
Optimization of the Security-Performance Tradeoff
in RC4 Encryption Algorithm

Poonam Jindal1 • Brahmjit Singh1

Published online: 17 August 2016
� Springer Science+Business Media New York 2016

Abstract In this paper, we have investigated different vulnerabilities in RC4 and its

enhanced variants to overcome the security attacks. It is established that in spite of several

proposals, RC4 is not secure enough and a trade-off is always sought between security and

network performance for overall provisioning of the secure communication. The main goal

of the work presented in this paper is the optimization of security-performance tradeoff.

We have proposed three RC4 variants referred to as RC4-M1, RC4-M2 and RC4-M3.

Security of the proposed schemes is analyzed in terms of randomness and computational

complexity. All the proposed variants qualify the NIST statistical test suite of randomness

satisfactorily. The proposed schemes also offer computational complexity in terms of

greater number of operations relative to the existing variants. The strength of the proposed

schemes has been analyzed against different cryptanalytic attempts and shown the resis-

tance of proposed schemes against attacks. The security-performance tradeoff has been

analyzed in terms of run time, CPU cycles consumed, energy cost, and throughput.

Encryption time of the proposed schemes—RC4-M1, RC4-M2 and RC4-M3 is 30.1, 10

and 48.7 % less as compared to RC4? respectively. The results clearly indicate that the

computation load of the proposed variants is significantly reduced as compared to the

RC4?, concluding that the proposed schemes are computationally efficient. Our results

and their analysis also recognize the suitability of the security algorithms for particular

application areas.

Keywords Complexity � RC4 � Randomness � Secret key encryption � Security attacks

& Poonam Jindal
poonamjindal81@nitkkr.ac.in; poonamjindal81@yahoo.co.in

Brahmjit Singh
brahmjit.s@gmail.com

1 Electronics and Communication Engineering Department, National Institute of Technology,
Kurukshetra 136119, India

123

Wireless Pers Commun (2017) 92:1221–1250
DOI 10.1007/s11277-016-3603-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-016-3603-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-016-3603-3&domain=pdf

1 Introduction

The ease of implementation, flexibility and mobility provided by Wireless Local Area

Networks (WLANs) makes the community rely heavily on wireless communication ser-

vices in their daily lives. People have started using wireless communication services in

accomplishing their important and sensitive tasks. While offering the great convenience,

the open nature of wireless medium makes the transmitted data vulnerable to security

attacks. To prevent these security attacks many cryptographic primitives including sym-

metric, asymmetric and without key ciphers, have been developed [1]. These primitives

maintains the features of confidentiality, integrity and availability of the transmitted data.

Symmetric key ciphers include block and stream ciphers. DES, IDEA, RC5, AES,

BLOWFISH, TWOFISH are the various available block ciphers, where a block of data is

processed at a time. Whereas in stream ciphers, bit by bit processing is carried out. The

different available stream ciphers are RC4, E0 (in Bluetooth), A5/1 and A5/2 (in GSM),

SNOW 3G, ZUC (4G), Rabbit, FISH, and HC-256 etc. [2–8].

RC4 is one of the most extensively used stream cipher. In spite of being publicly

revealed, the design simplicity of the cipher makes the research community always

attracted towards it [9]. The cipher is broadly used in a number of software and web

applications including Wireless Equivalent Privacy (WEP), Wi-Fi Protected Access

(WPA), and Secure Socket Layer (SSL) protocols, Microsoft windows, Apple OCE (Apple

Open Collaboration Environment), secure SQL (a server for database management) etc.

However, the design simplicity, statistical weaknesses and non-random behavior between

the key, Cipher text (CT), and Plain text (PT) leaves the cipher open to different security

attacks.

To remove the weaknesses and related cryptanalytic attempts, different RC4 variants

have been proposed in the literature. But the recent cryptanalytic attempts prove that in

spite of a number of efforts in improving the security of RC4, weaknesses still exist in the

cipher. It shows that even after the eras of research, the RC4 stream cipher is still an

insecure cipher and continues to offer plethora of research problems to the research

community.

