm. Using fixed receivers with known

locations, we obtain TDOA data that contain environmental noise. We identify the NLOS

section of each receiver using a Kalman filter. Using the identified line of sight (LOS)

TDOA measurements, we accurately derive the estimated location of an emitter with a fast

calculation speed using the proposed RWLS algorithm when we receive additional TDOA

data. In order to confirm the performance of the RWLS algorithm, the presented simulation

results show that the proposed technique achieves improved accuracy and speed for esti-

mating the emitter location.
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1 Introduction

Location determination techniques are commonly adopted in the military and observation

industry. In the case of a location-based service, such as navigation and guidance, the precise

position estimation of an emitter irrespective of its environment is the most significant

problem. The global positioning system (GPS) is the most widely used source localization

method. However, the exact position cannot be obtained by GPS in an indoor environment

since the satellite signal cannot pass through building. Moreover, GPS requires at least four

available satellite signals to perform position estimation, and a GPS signal is vulnerable to

disturbance from interference and jamming. Recently, a location determination technique

using the time difference of arrival (TDOA) method was applied for estimating the location

in an indoor environment. The TDOA method is a geolocation technique that uses the

difference in arrival times between an emitter and each known receiver. The TDOA signal

can be obtained through two methods. The first method acquires the time of arrival (TOA)

between an emitter and an individual receiver. Then, the TDOAmeasurements are calculated

by subtracting TOA measurements from that of the reference. In order to apply this method,

every receiver must be time synchronized. The second method involves a cross-correlation

method among all received signals in order to derive TDOA signals [1]. It is difficult to

estimate the precise position of an emitter using the TDOA method since the TDOA signals

include noise caused by the NLOS problem and measurement error.

In order to estimate the precise position of an emitter, Shen et al. [2] proposed location

determination techniques based on TOA and TDOA with optimization methods, such as the

Taylor series method and the approximate maximum likelihood method in a line of sight

(LOS) environment. The error rate was determined to compare the performance of each

location estimation method.Musicki et al. [3] proposed a mobile emitter geolocation method

using a Gaussianmixture presentation of a measurements-integrated track splitting filter, and

Kang et al. [4] suggested the iteration location estimation algorithm in which NLOS signal is

iteratively removed to obtain the exact location in a wireless sensor network.

In this paper, we propose the NLOS section identification of each receiver using a Kalman

filter. With the LOS TDOA data, which eliminated NLOS-containing TDOA data sections,

we apply anRWLSmethod to a TDOA-based localization formula in order to compensate for

errors from nonlinear measurement values. The RWLS algorithm is an iterated method of a

weighted least square (WLS) algorithm. Since the weight value derived using a covariance

matrix of theWLS algorithm is applied to the geolocation problem, it has better performance

than the generalized least square (LS) technique [5]. Moreover, this proposed algorithm

provides a fast computational rate, even when receiving additional TDOA data. This paper is

organized as follows: Sect. 2 presents the NLOS identification method using a Kalman filter.

In Sect. 3, the systemmodel for location determination based onTDOA is analyzed. Section 4

explains measurement error compensation using the RWLS algorithm. Through the simu-

lation results in Sect. 5, the performance of the proposed algorithm is demonstrated. Finally,

conclusions are presented in Sect. 6.

2 Kalman Filter-Based NLOS Identification

NLOS noise is a significant problem in location-based services, causing a time delay in

the signal traveling from an emitter to a receiver. In a real environment, the measured

TOA and TDOA data from receivers contain the environmental noise caused by the
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measurement error and NLOS problem. In most wireless communication based geolo-

cation schemes, NLOS problem can be occurred by the attenuation factors such as

Rayleigh fading. For the case of a downtown or a building interior, the impediments such

as structures and walls which exist between an emitter and receivers obstruct the prop-

agation and lead to NLOS problem. The time delay caused by NLOS problem in a

practical communication channel deteriorates the estimation accuracy of geolocation. In

