
Vulnerabilities of Android OS-Based Telematics System

Hyo Jin Jo1 • Wonsuk Choi1 • Seoung Yeop Na1 •

Samuel Woo1 • Dong Hoon Lee1

Published online: 26 August 2016
� Springer Science+Business Media New York 2016

Abstract Intelligent vehicle technologies have been developed rapidly. Modern vehicles

include many Electronic Control Units (ECUs) and in-vehicle networks. While these

technologies offer accurate vehicle control and increase the convenience and safety of

drivers, their vulnerabilities also have been analyzed and exploited. Nevertheless, open

platforms, such as the Android OS, have been introduced into vehicle systems without

careful consideration about security issues. In this paper, we indicate the security problems

of an Android OS-based telematics system. Our target device’s firmware is offered on a

public Web site and is easily analyzed using public analysis tools. This means that our

analysis methods are more scalable and practical than previous ones for remote attacks that

require difficult analysis skills, such as signal processing and reverse engineering. We also

found that the device allows malicious firmware to be updated because of a problem related

to misuse of certificates. Furthermore, we conducted attack experiments using a real

vehicle.

Keywords Telematics communication � Controller Area Network � Android � Smart

vehicle � Open platform

& Dong Hoon Lee
donghlee@korea.ac.kr

Hyo Jin Jo
hyojinjo86@gmail.com

Wonsuk Choi
beb0396@naver.com

Seoung Yeop Na
sy_na@korea.ac.kr

Samuel Woo
samuelwoo@korea.ac.kr

1 Graduate School of Information Security, Korea University, Seoul, South Korea

123

Wireless Pers Commun (2017) 92:1511–1530
DOI 10.1007/s11277-016-3618-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-016-3618-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-016-3618-9&domain=pdf

1 Introduction

Modern vehicles have adopted multiple electronic subsystems, from powertrain control,

body control, and comport control systems to infotainment systems. In particular, Elec-

tronic Control Units (ECUs) play a key role in accurate vehicle controls. A modern vehicle

includes tens to hundreds of ECUs, which are connected through in-vehicle networks, such

as the Controller Area Network (CAN), Local Interconnect Network (LIN), and Media

Oriented System Transport (MOST) [30]. Among these in-vehicle networks, CAN is used

for time-critical engine control, powertrain control, and safety control subsystems. How-

ever, the vulnerabilities of CAN were widely reported in many studies [17, 18, 27, 28].

With physical access to a vehicle, an attacker can send bogus data and modify the firmware

of ECUs to control the vehicle [17, 20]. Recently, vehicle owners have begun to face

growing security threats because various wireless channels are now connected to in-vehicle

networks [29].

In [24], the Tire Pressure Monitoring System (TPMS) can be exploited to send a false

‘‘low tire pressure’’ warning. Furthermore, Checkoway et al. [4] analyzed the possible

attack surfaces of modern automotives, which compromised many I/O channels of a target

vehicle connected to external networks: the diagnostics equipment, media player, hands-

free Bluetooth and telematics system. C. Miller et al. [19] also performed remote attacks on

a telematics system. However, these works focused mainly on a specific environment, e.g.,

aqLink1 protocol, and required the attackers to have good analysis skills, e.g., reversing

engineer, signal processing, for finding and exploiting the vulnerabilities of external

channels. Thus, the possibilities and scalability of these attacks may be low.

This narrow range of potential risks related to vehicle hacking has not prevented various

open platforms for providing a strong eco-system from being adopted in the infotainment

and telematics systems of vehicles. MirrorLink [21], as an interoperability standard, pro-

vides integration of smart phones and the infotainment systems. Several vehicle manu-

factures offer public APIs to allow third party developers to implement various types of

applications, for example, GM’s API [12] and Ford’s OpenXC [25]. Moreover, Google,

Audi, Honda, Hyundai, Kia, and NVIDIA formed the Open Automotive Alliance (OAA) to

integrate the Android OS in vehicles’ infotainment systems [22]. Google also released

Android Auto to extend Android applications such that they can be implemented in in-

vehicle console systems [1]. According to REUTERS [10], Google will develop its next

version of the Android OS, which will be built directly into vehicles. Honda, Hyundai, and

Kia already produced an Android OS-based telematics system [14, 16]. GM’s next-gen-

eration entertainment and navigation systems will be based on the Android OS [13].

However, these open systems can cause dangerous situation. In general, it is easy for an

attacker to compromise open systems, because rich information about the systems’ vul-

nerabilities is publicly announced through the Internet. In particular, the widely known

vulnerabilities of the Android OS can affect the security of modern automotive systems.

In this study, we analyzed the vulnerabilities of Android OS-based telematics systems

and exploited them. Our objective is to show that careful consideration of security is the

most important factor for enjoying the many advantages of built-in open systems in

vehicles.

1 The protocol is used by GM’s OnStar (infotainment system) to provide connectivity to external networks.

1512 H. J. Jo et al.

123

Our contributions are as follows.

� Remote attacks on vehicles investigated in previous studies focused mainly on a

specific environment, e.g., a specific protocol or devices, and required that attackers have

good analysis skills, e.g., reversing engineer, signal processing, and fuzzing tests on CAN

packets. Thus, the scalability of remote attacks on vehicles may be low. However, our

proposed remote attack procedures are more scalable and practical than those used in

previous studies because of the built-in open platforms in vehicles.

� We analyzed the vulnerabilities of an Android OS-based telematics system using free

public analysis tools. There is no need to require difficult analysis skills, such as signal

processing, finding a debugging port, and using debugging tools. Our results show that

anyone familiar with the Android OS and Android development environment can com-

promise an Android OS-based telematics system relatively easily.

� We demonstrate our results using a real vehicle with an Android OS-based telematics

system. We were able to perform unauthorized remote control of functions, e.g., door

unlock and GPS trace, of the target vehicle by using the vulnerabilities we analyzed.

