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Abstract Computational thinking (CT), which is the core of the Computer Science field, is

an essential thinking process to solve problems effectively and efficiently using computing

systems. Learners must be able to design algorithms, identify the appropriate algorithm

design skill for a specific problem, and apply it to the problem. Aiming to stimulate

learners’ interest in learning algorithm design skills, we developed puzzle-based algorithm

learning program that has a user-friendly format tailored to real-world scenario. We

investigated the effect of this puzzle-based algorithm learning program on learners’ CT

abilities. The results provide evidence that puzzle based algorithm learning program is

effective for developing learners’ CT. The study suggests that puzzle based algorithm

learning is worth as a learning model for improving CT of learners.
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1 Introduction

Rather than simply acquiring knowledge and skills, twenty first century learners should

develop their abilities to apply the gained knowledge and skills into solving real world

problems. Computer Science (CS) has been pivotal in developing the problem-solving

skills and identifying tools to resolve real-world problems [1–3].

Computational thinking (CT) is an essential competency for twenty first century

learners, and which is defined as a problem solving skills necessary for designing algo-

rithms for solving complex problems effectively and efficiently based on fundamental CS

concepts, principles, and perspectives [4]. CT consists of abstraction and automation.

Automation means process representing in a form that computing system can performs

using a programming language or software. Abstraction refers to the logical process of

designing algorithms and is vital, since only well-designed algorithms can generate

solutions efficiently with a minimum of trial and error. It is similar to the process of

drawing accurate building plans, which includes planning for material and work stages as

well as the final architectural design, and avoiding any possible mistakes, to build a perfect

building.

Generally, algorithm design skills are used for problem solving; to design effective and

efficient algorithms, learners should have opportunities to use various algorithm design

skills to solve problems. However, the current algorithm learning programs in schools

focus on imparting knowledge on general algorithms, rather than applying the various

algorithm design skills to solving real problems. In fact, many of the current algorithm

learning programs require learners to memorize algorithms and experess them as pseudo

codes. They also require learners to learn representative algorithm design skills such as

sorting and searching [5–7].

Occasionally, in the process of learning CT, learners should memorize algorithms

frequently used and applying the appropriate algorithm depending on the type of problem

[7]. In this learning process, learners are most likely to perceive mastering algorithm is

boring, difficult, and even unnecessary [5, 7]. In addition, as noted previously, many of the

current algorithm learning programs do not allow learners to apply a specific type of

algorithm design skill to solving a specific real problem. Hence, based on typical learning

programs, simply learning algorithms does not ensure that learners are improving their

performance in CT. An effective algorithm learning program enables learners to select an

algorithm design skill that can efficiently solve real-problems, as well as equipping the

learners with the knowledge to make algorithms using the algorithm design skills.

Puzzles can be used to improve the effects of algorithm learning when learning pro-

grams are designed to teach students how to apply algorithm design skills to solve prob-

lems. Puzzles can motivate learners to learn algorithms a variety of real-world problem that

are fun to solve, and help learners focus on problem solving processes because the given

situations are connected with their real-life as well as fun and simple. In addition, fun and

simple problem situations help learners easily understand problem situations and their

solutions. Further it helps them apply these to other problem situations [8, 9]. Simply put,

using puzzles, learners can practice how to apply the appropriate algorithm design skills to

solve problems; this shows the value of using puzzles in algorithm learning.

While many studies have been devoted to exploring perceptions or experiences of

students who were involved in progressive learning programs in CT such as puzzle-based

algorithm learning, relatively fewer studies measured its effects on student performance in
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CT. In response, we investigated the effect of puzzle-based algorithm learning on student

ability level in CT.