Sect. 2, the measured TOA at each receiver is divided by some sections in accordance

with the sampling time. Each section is composed of the TOA data set which is measured

at each receiver. During the corresponding sampling interval, some data sections which

contain NLOS noise cause the inaccuracy in emitter geolocation. We identify the section

as in the NLOS or LOS condition using a Kalman filter. The Kalman filter is an algorithm

that provides an efficient computational means to estimate the state of a process in such a

way that minimizes the mean of a squared error. The state of an emitter can be estimated

with a Kalman filter through measurement data. We need to formulate the state-space

model of an emitter’s movement in order to apply a Kalman filter to a geolocation

problem [6, 7]. Using two-dimensional coordinates, we analyze the state of the emitter

through two types of equation sets that express x-direction and y-direction movement,

respectively. The state-models are independently derived for the x-position and y-position

of an emitter as follows

skþ1 ¼ Ask þ Cwk; k ¼ 1; . . .;P ð1Þ

where

A ¼
1 Dt

0 1

� �
; C ¼

0

Dt

� �
:

In Eq. (1), the state vector of emitter sk is represented as px; vx½ �T for the x-direction or

py; vy
� �T

for the y-direction at sampling time tk. px and vx are the location and velocity in

the x-direction, respectively. wk is the driving variable with a variance C ¼ r2c . The

measurement state variable, denoted by zk, is expressed as in the following equation:

zk ¼ Bsk þ mk ð2Þ

with B ¼ 1 0½ �. zk which can be obtained from the measured TOA data through triangu-

lation method is used as an observation factor in Kalman filter process. mk is the mea-

surement noise variable with a variance of R ¼ r2m.
Using Eqs. (1) and (2), the iterative process of the Kalman filter can be derived as the

following Eq. (3).

ŝ�k ¼ Aŝk�1

P�
k ¼ APk�1A

T þ CCCT

Kk ¼ P�
k B

TðBP�
k B

T þ RÞ�1

ŝk ¼ ŝ�k þKkðzk � Bŝ�k Þ
Pk ¼ P�

k �KkBP
�
k :

ð3Þ

The first two equations in (3) represent the time update process, while the last three

equations are the measurement update process. Pk means the covariance matrix of state

vector sk, and Kk denotes the Kalman filter gain. The updated estimate ŝk and the
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covariance Pk in Eq. (3) are valid for the optimal Kalman gain, which is derived by Kk in

Eq. (3). We estimate the emitter location ŝk at sampling time tk through this update

operation.

In order to determine whether the section is under the LOS or NLOS condition, we

compare the measured and estimated distance data between an emitter and each receiver.

The distance between an emitter and the i-th receiver, denoted by r�i , can be obtained from

the TOA data as follows:

r�i ¼ ct�i ð4Þ

where c represents the signal propagation speed, and t�i denotes the TOA between an

emitter and the i-th receiver. The measured distance data rmðtkÞ at sampling time tk consists

of a true distance, a measurement error, and an NLOS error as in the following equation:

rmðtkÞ ¼ r�mðtkÞ þ DrmðtkÞ þ DrnlostðkÞ: ð5Þ

In Eq. (5), r�mðtkÞ, DrmðtkÞ, and DrnlosðtkÞ represent the real distance between an emitter and

a specific receiver, the measurement distance error, and the NLOS distance error,

respectively. Using the Kalman filter expressed by Eq. (3), we derive the estimated location

of an emitter. On the basis of this estimate, the standard deviation of the measured distance

can be formulated as follows

r̂nlos ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

ðrmðtkÞ � rKalmanðtkÞÞ2
vuut ð6Þ

where rKalmanðtkÞ is the estimated range that can be calculated with the estimated location

of an emitter. The parameter N is the total number of distance data rmðtkÞ in each

section.

In this paper, without loss of generality, at least one receiver is supposed to be located in

the LOS environment to apply the criterion for identification of NLOS data section. The

standard deviation r̂m in the LOS condition is derived similarly to Eq. (6). We then identify

the section that contains the NLOS noise using the following hypothesis test with the

criterion of er̂m.