2 Related Works

With the development of IT technologies, vehicles now also include many ECUs to pro-

vide accurate control, safety systems, infotainment systems, and so on. At the same time,

modern vehicles are exposed to various security threats. In [18, 27] and [28], the possible

security problems in CAN were indicated and cryptographic methods for securing vehicles

were proposed. In the study reported in [17] and [20], it was found in experiments using

real vehicles that their systems can be compromised; the critical control CAN packets of

the body control module (BCM), Engine Control Module (ECM), and Electronic Brake

Control Module (EBCM) were obtained. In [24], the TPMS signals were manipulated by

spoofing erroneous tire pressure readings. However, these works have the limited attack

distance because [17] and [20] require a wired line to transmit malicious commands and

TPMS sensors of [24] has the limited communication range.

To show remote attacks on vehicles practically possible, [4, 11, 19] and [29] were

proposed. In [11] and [29], the authors used dongles supporting communications between

CAN and outside networks. Even though these dongles allow an adversary to send mali-

cious commands to target vehicles, the use of dongles restricts attack possibilities. In [4],

various automotive attack surfaces were analyzed. In particular, the authors performed a

long-range wireless attack using the vulnerabilities of GM’s OnStar telematics service. For

identification of the vulnerabilities of the target telematics device, a communication pro-

tocol, i.e., aqLink, and the telematics device were reverse engineered using signal pro-

cessing, finding debugging flags, and implementing a software modem. They also found

vulnerabilities in the authentication process used in remote controls, that is, reinitialization

of a random number and a bug that accepts incorrect responses. In Miller et al. [19], found

vulnerabilities of Jeep’s Uconnect system and exploited them. However, the attacks pro-

posed in both studies can be performed in specific environments; [4] and [19] focused on

GM’s OnStar service using the aqLink protocol and the Jeep’s Uconnect using Sprint,2

respectively. Particularly, [19] needs the Sprint’s femtocell device to send malicious

commands to the target vehicles.

2 The telecommunications company in US.

Vulnerabilities of Android OS-Based Telematics System 1513

123

Fig. 1 classifies the previous works in terms of ‘‘Attack Scalability3’’ and ‘‘Attack

Distance’’.4 Since there is no attack method satisfying long range and high scalability as

shown in Fig. 1, various open platforms have been introduced into modern vehicles

without careful consideration of the security problems. Thus, we analyzed the Android OS-

based telematics system to show more scalable attack on vehicles than previous works and

to propose desirable directions of the open platform using the Android OS built-in in

vehicles

3 Background

3.1 IT-Vehicle Convergence

3.1.1 Controller Area Networks

Controller Area Network (CAN) is a serial data communication protocol that supports

high-reliability control. CAN adopts a multi-master broadcast bus system. It was developed

by Robert Bosch and has been used as a de facto standard of in-vehicle networks (ISO

11898-1). There are two versions of the CAN protocol: CAN 2.0A (11 bits identifier) and

CAN 2.0B (11 bits or 29 bits identifier). Table. 1 shows the data frame format of CAN

2.0B, which is selected for in-vehicle networks. In the CAN protocol, if a sender ECU

broadcasts its own data (data field) on the bus using its own ID (identifier field), receiver

ECUs receive data selectively after filtering the ID field of the CAN frames. According to

[7], CAN can be used for both high (500 Kbits/s) and low speed networks (100 or 150

Kbits/s). While the former is used to connect the chassis and transmission control, e.g.,

Fig. 1 Classification of vehicle
attacks

3 High scalability indicates the attack method could be widely used in a general environment (e.g., easy to
analyze, no additional device, analysis of public algorithms), and low scalability is opposite to the former.
4 It indicates attack distance between victims and adversaries.

1514 H. J. Jo et al.

123

engine control and anti-lock braking system controls, the latter is used to connect the body

and comport modules, e.g., door and seat control.

3.1.2 Telematics System

Recently, the development of telematics services that support wide area communication,

e.g., 3G/4G, has been rapid. The connectivity with external networks provides vehicles

with various functions, e.g., remote vehicle control and diagnostics.

Various services exist: BMW’s ConnectedDrive, Ford’s SYNK, GM’s OnStar, Hyun-

dai’s Blue Link, and Kia’s UVO. For example, a vehicle equipped with GM’s OnStar

provides an authorized driver with diagnostics of vehicle problems, emergency calls by

monitoring crash sensors, remote door unlock, and tracking of the vehicle’s location. In

addition, the OnStar telematics device offers the ‘‘Slowdown’’ service, purportedly

effected by stopping the fuel injection to the engine, to facilitate recovery in the case of

theft.

3.2 Android

3.2.1 Android Application

Android applications are implemented in Java and are executed on the Dalvik VM.5 They

are distributed in the form of Android application package (APK) files. An APK contains

all the files required for application execution. In general, the file types included in the

APK are META-INF directory, lib directory, res directory, assets directory, An-
droidManifest.xml, classes. dex, and resources.arsc. In particular, AndroidMani-
fest.xml contains components, permissions, the API version, and so on for the application

and classes.dex is a Dalvik EXecutable (DEX) file that runs on Dalvik VM.

In comparison, system libraries and pre-installed applications, called system applica-

tions, contain an ODEX (Optimized DEX) file not a DEX file. According to [9], DEX files

are converted to ODEX files for performance optimization.