2 Related Work

2.1 Computational Thinking

The twenty first century society defines a talented person as a creative person who uses

higher-order thinking skills, including critical thinking, and logical thinking skills, to solve

problems, and not as someone who merely has a vast amount of knowledge [10, 11]. CS

has played a pivotal role in societal development. The core capacity of CS is CT, which

involves logical thinking skills to solve problems effectively and efficiently using algo-

rithms designed based on the concepts and principles of CS and allowing the algorithms to

be executed by computer systems [4]. Wing [12] stated that CT can be compared to

thinking like a computer scientist when facing problems; however, it is a fundemental

thinking skill for everyone, not limited to computer scientists, and involves capacities

beyond programming skills. According to the author, CT helps solve problems, design

systems, and understand human behaviors based on the fundamental concepts of CS

[12–14].

Though the term ‘‘CT’’ was first discussed by Wing in 2006, we had already been using

it for problem solving. In addition, it originated in the CS field; however, the demand for

CT began to emerge from various domains, and the importance of fostering talents who

could solve problems quickly and accurately through communication between human

beings and computing systems using CT is being emphasized. Hence, CT is an essential

and fundamental ability for everyone, and not only for computer scientists. Starting with

the argument by Perlis [15] that not only computer scientists but also university students

must have CT abilities, Papert also stated CT education should be expanded to include

young students. Since then, more emphasis has been placed on CT education and more

programs have been developed, as CT is perceived as a fundamental skill for anyone living

in the twenty first century [16–18].

CT consists of abstraction and automation [14]. Abstraction refers to the process of

analyzing problems and designing algorithms; automation is defined as the process of

expressing designed algorithms that computing systems can execute. Particularly,

abstraction undergoes complicated stages, including defining the current status of a

problem and the future goal, collecting and analyzing necessary information for problem

solving, exploring various problem solving strategies, and selecting the most appropriate

one in the process of algorithm designing. Therefore, learners cannot improve their CT

abilities only by studying algorithm design skills. Effective algorithm learning requires not

only being familiar with algorithm design skills, but also practicing with actual problems

and applying appropriate skills to solve them.

However, so many studies for improving CT are focused on automation represented

programming. Learning of concepts and principles of programming like selection of

programming instructions, and implementing control structures of sequence, iteration,

conditional branch, and debugging are concentrated in learning programs [19–23].

Sometimes, abstraction is simply adrressed at a level of representing briefly algorithms

[24]. Abstraction is critical to understanding clearly the problem and to design problem
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solving method and process. It is inevitable that learning focused on automation is half-

learning without abstraction.

Therefore, in this study we designed puzzle based algorithm learning (PBAL) focused

on abstraction and examined effect of PBAL for cultivating CT.

2.2 Algorithm Learning

A CS learner receives related education on various skills to design algorithms. The rep-

resentative skills include a variety of sorting skills that list problems in order, and search

skills that search information desired efficiently among varied data.

Algorithm design skills are not essential elements to solve problems; however, the

abstraction process of CT directly influences the efficiency of problem solving. Specifi-

cally, the amount of knowledge in algorithm design skills play a critical role in determining

the degree of effectiveness in problem solving processes and results.

However, as addressed earlier, the most current algorithm learning programs tend to

focus on understanding the concepts and principles of algorithm design methods, and

acquiring searching or sorting skills instead of exercises to solve a problem by selecting an

appropriate algorithm design skill. Further, at the current stage, algorithm learning involves

memorizing the process of expressing algorithm design skills in a programming language

[5–7].

Some educational institutions teach the principles of algorithm design skills based on

competition-oriented learning, such as the Informatics Olympiad, which asks students to

compete against each other for coding algorithms in a programming language and prac-

ticing what algorithm design skills should be applied to a certain type of problem [25, 26].

This educational style typically causes learners to perceive studying algorithms is chal-

lenging, which in turn leads them to avoid algorithm learning [7]. It also affects how

learners are aware of familiar or unfamiliar problems; they tend to face challenges when

encountering new kinds of problems while finding it easy to solve familiar ones.