H1ðLOS conditionÞ : r̂nlos\er̂m
H2ðNLOS conditionÞ : r̂nlos � er̂m

ð7Þ

The parameter e is chosen according to the environment. We determine the section of

measured distance data rmðtkÞ from each receiver whether under the LOS or NLOS

environment using the hypothesis test of Eq. (7). In order to estimate the accurate location

of an emitter, the identified LOS distance data is used for geolocation.

3 System Modeling for Localization

We briefly derive the TDOA-based location estimation solution. In order to apply the

RWLS algorithm to a geolocation problem, we need to express the TDOA formulation of

an emitter in a closed analytic form. To obtain the TDOA measurement value, at least three

receivers are needed in order to apply the RWLS algorithm in a two-dimensional system.
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The unknown location of an emitter is represented in two-dimensional Cartesian coordi-

nates as u ¼ x y½ �T , and the known position of each receiver is expressed as pi ¼ xi yi½ �,
i ¼ f1; 2; . . .;Mg. Figure 1 is a simple conceptual diagram of geolocation determination

using the TDOA method. We obtain the TDOA measurement values as follows

r�i1 ¼ cti1;

r�i ¼ ku� pik
ð8Þ

where ti1 is the TDOA between the i-th receiver and the first receiver. The TDOA data

which is confirmed as a LOS data through the hypothesis test of Eq. (7) can be used for

geolocation. The distance data (r�i ) between an emitter and the i-th receiver is obtained

from LOS data and is acquired using the proposed Kalman filter in Sect. 2. The distance r�i
can be expressed as follows:

r�i ¼ r�1 þ r�i1; i ¼ 2; 3; . . .;M: ð9Þ

With Eq. (9) and ðr�i Þ
2 ¼ hu� pi; u� pii, the geolocation equation is as follows:

kuk2 � 2pTi uþ kpik2 ¼ kuk2 � 2pT1uþ kp1k2 þ 2r�1r
�
i1 þ ðr�i1Þ

2: ð10Þ

The geolocation problem of Eq. (10) can be represented in a closed form as

kp1k2 � kpik2 þ ðr�i1Þ
2 ¼ 2hp1 � pi; ui � 2r�1r

�
i1; i ¼ 2; 3; . . .;M: ð11Þ

In order to simplify the geolocation equation, we set the first receiver’s position at the

origin of the coordinate system. Since the position of the first receiver is set as p1 ¼ 0 0½ �T ,
we obtain the formulation of an emitter through Eq. (11) as follows:

Gu ¼ hþ qr�1 ð12Þ

where

Fig. 1 Estimated location of an emitter using the TDOA method
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G ¼

pT2

..

.

pTM

2
664

3
775; q ¼

r�21

..

.

r�M1

2
664

3
775; d ¼

hp2; p2i
..
.

hpM ; pMi

2
664

3
775;

h ¼
kp2k2 � ðr�21Þ

2

..

.

kpMk2 � ðr�M1Þ
2

2
664

3
775 ¼ 1

2
ðd� q � qÞ

The vector u is then the solution of the geolocation problem. [8] The symbol (�) denotes a
Hadamard product of vector elements of the same size array.

In a real case, the TDOA data is affected by measurement noise. Equation (12), how-

ever, is the noise-free case in which the solution u is obtained in terms of parameter r�i .
Since the measurement noise causes a time delay in TDOA data, we need to rewrite the

parameters q and h which are affected by TDOA data t. Considering the measurement

noise, the TDOA data is given by

t ¼ colft�k1 þ Dtk1; k ¼ 2; . . .;Mg ¼ t0 þ Dt

Dt ¼ colfDtk1; k ¼ 2; . . .;Mg;

Qt ¼D E DtDtT
� �

; E Dt½ � ¼ 0

ð13Þ

Using t ¼ t0 þ Dt, the parameters q and h are changed as follows

q ¼ q0 � cDt

h ¼ h0 þ cq0 � Dt
ð14Þ

Let’s define qo and h0 as q0 ¼ �ct0 and h0 ¼ 1=2ðd� q0 � q0Þ, respectively. To include

the effect of measurement noise in the system equations, Eq. (12) is rewritten using

Eq. (14).