3.2.2 Over the Air Firmware Updates

Over the air (OTA) firmware updates are used to remove bugs or improve functionalities

using a wireless channel. According to [9], OTA updates of Android are performed by

downloading an OTA firmware file, i.e., update.zip, and rebooting a recovery mode.6 It is

Table 1 Data frame format of CAN 2.0B (11 bits identifier)

SOF field Identifier (ID) field Control field Date field CRC field ACK field EOF field

1bit 11bit 6bit 0–64bit 16bit 1bit 1bit

5 The Java virtual machine of Android is called Dalvik. Android runs Dalvik bytecode produced from Java
bytecode. Thus, Android applications have a .dex file or .odex file, which can be executed on the Dalvik
virtual machine. (They do not have .class files).
6 According to [8], Android devices typically have two different modes: a normal boot mode and a recovery
mode. The recovery mode is a minimal Linux-based OS that includes a kernel and RAM disk and is used for
system update processes.

Vulnerabilities of Android OS-Based Telematics System 1515

123

also possible to manually update OTA firmware files. In general, Android devices have

hardware buttons, e.g., volume up/down, power, and so on, for entering the recovery mode,

which supports firmware updates through the Android debug bridge tool (ADB) or SD

cards. The recovery mode allows only firmware update files with valid digital signatures to

be updated; in general, an update.zip file is signed with a private key of an Android device

manufacture.

3.3 Firmware Modification Attack

The objective of a firmware modification attack is to inject malware into an embedded

device. The study in [3] presented four steps for firmware modification: (1) firmware

sample acquisition; (2) binary analysis; (3) firmware disassembly; and (4) derivation of the

firmware update validation method. In general, the firmware is obtained from the vendor

Web site, and then, the binary files are extracted from it. The binary files are used for

selecting a target file and identifying the file format, e.g., the ext4 or YAFFS file system.

Disassembly processes are performed to identify function names, string analysis, and so

on. Finally, a disassembly analysis, including black box testing or hardware debugging, is

performed to reduce the number of analysis functions, identify control flows, and cir-

cumvent update validation methods.

4 Attack Model and Scenario

In this section, we propose an attack model and an attack scenario of an Android OS-based

telematics device.

4.1 Telematics Services

In south Korea, the Android OS-based telematics device provides several services for the

driver’s convenience: remote door lock/unlock, remote engine start/stop, self-diagnostics,

and so on. In the US, vehicles with same telematics model provide similar services. These

services can be classified into two types: one related to low speed CAN and the second to

high speed CAN.

• Services related to low speed CAN: remote door unlock/lock and remote engine start/

stop;

• Services related to high speed CAN: self-diagnostics.

Both service types are triggered by either the commands of an authorized smart phone

application produced by the vehicle manufacturer or the commands of applications

installed on the telematics device. Then, the device generates CAN packets for the vehicle

controls. Fig. 2 shows the telematics service architecture of our target device. The remote

controls are operated by SMSs from the telematics center.

4.2 CAN Packets from the Telematics Device

According to [29], network packet monitoring of CAN is important for obtaining the

meaningful CAN packets of target devices. However, we performed CAN packet moni-

toring to find exploitable commands. In other words, monitoring was used for identifying

the exploitable remote command that generates CAN packets. The monitoring results were

1516 H. J. Jo et al.

123

utilized for creating an attack scenario and analyzing the telematics device’s firmware. The

environment for CAN packet monitoring was set up as shown in Fig. 3 and Table 2. We

designed the following three scenarios and obtained the packet monitoring results shown in

Table 3. We omit detailed packet information to prevent unauthorized use.

3G/4G
WiFi

Telematics Server

Authorized Application

(2) Commands by SMS

ABS
ECU

Sensor

Telematics
Device

OBD

C
AN

 N
etw

ork
(1) Commands

• Lock/Unlock doors
• Engine On/Off
• …

(3) Control ECUs

Vehicle with Telematics device

Internet

Fig. 2 Telematics services architecture of the target device

Android OS based
telematics device

Authorized
telematics application

CAN-BUS
Monitoring tool

Fig. 3 Environment of CAN packet monitoring

Table 2 Tools used for the monitoring experiment

Product Model name Description

Vehicle Mid-size car Equipped with an Android 2.3.4-based telematics device

CAN-BUS monitoring tool PCAN Explorer Commonly used S/W

Smart phone Galaxy Note 4 Equipped with an authorized telematics application

Vulnerabilities of Android OS-Based Telematics System 1517

123

• Scenario 1 (using telematics services): we performed the CAN packet monitoring

without using any telematics services. There exist 45 CAN IDs in high speed CAN and

16 CAN IDs in low speed CAN.

• Scenario 2 (using services related to low speed CAN): we performed the CAN packet

monitoring when telematics services related to low speed CAN were used. The results

confirmed that the telematics device generates several B-CAN packets, as shown in

Table 3.

• Scenario 3 (using services related to high speed CAN): we performed the CAN

monitoring when the services related to high speed CAN were used. We were able to

find additional CAN IDs, as shown in Table 3, whenever the self-diagnostics service

was in progress. However, we could not find the request packets with CAN ID ‘‘7DF,7

which is considered to be the trigger packet generated by the telematics device for the

self-diagnostics system. We thought that the packets obtained during self-diagnostics

processes were generated by general ECUs not the telematics device. We could not find

meaningful packets generated by the telematics device in this scenario.

Through the CAN monitoring experiments, we were able to select ‘‘Unlock Door Com-

mand’’ as the exploitable command, because there appears to be no CAN packet from the

telematics device in Scenario 3.

4.3 Attack Model and Scenario

4.3.1 Proposed Attack Model

We constructed an attack model based on the Computer Emergency Response Team

(CERT) Taxonomy [15], as shown in Table 4. The assumptions of our attack model are as

follows.