The important criterion for algorithm learning to improve CT is not related to whether

learners precisely understand algorithm design skills. Simply knowing about algorithm

design skills does not guarantee effective or efficient problem solving; it is only possible

when learned skills can be applied to actual problem solving. Therefore, learning should

enable learners to acquire capacities to apply algorithm design skills to solve problems.

2.3 Puzzle Based Learning

Aiming to promote learners to apply algorithm design skills learned from classrooms to

solve real-world problems, we adopted puzzles for algorithm learning. Providing experi-

ences of solving real-world problems could be an appropriate learning method; however,

there are a number of variables to consider for learners dealing with real-world problems;

these variables change constantly, thus requiring significant time to solve them as well as

define them. Comparatively, puzzles have advantages, allowing learners to focus on

problem solving processes, as problem situations are simple and structured to some extent

[9]. Puzzles are appropriate for offering various problem-solving experiences for algorithm

learning to improve learners’ CT.

Puzzles generate cognitive satisfaction in the process of finding solutions through play.

Problem solving experiences accumulated from puzzle solving help learners acquire

knowledge about how to design a problem solving process, including defining a problem,

searching for the right solution, and applying it [7, 8]. This study considers puzzles as an
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effective algorithm learning tool because they can improve learners’ problem solving

skills, logical thinking skills, and creative thinking skills [9, 27, 28]. Puzzles have the

following important characteristics.

First, puzzles are characterized by independence. Puzzle problems are not restricted to

certain domains; a variety of problems can be tested, as puzzle solving does not require

specific knowledge about certain domains.

Second, puzzles have generality. This means that puzzles involve general problem

solving principles. Problem solving skills are acquired when solving problems, which helps

develop appropriate problem solving strategies and principles. In addition, generality

explains the characteristic that learned problem-solving principles could be applied to

solve new problems or future problems.

Third, puzzles have simplicity. They can expand the application of problem solving

strategies, and make learners easily recall and explain a problem solving process because

they make it easy to remember a problem itself as well as the problem solving process.

Fourth, puzzles have the ‘‘eureka factor.’’ This means that learners can apply the pre-

viously acquired problem solving skills intuitionally in the process of problem solving.

This might present difficulties in problem solving and lead to frustration; however, it also

allows learners to discover new skills and stimulates their interest if they overcome their

frustration and discover new insights. Thus, a thorough exploration of problem solving

processes leads to new insights; this is what Martin Gardner calls the ‘‘Eureka Phenom-

enon.’’ The moment of realization serves as learners’ compensation; it also motivates

learners to solve other problems.

Fifth, puzzles have the ‘‘entertainment factor.’’ Puzzles should be interesting; otherwise,

motivation for problem solving will be diminished.

The characteristic of generality makes algorithm design skills a strategic instrument to

solve puzzle-based problems. Simplicity implies that puzzles improve the effects of

learning more by making the memorization of algorithm design skills easy for learners.

That puzzles have the eureka factor indicates that learners can systematically and logically

plan a problem solving process. Puzzles’ entertainment factor means that learners can be

continuously motivated to learn and improve CT. Therefore, puzzles are valuable resources

for algorithm learning to improve CT.

Many case studies that proved various learning effects of puzzles in CS classes also

showed that puzzles were useful instruments. The studies revealed that puzzles used in

overview classes targeting CS major students stimulated the students’ interest and

improved their participation in the programs [29, 30]. In addition, puzzles helped under-

stand algorithm design skills such as brute force, decrease-and-conquer, divide-and-con-

quer, and transform-and-conquer, as well as less general strategies regardless of the

programing language; thus, puzzles can be used in various real-world situations, not

limited to the field of CS [31]. Until recently, puzzles were mostly adopted in programs for

university students; however, they are being integrated into programs for young students in

elementary and secondary school. It was suggested that young learners could also focus on

abstraction of CT when the mathematical knowledge required for puzzle problem solving

was at the appropriate level for learners [32]. However, teachers need strategies to inter-

vene at the appropriate moment for scaffolding and providing feedback, since puzzle

problem solving requires an open approach, and it could pressure young students’ cog-

nitive processes [33].
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3 Research Methods

3.1 Design Based Research

Design based research (DBR) uses natural educational settings, in which study methods or

programs created by researchers are implemented and tested iteratively. Its continuous

cycle of investigating results and improving researchers’ models contributes to addressing

challenges, improving educational effects, and expanding the application of those models

[34, 35].