A work focused on the upgrading of RC4 from its byte oriented design to higher word

designs is reported in [10]. The series of improvements were reported in the literature with

the names Pypy and TPypy [11, 12]. However all the improvements are changing the basic

design of RC4 to great extent and is considered as a big drawback since the time-tested

security performance of RC4 is not carrying forward. Arguments can be made on the

choice of RC4 instead of stream ciphers listed in e-STREAM project. Working on the

e-STREAM finalists [7, 8] is rather more practical than modifying RC4. The e-STREAM

finalists are word (32 bit) oriented ciphers and possess more complicated structure and

have changed the basic design of RC4. Our goal in the present work is not to contest with

these algorithms but to improve the strength of RC4 while keeping its simple design by

including few additional operations.

In this paper, three modified designs of RC4 have been presented while keeping the

original structure of RC4 as it is, and added some additional operations to increase the

security of the cipher as compared to its existing variants. The other major issue that has

been addressed in this paper is the security performance tradeoff. Increase in security or the

computational complexity of any cipher results in more consumption of resources, which

further decrease the network performance. Since a number of modifications have been

carried out on improving the strength of RC4 but security performance tradeoff has not

1222 P. Jindal, B. Singh

123

taken much into consideration. We have analyzed the security performance tradeoff and

have optimized it to significant extent.

First we have implemented conventional RC4 and its three existing variants. Further we

have proposed three new RC4 variants; RC4-M1, RC4-M2, and RC4-M3. The perfor-

mance analysis of all the existing and modified RC4 variants has been carried out in terms

of security and network performance. We have analyzed the security in terms of com-

putational complexity and randomness offered by the cipher. Where, computational

complexity is the measure of security and defined as the computational effort required by

the intruder to break the cipher. The strength of the proposed schemes against different

cryptanalytic attempts has been analyzed theoretically and shown that the proposed

schemes are resistant to many attacks that are possible on conventional ciphers. Ran-

domness analysis is performed by performing statistical tests using National Institute of

Standards and Technology Statistical Test Suite (NIST STS) on RC4 keystream [13]. It is

observed that all the three proposals are more secure than conventional RC4 both in terms

of randomness and complexity. All the proposed ciphers are passing the randomness tests

of NIST STS, hence prove the statistical security of the cipher which is the root to several

attacks. Since no significant attacks have been reported on RC4? [14], it is considered to

be the most secure software RC4 implementation till date but with poor performance in

terms of resource utilization. The proposed modifications are developed with the focus of

achieving security either equivalent to or more than RC4? with optimized performance.

On the basis of complexity, security offered by RC4 PRGA and RC4 KSA varies in a

manner such that RC4-M2[RC4?[RC4-M1[RC4-M3[RC4 PRGA and RC4-

M1[RC4? = RC4-M2 = RC4-M3[RC4 KSA respectively.

Our proposed RC4 variants are more focused on security performance tradeoff opti-

mization. Performance of RC4 is analyzed in terms of execution time, energy cost, CPU

cycles and throughput. The obtained numerical values show that the execution time, energy

cost, and CPU cycles consumed in the proposed variants are more than conventional RC4

but less than RC4? and the obtained throughput for the proposed ciphers is less than plain

RC4 and more than RC4?. The comparison of proposed schemes with plain RC4 and

further plain RC4 and RC4? clearly reflects the security performance tradeoff. This

tradeoff has been taken care of in our proposed schemes. In the proposed schemes parallel

outputs bytes are generated that leads to improved performance. Encryption time for the

proposed schemes—RC4-M1, RC4-M2 and RC4-M3 is 30.1, 10 and 48.7 % less as

compared to RC4?. It depicts that the computation load of the proposed variants has been

reduced significantly as compared to the RC4?, hence the proposed schemes are com-

putationally efficient schemes. We have achieved security with performance better than

RC4?, without affecting the basic design of RC4.

Further for real time applications, information security while achieving good network

performance is always desirable. There are variety of network services which varies in

their security and QoS requirements. Our analysis is useful in understanding the applica-

bility of RC4 in real time applications. The comprehensive performance analysis reported

in the paper may be used as reference for selecting the RC4 variant for given applications

or service required.

The rest of the paper is organized as follows: the brief discussion regarding the choice

of RC4 is presented in Sect. 2. Section 3 reviews the existing weaknesses, and the related

cryptanalysis of conventional RC4. Various enhancements in RC4 are presented in Sect. 4.