Table 3 CAN packet related to telematics services

Types CAN ID Data frame

Low speed CAN service Unlock door command 0x078 40 00 � � � �00 00

Lock door command 0x078 80 00 � � � �00 00

High speed CAN service Self diagnostics command 0x7D0 04 18 � � � �00 00

0x7D1 04 18 � � � �00 00

0x7D6 04 18 � � � �00 00

0x7D9 02 58 � � � �00 00

0x7DE 02 58 � � � �00 00

0x7E0 04 18 � � � �00 00

0x7E1 04 18 � � � �00 00

0x7E8 02 58 � � � �55 55

0x7E9 02 58 � � � �AA AA

7 OBD2 onboard diagnostics parameter ID (PID) codes are used in diagnostic tools. The diagnostic tools
send PID queries defined by the Society of Automotive Engineers (SAE) J1979. In general, the CAN ID of
request packets is ‘‘7DF.’’ ECUs that listen to the request packets send response packets to notify their status
using one CAN ID in the range ‘‘7E0’’–‘‘7EF.’’

1518 H. J. Jo et al.

123

• Abilities of an attacker: an attacker is assumed to know the abstract architecture of the

telematics system and features of CAN. He/she can also analyze and modify Android

OTA firmware, i.e., update.zip. Furthermore, the attacker can find the device specific

key combination for setting the recovery mode. In general, information about the

abstract telematics system architecture, features of CAN, and modification tools of

Android OTA firmware is publicly known. Hardware buttons for the recovery mode are

also identified easily by a brute force test; if a telematics device has ten hardware

buttons, the attacker has to perform (10C1 þ 10C2 þ 10C3 ¼ 175) trials at most, because

the number of buttons for the recovery mode is usually up to three for convenience of

setting the recovery mode [9].

• Vulnerabilities of target: the target vehicle with an Android OS-based telematics device

has two types of vulnerability, that of CAN and that related to the Android OS.

According to [17], CAN does not provide any security mechanisms, e.g., no access

control or data authentication. Therefore, this leads to replay attacks on the target

vehicle. In addition, many Android OS-based devices allow malicious custom ROMs to

be installed on the devices and it is possible to decompile and repack Android

applications.

• Behavior of victims: the victim, i.e., the driver of the target vehicle, downloads a

malicious ROM that provides attractive features, e.g., watching either television or

DVDs while driving, and installs it using the recovery mode.

4.3.2 Proposed Attack Scenario

We propose a realistic attack scenario, as follows.

1. An attacker downloads valid OTA firmware from a public Web site of a telematics

center;

2. The attacker modifies the valid firmware to produce malicious OTA firmware,

including applications with an unauthorized remote door open command, a GPS trace

command, mobile number notification, and attractive functions.

Table 4 Proposed attack model based on CERT

Explanation

Attacker Can modify Android OTA firmware (i.e., update.zip)

Tools Malicious OTA firmware

Vulnerability Android OTA firmware update using test certificates

Repackaging of Android applications

Design of CAN (no authentication)

Action A command for remote door open

A command for GPS trace

Target Vehicles with an Android OS-based telematics device

Unauthorized result Unauthorized door open

Violation of location privacy

Object Vehicle theft

Trace a target vehicle

Vulnerabilities of Android OS-Based Telematics System 1519

123

3. The attacker finds a specific key combination for the recovery mode of the target

telematics device. Then, he/she distributes the malicious firmware with information

about the positions of hardware buttons for the recovery mode.

4. The victim having the vehicle with the target telematics device downloads the

modified OTA firmware and installs it. Then, the compromised device sends its own

mobile number to the attacker.

5. The attacker traces the GPS of the target vehicle whenever he/she wants. Then, he/she

commits vehicle theft using the malicious commands (commands are transmitted by

SMSs).

The result of this attack scenario is similar to a scenario in [4]. However, the attack

methodologies used for the scenario are different in terms of platform analysis.

5 Analysis and Modification of OTA Firmware

In this section, we describe our analysis and modification of an Android OS-based

telematics system. The overall processes of our analysis are shown in Fig. 4. We omit

detailed information to prevent attackers from using our results directly.

5.1 Analysis of OTA Firmware

5.1.1 Structure of OTA Firmware

OTA firmware for the target telematics device was obtained from a public Web site of a

manufacture. It includes an update directory. Fig. 5 shows important subdirectories and

files in the update directory. A detailed explanation of the subdirectories and the files is

given in Table 5.

5.1.2 Target Selection for Analysis

As shown in Table 5, system.img includes system applications (app directory), system

libraries (framework directory), and other directories. We thought that applications related

to the telematics services exist in the app directory and they may use libraries in the

framework directory. Thus, we selected the system.img file as a target for the analysis of

telematics services. Table 6 shows the tools used in our analysis.

5.2 Analysis of system.img

The system.img file of target firmware is the ext4 file system, so that it can be mounted by

using the command ‘‘sudo mount -o loop -t ext4 system.img [destination directory].’’ After

mounting system.img, we determined that there are 67 system applications.

5.2.1 Deodex of system.img

Every system application in the app directory is composed of a .apk file and a .odex file.

Since a .odex file has a device-dependent format, it can be converted back to the corre-

sponding .dex file for detailed analysis. This is called a deodex process. In the deodex

1520 H. J. Jo et al.

123

Deodex of System.img Permission Analysis

Modification of
xxx_xAppService.apk

Modification of system.img

- deodex of odex files
(using Android Kitchen)

- Perform string analysis (e.g. door, unlock etc)
- Find the target application (xxx_xAppService.apk)
- Analysis of control flows

- Replace the original xxx_xAppService.apk with the modified xxx_xAppService.apk
- Add Mobile_no_report.apk and GPS_trace.apk to system.img

Analysis of decompiled system applications

Decompilation of system applications

Analysis of OTA firmware

- Analysis of firmware’s structure
- Target selection (system.img in update.zip)

system.img

deodexed system.img List of the selected applications

- Select Applications including SMS
permissions(using AndroidManifest.xml)