Prior experimental studies measured effects by devising a hypothesis in a controlled

environment, and controlling certain variables; however, the results of experimental

studies in education tended to have different educational effects when implemented in

complex real-world situations; thus, the generalization had limitations. In contrast, DBR

verifies the effects of changing the learning environment and helps overcome the disad-

vantage of experimental studies. In addition, DBR provides results that can be generalized,

as it involves analyzing results to constantly improve the models being tested, and re-

implements them in the learning environment [36, 37].

DBR is a combination of qualitative analysis and quantitative analysis, which allows the

improvement of education. It also comprises core elements such as a research design, a

theory, a problem, and a naturalistic context, which are inter-connected. It helps develop a

learning theory that can be generalized and implemented in a complex educational envi-

ronment by designing a theory about a research problem and repeatedly improving it in

naturalistic contexts.

3.2 Participants and Settings

The study designed PBAL and studied 82 Informatics-gifted South Korean students for

48 h (an hour per a session) to verify improvements in learners’ CT. These students are in

the 4 to 6th grade; 44 participated in an experimental group and 38 participated in a control

group. As background, the Republic of Korea has been focusing on fostering talented

students who excel in CS for the future of society, because such gifted students are more

likely to suggest innovative ideas based on CT and recreate them in practice with their

creativity, task commitment, sharp observation and analytical skills, reasoning, and

problem solving skills [38, 39].

Algorithm education for Informatics-gifted students has not provided opportunities to

learn in fun ways, although these students are accomplished at understanding and learning

quickly. It has been proposed that explanations related to real-life scenarios should be

provided to improve the situation; however, in most classes, examples of applying certain

algorithm design skills to certain problem situations are provided and explained by

teachers [40].

The designed PBAL was implemented in the experimental group. The group was asked

to solve problems, with 15 min being allocated for each puzzle problem, and the results of

the algorithm were verified by a teacher. Learners could explain the results of the algorithm

in their preferred way, either through a written explanation or a diagram. The traditional

algorithm learning method was implemented in the controlled group. The learners in the

group were taught about the concepts or principles of algorithms, and tested to see whether

they were able to express them.

136 J. Choi et al.

123



The study designed PBAL for improving learners’ CT, repeated a process of modifying

PBAL three times, and completed a PBAL that reflected aspects for improvement. Then we

measured learners’ CT improvement. To design a sophisticated PBAL and observe

learners’ problem solving processes closely, two associate teachers with previous teaching

experience were recruited to write field notes, and interview target students about diffi-

culties during the learning process.

3.3 Data Collection and Analysis

The study modified and complemented a CT measurement instrument created by Lee [41]

to design a PBAL and measure the level of improvement in the learner’s CT. It meets

validity requirements with three professional reviewers. The self-report instrument

developed by Lee [41] has open-ended questions containing problem situations related to

real-life matters to which learners can apply algorithm design skills. It is the evaluation

instrument that can examine overall problem solving processes including whether learners

select and apply proper algorithm design skills to given problems. Regarding the evalu-

ation of self-reports, two points are awarded when a learner designs an algorithm based on

the correct skill for a problem and arrives the correct solution to the problem. One point is

awarded when the algorithm is not complete and part of the process is missing but the

correct technique and solution are found. For any other scenario, no points are awarded.

The self-report instrument has six questionnaires.

4 Results

Table 1 shows the overview of PBAL workshops designed iteratively by DBR method-

ology. In the workshop 1, researchers designed and implemented the PBAL during 8

sessions with 15 puzzles. For the workshop 2, the PBAL was refined based on the

reflections of workshop1 and implemented during 20 sessions with 27 puzzles. Finally, the

PBAL was completed and implemented during 20 sessions with 22 puzzles in the work-

shop 3.