Gu ¼ b0 þ cBDt;

b0 ¼ h0 þ q0r
�
1 ;

B ¼ diagðq0Þ � r�1I

ð15Þ

The measurement noise in the TDOA data of a real case causes a problem in that the

estimated location of the emitter differs from the real location. By eliminating the mea-

surement noise, a more accurate location is derived. To solve this problem, we propose the

RWLS algorithm in Sect. 4.

4 Recursive Weighted Least Square Algorithm

The RWLS algorithm is an iterated type of WLS algorithm. In order to apply the RWLS

algorithm to a geolocation problem using a TDOA method, we need to represent the

geolocation solution in terms of the WLS algorithm. The WLS algorithm is an extended

case of a general LS algorithm. Each term in the WLS criterion includes an additional

weight that determines the influence of each term in the data set on the final estimated

value. Therefore, the WLS algorithm shows better performance than the general LS

algorithm [9, 10]. In Sect. 2, we compensated for the NLOS noise using the proposed
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Kalman filter-based hypothesis test. However, the TDOA signal still includes measurement

noise. In Sect. 4, we obtain the WLS solution of the TDOA formulation derived in Sect. 2.

Based on the WLS solution, the RWLS algorithm is applied to a geolocation equation. We

obtain a much more accurate emitter location with additional TDOA data using the RWLS

algorithm. In comparison to the WLS algorithm, the iterative process of the RWLS method

also provides a fast convergence rate.

We first derive the WLS solution before we apply the RWLS algorithm. The geolo-

cation equation with TDOA formulation was obtained in Sect. 3. The general WLS

solution of this equation is expressed as follows [11]:

uWLS ¼ ðGTQGÞ�1GTQb0 ð16Þ

where Q ¼ ðBQtB
TÞ�1=c2 represents the covariance matrix that determines the weight of

each TDOA data value. With the additional TDOA data, the geolocation equation can be

rewritten as

Gk

Gkþ1

" #
u ¼ b0;k

b0;kþ1

" #
þ c

Bk

Bkþ1

" #
Dtk
Dtkþ1

� �
ð17Þ

In Eq. (17), Gk ¼ G1 G2. . .Gk½ �T , b0;k ¼ b0;1 b0;2. . .b0;k
� �T

, Bk= B1 B2. . .½ Bk�T , and

Dtk ¼ Dt1 Dt2. . .Dtk½ �T are the parameters that contain a set of k data. Gkþ1, b0;kþ1, Bkþ1,

and Dtkþ1 are the additional (k þ 1)-th parameters. Based on Eq. (16), the WLS solution

that contains a set of k?1 data can be represented as

ukþ1 ¼ G
T

kþ1Qkþ1Gkþ1

h i�1

G
T

kþ1Qkþ1b0;kþ1

Qkþ1 ¼
Qk 0

0 Qkþ1

" # ð18Þ

where Qkþ1 is a covariance matrix that contains a set of k?1 data. Qkþ1 is the (k þ 1)-th

covariance matrix. Let’s define Pkþ1 as Pkþ1 ¼ G
T

kþ1Qkþ1Gkþ1

h i�1

for notational sim-

plicity. With this definition, the following equation can be derived.