- Decompile the selected applications to obtain smali codes (using apktool)
- Decompile the selected applications to recover Java codes (using dex2jar & JD -GUI)

smali codes of the selected applications
recovered Java codes of the selected applications

smali codes of
xxx_xAppService.apk

Implementation of
malicious applications

- Implement GPS_trace.apk
- Implement Mobile_no_report.apk

- Make smali codes for attack
- Find an injection point of attack codes
- Modify smali codes & AndroidManifest.xml
- Repack & sign applications

(using apktool & signapk.jar)

modified xxx_xAppService.apk GPS_trace.apk
Mobile_no_report.apk

Update of modified OTA firmware
- Remove the original system.img in update.zip
- Add the modified system.img to update.zip
- Sign the modified update.zip (using signapk.jar)
- Perform the update process using the recovery mode

modified system.img

Experiment
- Unauthorized door unlock control
- Trace GPS

Compromised telematics device

Fig. 4 Overall processes of our analysis

Vulnerabilities of Android OS-Based Telematics System 1521

123

process, we used the command ‘‘advanced option ! Deodex files in your Rom’’ of the

Android Kitchen tool and finally obtained the .dex files of the system applications.

5.2.2 Permission Analysis

In order to reduce the number of analysis objects, we analyzed each AndroidManifest.xml
included in every system application to check whether it contained the ‘‘RECEIVE_SMS’’

permission. Since the target telematics services, such as remote door unlock, are triggered

by SMSs from the telematics server, this checking process helps determine the system

Fig. 5 Structure of OTA
firmware

Table 5 Description of the OTA firmware

Name Description

hib.img The hibernation process stores all the states of the telematics device in non-volatile
memory before power off. Then, the stored states are used for fast-boot

urecovery.img A separate partition for Android maintenance routines such as system update or factory
reset

vr.img A separate partition for voice recognition

otacerts.zip A Zip file containing an X.509 certificate

META-INF A directory containing CERT.RSA, CERT.SF, updater-script, and update-binary,
which are used for verification of signature on the OTA firmware and setting update
parameters

res A directory containing a set of public keys built into the OTA firmware

system.img Contains system applications (app directory) and system libraries (framework
directory)

uboot.img,
uboot.bin

Universal boot loader for embedded devices, used for initialization of hardware, setting
kernel parameters, and starting kernel

checksum.md5 Contains MD5 hash values of each file in the OTA firmware

1522 H. J. Jo et al.

123

application used for the remote vehicle control. As a result, we found six system appli-

cations that include the ‘‘RECEIVE_SMS’’ permission and these applications were

selected for detailed analysis.

5.2.3 Decompilation of System Applications

In general, the analysis of a .dex file comprises two steps. In the first step, the .dex file as

Dalvik VM bytecode is converted into Java Virtual Machine (JVM) bytecode using

dex2jar. Then, a Java decompiler, such as JD-GUI, is used to recover the Java source

codes. However, the codes recovered by the decompiler are not the same as the original

codes, so that they are usually used to find meaningful names of the function/variable and

control flows of function calls. In the second step, the .dex file is converted into the smali

source codes as Dalvik VM assembly using a tool called apktool. Although the smali codes

are more difficult to understand than the recovered Java source codes of the first step, they

are used for modifying the original code, because accurate smali codes can directly convert

into Dalvik VM bytecodes during repackaging. Thus, the above two steps were used in our

analysis. After converting six .dex files of six system applications into six .jar files using

dex2jar, we recovered six Java source files from six .jar files using JD-GUI. Fortunately,

the original names of Java classes, methods,and variables were recognizable, because the

.dex files were not obfuscated.

5.2.4 Analysis of Decompiled System Applications

We performed a search process that checks whether meaningful words, such as ‘‘door’’ or

‘‘unlock’’ are included in the obtained Java sources. Through the search process, we could

find the ‘‘requestlockDoor(boolean input)’’ function in the xxx_xApp Service class in

xxx_xAppService.apk. If the input value is set as false, this function performs the door

unlock control. To determine the control flow of this function, we performed trace orders

of function calls. Finally, we determined the order of the function call ‘‘xxx_xAppSer-
vice() ! xMMCanApis() ! requestLockDoor(false).’’ In addition, it was determined

that xxx driver.jar in the framework directory is used for door control.

5.3 Modification of system.img

5.3.1 Modification of xxx_xAppServices.apk

Making Smali Code for Attack: It may be difficult for an attacker to produce correct smali

codes that do not have any errors, because smali codes are used in the assembly for Dalvik

Table 6 Tools used for the analysis of system.img

Name Description

Android Kitchen Used to convert ODEX files into DEX files.

apktool Used to decode an APK file into smali codes and to build a modified APK file.

dex2jar Used to convert DEX files into the Java ARchive (JAR) format.

JD-GUI Used to reconstruct Java source codes from CLASS files.

signapk.jar Used to sign APK files or OTA update files

Vulnerabilities of Android OS-Based Telematics System 1523

123

VM. To obtain the accurate smali code for attacks, we implemented the Java source, as

shown in Fig. 6a, and compiled the sources in Android 2.3.4 with xxxdriver.jar. Then, we

extracted the .apk file from an Android emulator using ADB. Finally, the classes.dex file

of the .apk file was converted into the smali codes by using the apktool.

Finding an Injection Point of Attack Codes: xxx _xAppService.apk contains

EventReceiver.class, which extends BroadcastReceiver.8 In particular, the OnRe-
ceive() function of the EventReceiver.class handles intents related to SMSs. Thus, we

chose this function as a point of attack code injection for the modified codes to be triggered

by SMSs.