4.1 Workshop 1: PBAL Design

In Workshop 1, 15 puzzles are chosen so that learners can apply algorithm design skills.

Puzzles are given to participants eight times and the PBAL is examined to check whether it

can improve learners’ CT. The self-reports contain open-ended questions to investigate

learners’ problem solving processes. The questionnaires in Workshop 1 contain basic

algorithm design skills, such as loop and branch, as well as a variety of other algorithm

design skills, including sorting, backtracking, minimum spanning tree, dynamic pro-

gramming, recursion, divide-and-conquer scheduling.

For strategies to solve puzzles, 3 stages of puzzle problem solving suggested by

Michalewicz and Michalewicz [8] were taught to participants: extracting the core elements

of problems, removing intuition, and modeling. The first stage of extracting core elements

involves understanding the core purpose of solving puzzles. The second stage is to review

whether intuition is involved or can be avoided, and keeping learners from solving

problems rather quickly based on mere experience or speculation. The third stage of

modeling is to explore the core elements of puzzles, plan problem solving processes, and
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execute them for identifying answers. The three strategies to solve puzzles allow learners

to systematically solve problems, as they can consciously consider problem-solving pro-

cesses with informed problem solving strategies. Learners are asked to write the process of

problem solving within a given time. Then, teachers explain the correct problem solving

method and process; learners are requested to review their processes and answers, and

modify errors if any.

Table 1 Overview of PBAL workshops

Workshop 1 Workshop 2 Workshop 3

Overview 8 sessions
15 puzzles

20 sessions
27 puzzles

20 sessions
22 puzzles

Problem
solving
strategies

Do not rely on your
intuition too much

Abstraction
Modeling

Do not rely on your
intuition too much

Abstraction
Modeling
Review and correction

Do not rely on your intuition
too much

Set problem solving goals
Analysis on information and
constraints

Abstraction
Modeling
Review and correction
Represent data as Table,
Chart, Graph

Problem decomposition
Pattern recognition

Algorithm
design
skills

Sorting
Backtracking
Minimum spanning tree
Divide-and-conquer
Scheduling
Recursion
Dynamic programming

Sorting
Backtracking
Minimum spanning tree
Divide-and-conquer
Scheduling
Recursion
Dynamic programming
Decrease-and-conquer
Brute-force algorithm

Sorting
Backtracking
Minimum spanning tree
Divide-and-conquer
Scheduling
Recursion
Dynamic programming
Decrease-and-conquer
Brute-force algorithm
Binary search
Encryption algorithm
Deadlock solving
Greedy algorithm

Feedback
and
Scaffolding

Explain problem solving
process and correct
answer after learners’
problem solving

Encourage learners
themselves reviewed their
problem solving and error
correction

Explain problem solving
process and correct
answer after learners’
problem solving

Respond to questions from
students

Observe learners’ problem
solving process and
Provide appropriate
scaffoldings

Guide the reasons why
learners studied algorithms
and solved puzzles

Respond to questions from
students

Observe learners’ problem
solving process and
Provide appropriate
scaffoldings

Guide to solve the problem
through communication
with teacher and whole
class

Learning
materials

Problem and blank paper for
answer

Problem and paper for
answer with question
based on 4 problem
solving strategies

Problem and paper for
answer with question based
on 9 problem solving
strategies
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The results of Workshop 1 show that learners are willing to solve puzzles while their

achievement level is low; therefore, we analyzed learners’ problem solving processes and

found what their approaches were and what knowledge was needed to solve problems. The

self-reports of learners were divided into two: those who respond with incorrect answers

and those who respond with correct answers. Based on the incorrect answers and learners’

approaches and strategies, the PBAL was modified as below.