Section 5 describes the working of existing RC4 encryption algorithms. Our proposed RC4

variants are discussed in Sect. 6. Security analysis and performance analysis of all the

variants is elaborated in Sects. 7 and 8 respectively. Recommendations of the proposed

Optimization of the Security-Performance Tradeoff in RC4… 1223

123

schemes for various application scenarios are made in Sect. 9. Conclusion and future scope

are drawn in Sect. 10.

2 Why RC4?

Working on the e-STREAM finalists-HC-128, SALSA 20/12, Rabbit, SOSEMANUK has

been shown more practical approach rather than modifying the RC4 [7, 8]. The choice of

RC4 has been made amongst all the modern stream ciphers because of the following

properties;

• RC4 is the most widely accepted stream cipher specifically in web and network

security.

• It offers commendable simplicity, ease of implementation both in software and

hardware, speed and efficiency.

• Can be stated in few lines.

• In spite of the decades of analysis, community is still more and more curious about the

strengths and weaknesses of the algorithm.

• It is the only software stream cipher with patented hardware structure.

• In contrast, the e-STREAM finalists are word (32 bit) oriented and possess more

complicated structure and resulting modifications in the basic design of RC4.

The above discussion clearly corroborates that there is no other stream cipher with

surprising characteristics both in software and hardware implementations in comparison to

RC4. However, we have analyzed the performance of HC-128 as presented in Sect. 8.

3 Weaknesses of RC4 Stream Cipher

RC4 designed in 1984 and publicly revealed in 1994, is vulnerable to different security

attacks. Since then, weaknesses of the cipher have been exploited for having access on

either input state or key. In RC4 algorithm, PRGA generates a random sequence of bytes

from the scrambled internal state which itself is a random sequence. An intruder while

attacking RC4, always focus on the non-random behavior either in the internal state or in

the output keystream. In depth discussion on the various weaknesses of RC4 algorithm,

which are the roots to several attacks have been reported in [15]. These weaknesses

include weak keys, key collisions, key recovery from state, key recovery from key-

stream, state recovery and biased bytes. Cryptanalytic attempts pertaining to weak keys

were given by Roos and Wagner in [16–18]. The construction and cryptanalysis of

related key pairs (key collision) that produce similar state and in turn the similar output

keystream even if two different keys are used has been carried out by authors in [19–23].

The reversible nature of RC4 PRGA was explored for the first time by Paul and Maitra

[24] and was motivated by the observation made by Roos [16], that key bytes and the

PRGA state bytes are correlated. A better key recovery approaches based on differential

equations, equation solving approach, modular equations and bidirectional search are

discussed in [25–28]. Another RC4 weakness i.e. to recover key from output keystream,

was exploited when used in WEP and WPA. Various attacks on WEP (RC4 is used as an

encryption algorithm) reported in the literature are Fluhrer, Mantin and Shamir (FMS)

[29], Korek practical [30, 31], Mantin [32], Klein [33], Tews, Weinmann and Pyshkin

1224 P. Jindal, B. Singh

123

(TWP) [34], Vaudenay and Vuagnoux (VV) [35], Tews and Beck (TB) [36], Sepehrdad,

Vaudenay and Vuagnoux (SVV) [37–39], and Sepehrdad, Susil, Vaudenay and Vuag-

noux (SSVV) attacks [40]. Due to these attacks, WEP was considered to be an insecure

protocol and was replaced by WPA. Though the protocol removes several attacks in

WEP, but the existence of TB data injection [36], and SVV attacks [39] made the

protocol insecure. Further, WPA2, a more secure protocol, was proposed where AES

encryption is used. Though WPA2 is considered to be a secure protocol, but is not cost

efficient as compared to WEP and WPA (where RC4 was used as a basic module).

Further, the state recovery is possible in RC4, in spite of its huge state space i.e.

256! 9 2562 & 21700. In Knudsen et al. [41] proposed the first state recovery attack on

RC4. Different approaches for analyzing the state recovery attacks are reported in

[42–47]. Another possible attacks on RC4 are due to its biased bytes. The knowledge of

such bytes is always the goal of an attacker. Several biases related to secret key, state

variables, and short term and long term biases related to keystream bytes are elaborated

in [48–62].