Modification of Smali Codes: In the original EventReceiver.smali corresponding to the

EventReceiver.class, the onReceive() function includes only custom SMS intent

(‘‘SMS_CENTERMSG_RECEIVED’’ and ‘‘CDMA_SMS_CENTERMS-
G_RECEIVED’’). For responding to general SMSs, not SMSs from a telematics center,

we changed one of the custom intents to ‘‘android.provider.Telephony.
SMS_RECEIVED’’, which is the original Android intent-related SMS reception. Then,

we added the produced smali codes for door unlock control generated in Section 5.3.1 to

‘‘.line 45’’ of the EventReceiver.smali, because an object of the xxx_xAppService class

is activated after ‘‘.line 42’’ of the EventReceiver.smali. Fig. 6c shows the modification

and injection of smali codes.

Modification of AndroidManifest.xml: We added the \action[element ‘‘an-
droid.provider.Telephony .SMS

_RECEIVED’’ in the\intent-filter[of the\receiver[section in order to handle the

intents-related events of SMS reception.

compile

decompile

(a) Implemented JAVA source for unauthorized door unlock

(b) Decompiled smali code for unauthorized door unlock

(c) Modified and Injected smalicode of xxx_xAppService.apk]

Injection

Modified code

Injection code

Fig. 6 Modification and injection of smali codes

8 This is an Android component that responds to the system events called broadcast.

1524 H. J. Jo et al.

123

Repackaging and Signing: We repacked the modified smali codes using the apktool to

obtain the modified xxx_ xAppServices.apk. Fortunately, we could find a signing key

used in the original xxx_xApp Services.apk on the Internet; the platform.pk8 file and the

platform.x509.pem file of the Freescale i.MX53 board are used. Then, this modified .apk
file was signed using the signapk.jar with the obtained signing key.

5.3.2 Implementation of Malicious Applications

We produced two malicious applications: a mobile number report application (Mo-
bile_no_report.apk) and a GPS trace application (GPS_trace.apk). Mobile_no_re-
port.apk has ‘‘READ_PHONE_STATE and ‘‘RECEIVE_BOOT_COMPLETE’’

permissions to send a mobile number of a device to an attacker when the device completes

a boot process.

GPS_trace.apk has ‘‘READ_SMS’’, ‘‘RECEIVE_SMS’’, and ‘‘ACCESS_FINE_-
LOCATION’’ permissions. The application reads the GPS information of the telematics

device and sends this information to a server or the mobile device of the attacker whenever

it hears an intent of SMS reception.

5.3.3 Modification of system.img

We mounted the deodexed system.img. Then, the app directory was modified; the original

xxx_xAppServices.apk was replaced with the modified xxx_xAppServices.apk and

Mobile_no_report.apk and GPS_trace.apk were added. After modification, the modified

system.img was unmounted.

5.4 Update and Experiments

5.4.1 Update of Modified OTA Firmware

To update modified OTA firmware, the update.zip file including the modified sys-
tem.img file should be signed with a signing key. In general, signing keys are protected

from leakage by using cryptographic methods. However, we could find a valid signing key

of the target telematics device, because the device uses a testkey that is provided on a

public Web site. The test certificate in the otacerts of the OTA firmware was used for

searching the corresponding signing key. With the signing key of the telematics device, we

could sign the modified update.zip using the signapk.jar; the testkey.pk8 file and the

testkey.x509.pem file of the Freescale i.MX53 board are used. Finally, we replaced the

original update.zip with the modified update.zip for creating modified OTA firmware and

updated the modified firmware on the target device using the recovery mode.

5.4.2 Experiments

Unauthorized Door Unlock Command After update of the modified firmware, anyone who

knows the mobile number of the telematics device can perform remote control door unlock

using an SMS. The results can be shown in the (https://www.youtube.com/watch?v=

TKFP6hLoyco&feature=youtu.be).

GPS Trace Figrue 7 shows the location of our test vehicle. The compromised telematics

device sent the GPS information of the vehicle whenever we sent a trace command SMS.

Vulnerabilities of Android OS-Based Telematics System 1525

123

https://www.youtube.com/watch?v=TKFP6hLoyco&feature=youtu.be
https://www.youtube.com/watch?v=TKFP6hLoyco&feature=youtu.be

5.5 Comparison and Discussion

5.5.1 Comparison

There have been four results supporting the long-range wireless attacks on vehicles as

shown in Table 7. While the existing attacks are based on specific threats using vulnera-

bilities of an authentication protocol or a femtocell device, our attack method is only based

on Android OS’s vulnerabilities which are originated from the open source policy. In other

words, an adversary can get rich information about vulnerabilities of Android from public

sites and can perform actual attacks on Android OS. Our attack procedures (permission

analysis of applications ! unpack and repack the target applications ! system update

using the recovery mode) could also be applied to any other telematics systems using

Android OS. Thus, the proposed attack method is more scalable than other long-range

attacks.

According to the work [5], architecture-neutral JAVA class files make the applications

easy to decompile and it has much of information in original source codes. This means that

our attack procedures based on analysis of JAVA class files are easier than other long-

range attacks requiring binary code analysis or signal processing. In addition, we checked

permissions (i.e., SMS related permissions) of applications in advance to minimize targets

of detailed analysis.

5.5.2 Discussion

In our experiments, we implemented the GPS application to trace the locations of vehicles.

However, it is easy to implement many malicious applications that threaten privacy

because of the Android development environment, e.g., applications for accessing the SD

card or recording a voice. Thus, open platforms not only have many vulnerabilities, but

also provide attackers with public application development environments.

6 Countermeasures

We present several countermeasures, as follows, to prevent the analysis of firmwares and

update of malicious firmwares.

6.1 Code Obfuscation

Code obfuscation is used to render source or machine codes more difficult to analyze.

There are two types of code obfuscation for Android: source code obfuscation and byte-

code obfuscation. ProGuard [23] as a Java source code obfuscator changes the names of

package, class, and variable into random strings. Dalvik-obfuscator [6] and APKfuscator

[2] are open-source bytecode obfuscation tools that support junk/dead bytecode injection.