First, the problem situations were modified to accommodate the level of understanding

of learners. Those who gave incorrect answers did not have a good understanding about the

concept of specific terms and could not interpret unfamiliar terms, purposes of questions,

and statements provided. Therefore, three elementary school teachers reviewed the ques-

tionnaires and modified difficult sentences or expressions.

Second, proper feedback and scaffolding were provided when learners experienced

difficulties. Those who gave incorrect answers did not accurately comprehend the

appropriate algorithm design skills and principles, or could not apply them to the problems.

In this case, learning can be improved when appropriate feedback or scaffolding is pro-

vided to help learners completely understand algorithm design skills and principles. In

contrast, it is difficult to plan in advance when certain feedback or scaffolding should be

given, since every learner is on a different cognitive level; therefore, we offered questions

that can enlighten learners about potentially effective and necessary strategies, clues, and

information, instead of providing direct approaches to solutions. Some examples of

questions are as follows: ‘‘Would you please look for every piece of information you can

discern in the problem situation of the puzzles?’’, ‘‘Do you see any missing information?’’,

‘‘What can we do to understand the material given more easily?’’, and ‘‘Would you like to

draw a picture?’’

Third, the three problem solving strategies in Workshop 1 were expanded to four stages

including ‘‘Review and Modification.’’ The three strategies in Workshop 1 resulted in the

end of learning, as students were forced to stop without a review of their problem solving

process when they could not find a solution or move onto the next question. This can result

in overlooking possible errors in each individual’s problem solving process, including ones

that happen when relying on intuition or understanding terms incorrectly. Therefore, the

‘‘Review and Modification’’ strategy contributes to successful problem solving by cor-

recting an incorrect problem solving process through reflective thinking that looks back on

where certain errors have occurred and why they have appeared.

Fourth, four problem solving strategies were added as sub-items to self-reports to

explore learners’ overall problem solving processes. Though the self-reports provided in

Workshop 1 had enough space to write algorithms, learners failed to use the space

effectively. Learners were observed to use the space to draw graphs, charts, or tables to

overcome difficulties in the process of problem solving, or to write down arithmetic

operations instead of using the space to describe the details of problem solving processes.

Optimally using self-reports offers convenience in reviewing problem solving processes

and modifying errors for learners. It will also provide opportunities for researchers to

analyze learners’ problem solving processes.

Fifth, puzzle questions were added to provide enough experiences of problem solving to

learners, as compared to Workshop 1. To control the level of difficulty, puzzles that were

too abstract or difficult were removed; those puzzles that have too structured problem

situations or direct clues to problem solving were also eliminated. Some puzzles had easy

questions involving the extraction of core elements to solve problems or specific questions

to hone logical judgment skilss when intuition distracts learners; these were different from
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those questions that were developed to apply algorithm design skills only. The added

puzzle questions had algorithm design skills, including brute-force and decrease-conquer.

4.2 Workshop 2: Refining PBAL

Workshop 2 was performed for 20 h in total. In Workshop 2, 27 puzzles were selected and

developed, reflecting the points of improvement found in Workshop 1. Since there is

enough time in Workshop 2, more puzzles than Workshop 1 were included in order to

provide a variety of experiences to apply algorithm techniques into problem solving.

Compared to Workshop 1, this round has provided the chance for studies to carefully

examine details of learners’ problem solving processes; however, many learners still failed

to solve problems and clearly express the thinking processes in their problem solving.

The analysis of the problem solving process of learners who provided wrong answers

revealed the following points for improvement.

First, 9 specific problem solving strategies were provided to participants. The difficult

questions were primarily about breaking a complex problem into small problems until

participants were able to identify the appropriate algorithm design skills and apply them,

expressing the data relationship in a graph or a table, and finding patterns. Whether learners

can consciously devise strategies they can apply to solve problems has significant effects

on problem solving; therefore, methods to visualize the strategies are required.