P
�1

kþ1 ¼ P
�1

k þGT
kþ1Qkþ1Gkþ1 ð19Þ

In Eq. (19), Gkþ1 and Qkþ1 are the (k þ 1)-th parameters. Using Eq. (19), Eq. (18) can be

rewritten as follows

ukþ1 ¼ Pkþ1 G
T

kQkb0;k þGT
kþ1Qkþ1b0;kþ1

h i

¼ Pkþ1 P
�1

k PkG
T

kQkb0;k þGT
kþ1Qkþ1b0;kþ1

h i ð20Þ

Since uk represents uk ¼ PkG
T

kQkb0;k, Eq. (20) is expressed as

ukþ1 ¼ Pkþ1 P
�1

k uk þGT
kþ1Qkþ1b0;kþ1

h i

¼ uk þ Pkþ1G
T
kþ1Qkþ1ðb0;kþ1 �Gkþ1ukÞ

ð21Þ

Using Eq. (19), Eq. (21) can be rewritten as follows
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ukþ1 ¼ uk þ ðGT

kQkGk þGT
kþ1Qkþ1Gkþ1Þ�1GT

kþ1

�Qkþ1ðb0;kþ1 �Gkþ1ukÞ
ð22Þ

Equation (22) is the RWLS solution of a geolocation problem, where uk represents the

estimated location of an emitter derived by a set of k data. The initial value uo of an emitter

location can be estimated with the initial TDOA data through WLS algorithm in Eq. (16).

Gk and Qk are the parameters based on a set of k data. uk, Gk, and Qk are the existing data

derived before applying the RWLS algorithm. Gkþ1, Qkþ1, and b0;kþ1 are the additional

information calculated using the (k þ 1)-th measurement data. Using the previously

acquired data and additional measurement information, the location of an emitter is more

accurately estimated through the RWLS algorithm.

5 Performance Analysis

5.1 Cramer–Rao Lower Bound

In statistical estimation theory, the Cramer–Rao lower bound (CRLB) expresses the the-

oretical lower bound of the variance of any unbiased estimator for unknown deterministic

parameters. [12] In this paper, the CRLB describes the lower bound of errors that are the

result of our proposed RWLS algorithm. The CRLB is derived from the inverse of the

Fisher information matrix (FIM). The FIM is expressed as follows

J ¼ E
o ln pðrjuÞ

ou

� �T
o ln pðrjuÞ

ou

� �" #
ð23Þ

In the FIM equation, r ¼ r21. . .rM1½ � is a vector of the range difference at each receiver

compared to the first receiver derived from the measured TDOA data, p(r|u) is the prob-

ability density function of r and ln pðrjuÞ is the natural logarithm of a likelihood function.

Assuming the TDOA data follows the Gaussian distribution, we define mr and C as the

mean and covariance matrix, respectively. After derivation of the FIM defined as Eq. (23),

the CRLB can be obtained as

CRLBðuÞ ¼ J�1

¼ omrðuÞ
ou

� �T

C�1 omrðuÞ
ou

� �" #�1 ð24Þ

In our simulation, the root mean square error (RMSE) is used for determining the per-

formance of our proposed RWLS algorithm. The RMSE lower bound of any position

estimation can be derived from the CRLB as follows:

ncrlb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRLBðuÞð Þ1;1þ CRLBðuÞð Þ2;2

2

s
ð25Þ

where CRLBðuÞð Þij represents the (i; j) entry of the CRLB matrix.
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5.2 Simulation Results

We demonstrate the performance of a proposed geolocation algorithm using a Kalman

filter and RWLS through simulations. In our simulation, five receivers are used to estimate

the emitter location. The initial locations of each receiver are set as (0, 0), (0, 100), (105,

0), (35, 110), and (60, 95) km, respectively. In a real environment, environmental noise and

NLOS noise exist in the TDOA signal, which interferes with the localizing emitter. The

NLOS noise causes more crucial inaccuracy for geolocation compared to the measurement

noise due to additional signal propagation delay.

We assume that both the NLOS noise and measurement noise follow a Gaussian dis-

tribution. The variance (r2m) of a measurement noise is set as 0.1 and the variance (r2nlos) of
NLOS noise is assumed to be greater than r2m, r

2
nlos ¼ 10r2m. Also, we assume the signal

propagation speed c and hypothesis test parameter e in Eq. (7) as 1 km/s and 5 for

computational simplicity, respectively. Figure 2 depicts the estimated trajectory compar-

ison between the proposed method and general LS algorithm. The thick dotted line rep-

resents the estimated emitter location trajectory using the proposed algorithm. The thin

dotted line means the estimated trajectory using the general LS algorithm, and the solid

line is the true trajectory of the emitter. As shown in this simulation, the estimated tra-

jectory using the proposed algorithm more closely follows the real trajectory than does the

general LS algorithm.