The available literature presents a number of security vulnerabilities in the RC4. But

the robustness and design simplicity of RC4 has made it the most preferred algorithm for

last two decades. A number of modifications to improve the security of RC4 have been

reported in the literature (discussed in Sect. 4). However, the existing weaknesses

reported in the year 2013 and 2014 on RC4 and its applications in WEP, WPA and TLS

shows that the RC4 is an insecure algorithm and is still a challenging issue for research

community.

4 Enhancements in RC4 Stream Cipher

Due to the RC4 weaknesses and related cryptanalytic attempts as discussed in Sect. 3, a

number of variants of RC4 have been developed. Several enhancements of RC4 algo-

rithm are presented in our survey article [15, 63]. A modified 32-bit RC4, named as RC4

(n, m) keystream generator, was proposed in [64, 65]. A modified RC4 KSA? and

PRGA? with three layers of scrambling was proposed in [14]. Analysis of RC4?

illustrates that although the modified algorithm destroys many of the correlation between

the state and the key but at the cost of encryption and decryption time. Run time of

KSA? and PRGA? is 2.94 times (approx.) and 1.70 times than that of original RC4

KSA and RC4 PRGA respectively. Several new variants of RC4 including Quad-RC4,

FJ-RC4, effective RC4, improved RC4, and RC4B were proposed in [66–73]. The

available literature reveals that the RC4 variants proposed in the past were focused on

eliminating the non-uniformity of bytes or the correlation between key and the state

bytes. Also the proposed variants were targeted towards achieving better performance in

terms of security, time or throughput. It is found that the existing proposals have

changed the basic design of RC4, which is usually not desirable. Because the strength of

RC4 lies in its robust design and simplicity.

However, in spite of numerous RC4 proposals, a number of challenges related to the

searches of more biases, key collisions, and key recovery attack on WPA have not been

explored till date. Therefore, there is a strong requirement to modify RC4 and to develop a

new RC4 variant exhibiting better security and performance.

Optimization of the Security-Performance Tradeoff in RC4… 1225

123

5 RC4 and its Variants

In the following section, we discuss the original RC4 and its various modified variants. We

elaborate on the original RC4 [2], improved RC4 [65], RC4? [14], FJ-RC4 [67] and

effective RC4 [68]. The simulation parameters and attributes used for the implementation

of RC4 and its variants are shown in Algorithm 1. The brief description of each existing

RC4 algorithm is given below:

5.1 RC4

RC4 follows the design strategy used in stream ciphers. Pseudo code for RC4 KSA and

PRGA is shown in Algorithm 2. Extracting pseudorandom data bytes from a pseudo-

random permutation is the basic design principle of RC4 stream cipher. It has two

working modules: the first is a Key Scheduling Algorithm (KSA) with key K as input

(with typical size of 40–256 bits), and the second is Pseudo Random Number Gener-

ation Algorithm (PRGA), that generates a pseudo-random output sequence. The pseudo

code for RC4 is presented in Algorithm 1. KSA generates 256 byte initial state vector S,

by scrambling input state vector with a random key K. The S contains a permutation of

8 bit words i.e. 256 bytes. The secret key K is generally of length between 8 and 2048

bits and the expanded key K (length N = 256 bytes) is produced by performing simple

repetitions. The expanded key is generated in the manner such that if secret key k is of

length l bytes, the expanded key will be K[i] = k [i mod L] for 0 B i B N-1. Further,

S pairs are swapped and an initial state SN-1 is achieved at the end, which is input to

the second module PRGA. It generates the keystream of words from the permutation in

S. Each iteration of the PRGA produces an output word, which is an output keystream

byte. The generated byte is further xored with the plaintext to produce a ciphertext. It is

to be noted that each time a new keystream byte O is required, RC4 runs the loop of

PRGA and each time with the generation of new keystream, the internal state S is

updated.