6.2 Code Signing and Key Management

Code signing can prevent installation of malicious or unauthorized code. Code signing is

used for booting a process, application distribution, and OTA firmware updates. According

to [8], Nexus, an Android device, uses code signing so that it does not allow malicious

1526 H. J. Jo et al.

123

firmware with an invalid signature to be installed on itself. For example, KNOX of

Samsung provides secure boot to prevent unauthorized boot loaders and Android OS from

loading during the startup process using a hardware root of trust and code signing.

Although the target telematics device also uses a code signing method, it allows malicious

firmware to be installed, because the manufacture of the device uses the test certificate and

the corresponding test private key. Thus, a private key for code signing should be issued to

an authorized entity and it should be managed securely.

6.3 Remote Attestation

Remote attestation is used for verifying that the system has not been compromised. An

attesting device transmits the current information about its own configuration to a remote

Fig. 7 GPS trace of the experimental vehicle

Table 7 Comparison of long-range wireless attacks on vehicles

Target Exploitation Scalability Additional
devices

S. Checkoway
et al. [4]

GM’s OnStar Vulnerabilities of the
aqLink protocol

Specific
environment

No

I. Foster et al.
[11]

An aftermarket TCU
(telematics control unit)

Vulnerabilities of an
aftermarket TCU

Specific
environment

Yes (a CAN-
Bluetooth
Dongle)

C. Miller
et al. [19]

Jeep’s Uconnect Vulnerabilities of
Sprint’s femtocell
device

Specific
environment

Yes (a Sprint’s
device)

S. Woo et al.
[29]

Self-diagnostic
applications

Distribution of
malicious applications

Specific
environment

Yes (a CAN-
Bluetooth
Dongle)

Ours Telematics system using
Android OS

Vulnerabilities of
Android OS

General
Android OS

No

Vulnerabilities of Android OS-Based Telematics System 1527

123

verifier server to detect malicious firmware. In general, remote attestation is based on

trusted hardware. KNOX also provides a hardware-based remote attestation service [26].

7 Conclusion

In this paper, we indicated the security problems of an Android OS-based telematics

system. Because of the Android OS’s open platform, the analysis of vulnerabilities and

implementation of attack codes presented in this study are more practical than those in

previous works. Our experiment using a real vehicle showed that anyone who knows the

mobile number of the telematics device can perform unauthorized remote control of the

door unlock and GPS trace functions of the experimental vehicle. We hope that our results

facilitate the construction of secure telematics environments.

References

1. Android auto, http://www.android.com/auto/.
2. Apkfuscator, https://github.com/strazzere/APKfuscator.
3. Basnight, Z., Butts, J. L, Jr., & Dube, T. (2013). Firmware modification attacks on programmable logic

controllers. International Journal of Critical Infrastructure Protection, 6(2), 76–84.
4. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., Koscher, K., Czeskis,

A., Roesner, F., & Kohno, T. (2011). Comprehensive experimental analyses of automotive attack
surfaces. Proceedings of the 20th USENIX Conference on Security, SEC’11, Berkeley, CA, USA (pp.
6–6). USENIX Association.

5. Collberg, C. S., & Thomborson, C. (2002). Watermarking, tamper-proffing, and obfuscation: Tools for
software protection. IEEE Transactions on Software Engineering, 28(8), 735–746.

6. Dalvik-obfuscator, https://github.com/thuxnder/dalvik-obfuscator.
7. Davis, R., Burns, A., Bril, R., & Lukkien, J. (2007). Controller area network (can) schedulability

analysis: Refuted, revisited and revised. Real-Time Systems, 35(3), 239–272.
8. Drake, J. J., Lanier, Z., Mulliner, C., Fora, P. O., Ridley, S. A., & Wicherski, G. (2014). Android

Hacker’s Handbook. Hoboken: Wiley.
9. Elenkov, N. (2014). Android security internals an in-depth guide to Android’s Security Architecture.

San Francisco: No Starch Press.
10. Exclusive: Google aiming to go straight into car with next android - sources, http://www.reuters.com/

article/2014/12/18/us-google-cars-idUSKBN0JW2PS20141218.
11. Foster, I., Prudhomme, A., Koscher, K., & Savage, S. (2015). Fast and vulnerable: A story of telematic

failures. 9th USENIX Workshop on Offensive Technologies (WOOT 15), Washington, D.C. USENIX
Association.

12. Gm developer network, https://developer.gm.com/.
13. Gm to adopt android os in. (2016). http://gas2.org/2014/11/06/gm-adopt-android-os-2016/.
14. Honda debuts android-based infotainment system for europe, http://www.cnet.com/news/.
15. Hoppe, T., Kiltz, S., & Dittmann, J. (2011). Security threats to automotive CAN networks—Practical

examples and selected short-term countermeasures. Reliability Engineering & System Safety, 96(1),
11–25. Special Issue on Safecomp 2008.

16. Hyundai kia will offer android-based infotainment systems, http://telematicsnews.info/.
17. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D., Kantor, B.,

Anderson, D., Shacham, H. and Savage, S. (2010). Experimental security analysis of a modern auto-
mobile. Security and Privacy (SP), 2010 IEEE Symposium on, (pp. 447–462) May.

18. Larson, U. E., & Nilsson, D. K. (2008). Securing vehicles against cyber attacks. Proceedings of the 4th
annual workshop on Cyber security and information intelligence research (CSIIRW ’08), Article No.30,
New York, NY: ACM.