Figure 3 shows the difference between the true trajectory and the estimation at each

sampling time. In Fig. 3, the thick solid line denotes the RMSE of the estimated trajectory

according to the proposed method. The dotted line represents the RMSE of the estimation

using the general LS algorithm. The RMSE of the estimated trajectory determined by the

proposed method is much less than that of the LS algorithm-based estimation. The pro-

posed Kalman filter-based NLOS section identification method improves the precision of

geolocation. Moreover, the covariance matrix of the proposed RWLS algorithm assigns a

weight to each TDOA data value, resulting in a better estimation result compared with the

general LS algorithm.

Fig. 2 Estimated trajectory comparison between the proposed method and general LS
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Using the proposed RWLS method, the additionally measured TDOA data are rapidly

dealt with the iteration process. The effectiveness of the iteration process is shown in

Fig. 4, where the solid line is the RMSE between the true source location and the estimated

location of an emitter using the Kalman filter-based NLOS section identification method

and RWLS-based geolocation algorithm altogether. The dotted line represents the RMSE

of the estimation using the proposed RWLS method in an NLOS environment. As the

number of iterations is increased, the RMSE of the emitter position due to the RWLS

algorithm converges to zero. We can easily update the estimated location of an emitter

Fig. 3 RMSE comparison between the proposed method and general LS

Fig. 4 RMSE change comparison for the change in iterations
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through the proposed RWLS algorithm. Moreover, we can confirm the performance of the

proposed NLOS identification algorithm. For the same iteration number, the estimated

location according to the proposed method shows better performance than that obtained

using the RWLS algorithm.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

Standard deviation of measurement error

R
M

S
E

 [k
m

]

Kalman+RWLS
RWLS
General LS
CRLB

Fig. 5 RMSE versus standard deviation of measurement error

Fig. 6 Estimation comparison for near-field and far-field emitter cases
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Figure 5 confirms that the proposed method demonstrates a better performance than the

general LS-based localization algorithm and RWLS-based geolocation algorithm under

NLOS conditions. We depict the RMSE of three algorithms versus the increase in standard

deviation of measurement error. The CRLB is also shown for reference. As shown in

Fig. 5, the RMSE of RWLS-based estimation is smaller than that of LS-based estimation

for the same standard deviation. Also, the proposed method using the Kalman filter and

RWLS algorithm demonstrates better performance than the other two algorithms. Figure 6

represents the RMSE of the proposed Kalman filter and RWLS based geolocation algo-

rithm and the LS algorithm for the different layouts between the emitter and the receivers.

The upper subfigure and the lower subfigure of Fig. 6 mean the results for a near-field

emitter at u ¼ ð70; 30Þ km and a far-field emitter at u ¼ ð700; 300Þ km, respectively. Our

proposed algorithm shows the improved estimation accuracy than the LS algorithm for

both near-field and far-field emitter location.

6 Conclusion

In this paper, the emitter localization method using TDOA was introduced. The NLOS

error and measurement error are major causes of inaccuracy in location estimation. We

applied the Kalman filter-based NLOS section identification algorithm to each receiver in

order to compensate for the NLOS error. Moreover, the RWLS-based geolocation method

was applied to eliminate measurement error. The general localization algorithms have to be

recomputed every time additional TDOA data is received. The proposed RWLS algorithm

provides a fast computation rate even when receiving additional TDOA data. Therefore,

much more TDOA data can be considered through the simultaneous use of the RWLS

algorithm. Moreover, we confirmed the effective performance of the RWLS algorithm-

based localization method through our some simulation results. As the number of iteration

processes is increased, a more accurate emitter location is obtained.
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