5.2 RC41

The second RC4 variant that we have implemented is RC?. The pseudo code of RC4?

is shown in Algorithm 3. The cipher is modified as KSA? and PRGA?. A three-layer

architecture was proposed in KSA? such that, the output keystream byte has no cor-

relation with the secret key. Further, in PRGA?, masking was done in such a manner as

if output byte is not coming directly from permutation byte. It was reported that the

proposed algorithm diminishes known security attacks on RC4 including state recovery

and distinguishing attacks. The running time of RC4 KSA? and PRGA? was claimed as

2.94 and 1.70 times, higher than that of RC4 KSA and PRGA respectively [14].

However, RC4 is widely accepted in numerous applications for its high speed. Though

RC? is providing high level of security, but at the cost of performance degradation in

terms of time. The encryption time incurred in RC4? is very high as compared to

conventional RC4. So, there is a need for new RC4 implementation, which can overcome

this tradeoff issue.

1226 P. Jindal, B. Singh

123

5.3 Improved RC4

The third implemented RC4 variant is an Improved RC4, pseudo code for which is pre-

sented in Algorithm 4. In an improved RC4, unlike conventional RC4 two S-boxes have

been used which increase the randomness in the state and improve the statistical properties

of the cipher. Authors have claimed that the proposed algorithm has removed many vul-

nerabilities of RC4 and the data can be encrypted with high speed of 0.875 s due to the

parallel processing of output bytes.

5.4 FJ-RC4

The pseudo code of the fourth implemented variant, FJ-RC4 is given in Algorithm 5. In the

proposed cipher the initial key was divided into three parts. Triple encryption and

decryption is carried out to enhance the security of the cipher. Due to the occurrence of

triple encryption and decryption, the authors claim the cipher to be more secure, but at the

cost of running time, which is increased about three times as compared to plain RC4.

5.5 Effective RC4 Stream Cipher

Algorithm 6 presents the pseudo code of Effective RC4 stream cipher. In this cipher, KSA

is the same as that in improved RC4. Modifications have been incorporated in PRGA. In

PRGA, two parallel output bytes are generated, which are further xored with plaintext byte

and the index j1 and j2 in two different steps. Due to parallel processing of output bytes

and xoring of output byte with j index, the algorithm was claimed to be more secure and

fast.

KSA
Initializations (for all implemented algorithms)
for i from 0 to 255

S[i] := i;
end for
S1=S2=S; (When two states are considered)
j := 0;
j1=j2=j ;(When two states are considered)
L= length of the key
N=length of the Substitution box or state
key/key1/key2 = Key (Random numbers shared by the communicators)

PRGA

Initialization

i := 0;

j := 0;

Simulation Attributes (for all the algorithms)

State ([S])
Key
Initialization Vector (IV)
Text size (Input)

256 bytes (state is of 256 bytes)
16 bytes and will be expanded upto 256 bytes with mod N
16 bytes
1.25 million bytes
As RC4 is a stream cipher byte by byte processing is done. With each run of PRGA
single byte of ciphertext is obtained
All operations (addition) are under mod N condition

All the simulations have been carried out in C language on Intel i5, 2.5GHz, 2.2V and 28namp machine.

Algorithm 1. Simulation parameters used in RC4 and its variants

Optimization of the Security-Performance Tradeoff in RC4… 1227

123

KSA
for i from 0 to N-1

j := (j + S[i] + key[i mod L]) ;
swap (S[i], S[j]);

end for

PRGA
while message

i := (i + 1);
j := (j + S[i]);
swap (S[i], S[j]);
out O := S[(S[i] + S[j])];

end while

Algorithm 2. Pseudo code for RC4 stream cipher

KSA
Layer 1 Basic scrambling
for i from 0 to N − 1

j = (j + S[i] + K[i mod L]);
swap(S[i], S[j]);

Layer 2 Scrambling with IV
for i =N/2 - 1 down to 0

j = (j + S[i]) xor (K[i mod L] + IV [i]);
swap(S[i], S[j]);

for i = 0, 1, 2, ….N − 1
j = (j + S[i]) xor (K[i mod L] + IV [i]);

swap(S[i], S[j]);
Layer 3 Zigzag scrambling
for y = 0, . . . ,N − 1

if y ≡ 0 mod 2 then
i=y/2;
else i=N - (y+1)/2
j = (j + S[i] + K[i]);

swap(S[i], S[j]);