Since the 4 strategies in Workshop 2 contain a variety of sub-strategies, these were

modified to be more specific and increased learning effects. The first strategy of ‘‘under-

standing the core elements’’ was divided into these 3 stages: ‘‘setting purposes for problem

solving,’’ ‘‘understanding information,’’ and ‘‘restrictions of problems.’’ The third strategy

of ‘‘modeling’’ was specified to easily approach to the problem and it was divided into the

following stages: ‘‘selecting algorithm design skills necessary for problem solving and

removing unnecessary elements,’’ ‘‘expressing in graphs, tables, or charts,’’ ‘‘selecting

algorithm design skills necessary for problem solving,’’ ‘‘breaking a big problem into small

problems,’’ ‘‘finding patterns,’’ and ‘‘designing algorithms.’’ The second strategy of ‘‘re-

moving intuition’’ and the fourth strategy of ‘‘execute, review, and modify’’ remained the

same as in Workshop 2. More sophisticated strategies reflected some of the elements

related to abstraction among CT elements described in CSTA (Computer Science Teachers

Association) and ISTE (International Society for Technology in Education) in 2011 [42].

These can work as scaffolding for learners to overcome their difficulties in finding answers

to problems.

Second, PBAL proved how useful it is to solve real-life problems. Puzzles’ problem

situations motivated learners to participate in the program; however, it was observed that

the motivation could not be sustained. The reason for this was revealed in the interviews

with learners; the learners were found to have no clear understanding of how puzzles were

related to CS and why puzzle problems should be solved. Therefore, we informed learners

about why they need to learn puzzles and how puzzles were related to real-world problems

and algorithm design skills. In addition, we notified learners about what they could do with

the accumulated experiences of puzzle solving for each questionnaire.

Third, we controlled the puzzles’ level of difficulty by deleting, modifying, and adding

puzzles. If puzzles offered the chance to learn algorithm design skills but requested too

much mathematical knowledge, the questionnaires focusing too much on mathematical

problem solving were removed. Further to provide a variety of problem solving experi-

ences, we added a binary tree, an encryption algorithm, deadlock solving, and greedy

algorithms.
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Fourth, we designed a specific strategy of feedback and scaffolding that teachers could

provide. We planned to provide scaffolding at the appropriate time by specifying what

knowledge should be imparted, what problem solving strategies should be applied, and

when this should happen. The self-reports reflected the problem solving strategies and

guided learners through the problem solving strategies, which worked as scaffolding. The

strategies included in the self-reports were provided as sub-questionnaires as, for example,

‘‘What is the goal in this puzzle?’’ and ‘‘What information is inferred in this puzzle?’’

Fifth, in the last stage of explaining puzzle answers, learners were encouraged to share

problem-solving methods with each other and perform a comparative analysis of the

efficiency of each other’s method without having the teachers explain and deliver the

answers.

4.3 Workshop 3: The Completion of PBAL

In Workshop 3, PBAL was tested for a total of 20 h, reflecting the points for improvement

found in Workshop 2. A total of 22 puzzles were given to participants in Workshop 3 as 5

puzzles not proper students’ level of understanding were removed.It was confirmed that

learners try to apply the nine strategies provided for problem solving and their problem

solving became more sophisticated. Learners with high accuracy started to express in more

abstract forms on the self-reports as the learning continued. These learners did not use

strategies to collect information and conditions necessary for goals and problem solving,

but started from the stage of finding necessary elements for problem solving, or skipped the

stage of expressing simple information. In addition, they performed debugging to find

which part went wrong when errors occurred in problem solving.

In the interviews, we verified that many learners found the program interesting. The

learners answered that they realized why puzzle solving was helpful and responded that

they would love to have more opportunities to access to these puzzles. There were also

answers stating that puzzles offered a creative way to learn, away from simple memorizing.

However, there were still respondents who said puzzles were difficult. Those who failed to

find the correct answers could not find the algorithm design skills appropriate for problem

solving or express problem solving processes logically; some said, ‘‘It could be done this

way,’’ and modified the level of the problem situation to a level they could handle.