19. Miller, C., & Valasek, C. (2015). Remote exploition of an unaltered passenger vehicle. Black Hat USA,
2015.

1528 H. J. Jo et al.

123

http://www.android.com/auto/
https://github.com/strazzere/APKfuscator
https://github.com/thuxnder/dalvik-obfuscator
http://www.reuters.com/article/2014/12/18/us-google-cars-idUSKBN0JW2PS20141218
http://www.reuters.com/article/2014/12/18/us-google-cars-idUSKBN0JW2PS20141218
https://developer.gm.com/
http://gas2.org/2014/11/06/gm-adopt-android-os-2016/
http://www.cnet.com/news/
http://telematicsnews.info/

20. Miller, C., & Valasek, C. (2013). Adventures in automotive networks and control units. In DEFCON 21,
Las Vegas, NV, August 2013.

21. Mirrorlink, http://www.mirrorlink.com/.
22. Open automotive alliance, http://www.openautoalliance.net.
23. Proguard, http://proguard.sourceforge.net/.
24. Rouf, I., Miller, R., Mustafa, H., Taylor, T., Oh, S., Xu, W., Gruteser, M., Trappe, W., & Seskar, I.

(2010). Security and privacy vulnerabilities of in-car wireless networks: A tire pressure monitoring
system case study. Proceedings of the 19th USENIX Conference on Security, USENIX Security’10,
Berkeley, CA, USA (pp. 21–21). USENIX Association.

25. The openxc platform, http://openxcplatform.com/.
26. White paper : An overview of samsung knox platform, https://www.samsungknox.com/en/support/

knox-workspace/white-papers.
27. Wolf, M., Weimerskirch, A., Paar, C., & Bluetooth, M. (2004). Security in automotive bus systems.

Proceedings of the Workshop on Embedded Security in Cars (escar)04.
28. Wolf, M., Weimerskirch, A., & Wollinger, T. (2007). State of the art: Embedding security in vehicles.

EURASIP Journal on Embedded Systems, 2007(1), 074706.
29. Woo, S., Jo, H., & Lee, D. (2015). A practical wireless attack on the connected car and security protocol

for in-vehicle can. Intelligent Transportation Systems, IEEE Transactions on, 16(2), 993–1006.
30. Zhang, T., Antunes, H., & Aggarwal, S. (2014). Defending connected vehicles against malware:

Challenges and a solution framework. Internet of Things Journal, IEEE, 1(1), 10–21.

Hyo Jin Jo received the BS degree in industrial engineering and the
Ph.D. degree in information security from the Korea University, Seoul,
Korea, in 2009 and 2016, respectively. Currently, He is a Postdoctoral
Researcher with the Department of Computer and Information System,
University of Pennsylvania, Philadelphia, PA, USA., His research
interests include cryptographic protocols in authentication, applied
cryptography, security and privacy in ad hoc networks and smart car
security.

Wonsuck Choi received the B.S. degree in Mathematics from
University of Seoul, Seoul, Korea in 2008, and the M.S. degree in
Information Security from Korea University, Seoul, Korea in 2013.
Currently, he is working toward the Ph.D. degree in Information
Security, Graduate school of Information Security at Korea University.
His research interests include applied cryptography, healthcare security
and authentication and key exchanging in sensor network.

Vulnerabilities of Android OS-Based Telematics System 1529

123

http://www.mirrorlink.com/
http://www.openautoalliance.net
http://proguard.sourceforge.net/
http://openxcplatform.com/
https://www.samsungknox.com/en/support/knox-workspace/white-papers
https://www.samsungknox.com/en/support/knox-workspace/white-papers

Seoung Yeop Na received his B.S. degree from the Computer Science
at Myung-Ji University in 2013, and the M.S. degree from the Infor-
mation Security at Graduate school of Information Security, Korea
University in 2015. Currently, he is a security engineer of Korea
Federation of Community Credit. His research interests include per-
sonal information protection, financial security.

Samuel Woo received the M.S. degree in Computer Science from
Dankook University, Seoul, Korea in 2010, and the Ph.D. degree from
Information Security at Gratudate school of Information Security,
Korea University in 2016. His research interests include cryptographic
protocols in authentication, applied cryptography, security and privacy
in vehicular networks and Controller Area Network security.

Dong Hoon Lee received the B.S. degree from the Department of
Economics at Korea University, Seoul, in 1985, and the MS and Ph.D.
degrees in Computer Science from the University of Oklahoma,
Norman, in 1988 and 1992, respectively. Currently, he is a professor
and the dean of the Graduate School of Information Security at Korea
University. Since 1993, he has been with the Faculty of Computer
Science and Information Security at Korea University. From 2004 to
2015, he served as the president of Ubiquitous Information Security
Organization, which has been supported by BK21 Project in Korea.
His research interests include the design and analysis of cryptographic
protocols in key agreement, encryption, signature, embedded device
security, and privacy-enhancing technology (PET).

1530 H. J. Jo et al.

123

	Vulnerabilities of Android OS-Based Telematics System
	Abstract
	Introduction
	Related Works
	Background
	IT-Vehicle Convergence
	Controller Area Networks
	Telematics System

	Android
	Android Application
	Over the Air Firmware Updates

	Firmware Modification Attack

	Attack Model and Scenario
	Telematics Services
	CAN Packets from the Telematics Device
	Attack Model and Scenario
	Proposed Attack Model
	Proposed Attack Scenario

	Analysis and Modification of OTA Firmware
	Analysis of OTA Firmware
	Structure of OTA Firmware
	Target Selection for Analysis

	Analysis of system.img
	Deodex of system.img
	Permission Analysis
	Decompilation of System Applications
	Analysis of Decompiled System Applications

	Modification of system.img
	Modification of xxx_xAppServices.apk
	Implementation of Malicious Applications
	Modification of system.img

	Update and Experiments
	Update of Modified OTA Firmware
	Experiments

	Comparison and Discussion
	Comparison
	Discussion

	Countermeasures
	Code Obfuscation
	Code Signing and Key Management
	Remote Attestation

	Conclusion
	References