PRGA
while message

i = i + 1;
j = j + S[i];

swap(S[i], S[j]);
t = S[i] + S[j];
t’ = (S[i>>3 xor j<<5] + S[i<<5xor j>>3]) xor 0xAA;
t”=j+S[j];

out O= (S[t] + S[t’]) xor S[t”];
end while

Algorithm 3. Pseudo Code for RC4+ Encryption Algorithm

KSA
for i from 0 to N-1

j1 := (j1 + S1[i] + key1[i mod K]) ;
swap (S1[i], S1[j1]);

j2 := (j2 + S2[i] + key2[i mod K]) ;
swap (S2[i], S2[j2]);

end for

PRGA
while message
i := i + 1;

j1 := j1 + S1[i];
swap (S1[i] and S1[j1]);

j2 := j2 + S2[i];
swap S2[i] and S2[j2];

out1 S1[S2[i] + S2[j2]];
out2 S2[S1[i] + S1[j1]];
swap (S1[S2[j1]], S1[S2[j2]]);
swap (S2[S1[j1]], S2[S1[j2]]);

end while

Algorithm 4. Pseudo Code for Improved RC4 Encryption Algorithm

1228 P. Jindal, B. Singh

123

Append zeros to make the length of the key divisible by 3

K=0;
while main key

Key1(K)=main key(i);
Key2(K)=main key(i+1);
Key3(K)=main key(i+2);
K=K+1;
i=i+3;

end

follow KSA and PRGA as in RC4

Algorithm 5. Pseudo Code for FJ-RC4 Encryption Algorithm [66]

PRGA
while message
i=i+1;
jl= jl+S1[i];

swap(S1[i], S1[j]);
j2= j2+S2[i];

swap(S2[i], S2[j]);
out1= S1[(S1[i]+ S1[j1])] xor j1;
out2= S2[(S2[i]+ S2[j2])] xor j2;

swap (S1[S2[j1]], S1[S2[j2]]);
swap (S2[S1[j1]], S2[S1[j2]]);

end while

Algorithm 6. Pseudo Code for Effective RC4
Encryption Algorithm

6 Proposed RC4 Algorithm

In Sect. 5, five different RC4 variants have been briefly described. It is found that, RC4? is

known to be the most secure cipher among all the existing variants, as it is resistant to

many security attacks. However, security is achieved at the cost of performance degra-

dation in terms of running time, almost thrice as compared to the conventional RC4. The

RC4 modification proposed in improved RC4 provides high speed but low security as

compared to RC4?. FJ-RC4 is again a weak cipher, where a plain RC4 runs three times,

which results in performance degradation in terms of encryption time. Hence, it is not very

efficient both in terms of security as well as encryption time. Looking into the security-

performance tradeoff in existing variants, we have proposed three new implementations of

RC4 referred to as; RC4-M1, RC4-M2 and RC4-M3. The proposed variants are based on

Optimization of the Security-Performance Tradeoff in RC4… 1229

123

RC4?. To improve the run time, we have focused more on PRGA instead of KSA. It is

because, during the whole encryption process, KSA runs only for one time to generate a

state permutation for 256 bytes. However, PRGA runs every time to generate a single

output byte. The simulation parameters and attributes used for the implementation of

proposed algorithms are same as used for the implementation of existing algorithms and

are shown in Algorithm 1.

6.1 RC4-M1

The first proposed variant RC4-M1 is based on RC4 KSA?. In the proposed cipher, three

layer scrambling is performed in the same manner as with RC4?.

1. Initialization and first layer of scrambling is the same as the basic RC4

algorithm.

2. In the second layer, IV used is of same length as the secret key (256 bytes). The

index i moves first from the middle down to the left end and then from the middle

up to the right end. In our scheme, an l-byte IV, denoted by an array IV [0…l-1],

is used from index N/2-1 down to N/2–l, during the leftward movement and the

same IV is repeated from index N/2 up to N/2 ? l–1, during the rightward

movement.

3. In third and final layer of scrambling i takes values in the order: 0, 255, 1, 254, 2,

253…125, 130…128. Pseudo code for the RC4-M1 KSA and PRGA is shown in

Algorithm 7 respectively.