4.4 Effects of PBAL

To verify the learning effects of PBAL, The T test was conducted between PBAL group

and traditional algorithm learning group and differences of learning effect was compared

and analyzed.

Learners’ CT abilities before and after adopting PBAL are measured. The results are

described in Tables 2 and 3.

Table 2 The pre-test and post-
test results

Group N M SD t p

Pre-test Experiment 44 1.91 1.939 1.781 .079

Control 38 1.24 1.384

Post-test Experiment 44 3.91 2.550 2.862 .005

Control 38 2.40 2.188
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A 12-point scale is used; learners can get a maximum of 12 points and a minimum of

zero. After adopting the PBAL, it is confirmed that learners’ CT capacity in the experi-

mental group improves significantly as compared to that in the control group. PBAL

learning is revealed to be more effective. The average score of learners is 3.91 out of 12,

which implies that there should be continued efforts to improve PBAL.

The problem solving process of respondents who have given wrong answers indicates

that they can make a use diagramming strategies to better understand the relationship

between material necessary for problem solving. However, in most cases, they are

observed to fail in breaking a problem into smaller problems to find patterns, or fail to find

patterns after breaking a problem into smaller problems. Therefore, the reasons for the

failures should be thoroughly investigated to understand why they occurred, whether due to

a lack of experience in puzzle solving or the level of the algorithm’s difficulty for ele-

mentary school students.

In general, most learners are used to a learning method that requires them to find an

answer to a problem. This has discouraged learners from effectively exploring problem

solving processes in the early stage of learning. In addition, learners did not realize the

importance of systematically planning a problem solving process in advance, and rather

focused on just finding a solution. Our study, however, shows that learners’ perception has

been improved as they have realized the importance of planning a problem solving process,

and they have adopted a systematic approach to find a solution.

5 Conclusions

CT is a term that appears in CS; however, it is a core capacity for any individual living in

the twenty first century. Abstraction, an element of CT, is a process of designing algo-

rithms to solve problems; only well-designed algorithms can reduce trial and error itera-

tions in problem solving and help find answers. Particularly, algorithm design skills

support problem solving effectively and efficiently; that is the essential thing for people

learning CS. Effective algorithm learning is completed when learners understand the

concepts and principles of algorithm design skills as well as having experience in solving

problems by applying the suitable algorithm design skill to a problem; this can eventually

improve learners’ CT.

Traditionally, students have learned algorithm design skills and developing programs

separately or implemented well-defined algorithms to develop programs. Students have

little chance to analyze problems using abstraction principles and apply algorithm design

skills under traditional algorithm learning method. Even though it is essential for learners

to have actual experiences of applying various algorithm design skills into the various kind

of real-world problem situations, they have to consume much time and efforts for solving

real world complex problems and learners’ interests may decreased if they fail for solving

Table 3 The difference between pre-test and post-test scores

N M SD t p

Experiment 44 -2.00 2.736 -4.848 \.000

Control 38 -1.16 2.260 -3.158 .003
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problems. Puzzles are suitable learning tools to overcome these disadvantages that could be

raised when learning algorithms real-world problem solving situations. As using well

designed puzzles, teachers are able to provide various problems and induce learners’

motivation easily in the classroom.

In this study, we developed the PBAL including well-designed puzzles for Informatics-

gifted South Korean students (4th grade to 6th grade), especially, focusing on providing

effective algorithm learning experiences for acquiring CT competency. Also, we revised

the PBAL during the 3 workshops iteratively based on the results of students’ outcomes

and responses of interview according to DBR methodology to improve the quality of the

PBAL.

In conclusion, the research results show that PBAL has better effects on improving CT

competency compared to the traditional algorithm learning method. Despite of the positive

research results, the PBAL need to be revised for applying various classroom fields and the

systematical research is required to develop the CT assessment instrument to provide better

validity and reliability of measuring CT competency.
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