The proposed variant RC4-M1 is different from RC4? in a manner such that,

1. Two different keys K1 and K2 and two states S1 and S2 along with three layers of

scrambling have been used. The keys—K1 and K2, throws S1 and S2 in confusion by

generating two random permutations of {0, 1, 2…N–1}. The three layers of

scrambling combined with two states remove correlation between secret key and

permutation bytes, biases in different bytes, and chosen IV attacks to the great extent,

which are the roots to several security attacks.

2. PRGA in RC4-M1, has the same structure as conventional RC4. Output stream is

generated using S1 and S2, and two pseudo random words in one loop are

obtained. In RC4-M1 PRGA two secret parameters j1 and j2 are obtained from S1

and S2 at the end of every loop, and four different secret states S1 [i], S1 [j1], S2

[i], S2 [j2] are computed. The elements of S1 swapped by S2 [i], S2 [j2] and the

elements of S2 are swapped by S1 [i], S1 [j1]. As S1 [i], S1 [j1], S2 [i], S2 [j2]

are the secret parameters, adversary will not come to know about which elements

of S1 and S2 have been swapped. It also hides the relation between different bytes

of S-boxes.

3. The proposed algorithm increases the internal states of S-boxes, which in turn

increases the security of the cipher. In the proposed cipher security has been achieved

but not at the cost of the performance of the cipher. Parallel processing in the proposed

algorithm increases the speed of the algorithm. Pseudo code for the proposed PRGA is

given in Algorithm 7.

1230 P. Jindal, B. Singh

123

KSA
Layer 1 Basic scrambling
for i from 0 to N − 1

j1 = (j1 + S1[i] + K1[i mod K]);
swap (S1[i], S1[j1 mod K]);

j2= (j2+ S2[i] + K2[i]);
swap (S2[i], S2[j2]);

end for
Layer 2 Scrambling with IV
for i =N/2 - 1 down to 0

j1= (j1+ S1[i]) xor (K1[i] + IV[i]);
swap(S1[i], S1[j1]);

end for
for i = 0, 1, 2, ….N − 1

j1 = (j1 + S1[i]) xor (K1[i] + IV[i]);
swap(S1[i], S1[j1]);

end for
for i =N/2 - 1 down to 0

j2= (j2+ S2[i]) xor (K2[i] + IV[i]);
swap(S2[i], S2[j2]);

end for
for i = 0, 1, 2, ….N − 1

j2= (j2+ S2[i]) xor (K2[i] + IV[i]);
swap(S2[i], S2[j2]);

end for
Layer 3 Zigzag scrambling
for y = 0, . . . , N − 1

if y ≡ 0 mod 2
i=y/2;

else
i=N - (y+1)/2;

end if
j1= (j1 + S1[i] + K1[i]);

swap(S1[i], S1[j1]);
j2 = (j2 + S2[i] + K2[i]);

swap(S2[i], S2[j2]);
end for

PRGA
while message

i := i + 1;
j1 := j1 + S1[i];

swap S1[i] and S1[j1];
j2 := j2 + S2[i];

swap S2[i] and S2[j2];
out1 S1[S2[i] + S2[j2]];
out2 S2[S1[i] + S1[j1]];
swap (S1[S2[j1]], S1[S2[j2]]);
swap (S2[S1[j1]], S2[S1[j2]]);

end while

Algorithm 7. Pseudo Code for Proposed RC4-M1 KSA Encryption Algorithm

6.2 RC4-M2

The second proposed modified RC4 variant is RC4-M2. As given in Algorithm 8, the

proposed cipher is based on the design principle of KSA?.

1. In RC4-M2, KSA used is the same as KSA?.

2. Modification have been incorporated in RC4 PRGA?. Correlation between output

byte and secret key, key recovery in IV mode, recovery of state permutation from

generated output byte are some of the major weaknesses of RC4 PRGA. These

weaknesses of PRGA were removed in PRGA? by masking the output byte in a

manner such that, it is not derived from any permutation byte.

Optimization of the Security-Performance Tradeoff in RC4… 1231

123

PRGA
while message

i = i + 1;
j = j + S[i];
swap (S[i], S[j]);

t = S[i] + S[j];
t’ = (S[i>>3 xor j<<5] + S[i<<5xor j>>3]) xor 0xAA;
t”=j+S[j];

out1 z= (S[t] + S[t’]) xor S[t”];
t’ = (S[i>>3 xor j<<5] + S[i<<5xor j>>3]) xor 0x55;
t”=j+S[j];

out2 z= (S[t] + S[t’]) xor S[t”];
end while

Algorithm 8. Pseudo Code for Proposed RC4-M2
Encryption Algorithm

PRGA
while message

i := (i + 1);
j := (j + S[i]);
k := (j + S[i]+K2[i]);

swap (S[i], S[j]);
output := S[(S[i] + S[j]] xor S[k];

end while

Algorithm 9. Pseudo Code for Proposed
RC4-M3 Encryption Algorithm

3. In PRGA? two permutation bytes are added in modulo 256, ((S [i � 3 xor

j � 5] ? S [i � 5 xor j � 3]) xor 0xAA)).

4. Further, to conceal the non-uniformity and to remove internal biases, the resultant

of two added bytes is xored with third byte 0xAA, which is equivalent to

10101010. The addition of S [t0] and S [t00] in PRGA? has increased its running

time as compared to RC4 PRGA, which is not desirable in any real time

applications.

5. To reduce the run time of PRGA?, it is modified such that, instead of generating

single output, we generate two parallel outputs by adding one more layer in RC4-M2

PRGA (t0 = (S[i � 3 xor j � 5] ? S[i � 5xor j � 3]) xor 0 9 55). Where the byte

0x55 represents 01010101, is xored with the two added bytes. It clearly shows that,

generation of two parallel output bytes instead of one will reduce the run time of RC4-

M2 PRGA as compared to PRGA?. Hence while maintaining the security of RC4?,

RC4-M2 improves the performance as compared to RC4?. Security and performance

analysis of all the proposed and existing RC4 variants is presented in Sects. 7 and 8

respectively.

1232 P. Jindal, B. Singh

123

6.3 RC4-M3

The third proposed RC4 variant is RC4-M3 in which, KSA is similar to the one used in

KSA? and RC4-M2, but with modified PRGA. Two different keys; K1 and K2 are used.

The first key K1 is used in KSA and the second key K2 in PRGA.

1. As shown in Algorithm 9, one more layer of scrambling is added to the cipher

(k: = (j ? S[i] ?K2 [i]) mod 256). The additional layer in PRGA includes the

scrambling of permuted bytes with key K2 and a new index K is generated.

2. Further, to obtain the output byte, two bytes are added in module 256 and xored with

index S[k] (output: = S [(S[i] ? S[j]) mod 256] xor S[k]).

3. With this additional layer, we have enhanced the computational complexity of the

cipher, intruder has to face the challenge of finding two different keys. The output byte

is not directly dependent on keystream and the index j.

7 Security Analysis of RC4 Variants

The security of all the existing and the proposed variants has been evaluated through their

respective security analysis on the basis of design, randomness analysis, and computational

complexity in each variant.

7.1 Security Analysis

There are many flaws in traditional RC4 which makes it vulnerable to different security

attacks. We have analyzed the security performance of proposed RC4 variants relative to the

existing variants on the basis of their design structure. The security analysis of the existing

variants and the three proposed RC4 variants is shown in Table 1. It is depicted that RC4?

is the strongest variant to date which resolves variety of security issues related to key

recovery, state recovery and initial state biases while compromising the performance in

terms of time offered by the cipher. We have proposed three new RC4 variants which are

based on RC4?. In all the variants we have used RC4? as their basic structure with some

modification either in KSA? or PRGA? with the focus of either retaining or enhancing the

security of the cipher. On the basis of the complexity offered by all the proposed variants we

deduce that among all the proposed RC4 variants security provided by RC4-M2[RC4-

M1[RC4-M3. Among all the implemented existing and proposed variants security pro-

vided by RC4-M2[RC4?[RC4-M1[RC4-M3[FJ-RC4[Improved RC4[Ef-

fective RC4. We have theoretically analyzed the resistance of proposed ciphers against

cryptanalytic attempts.

7.1.1 Brute Force Attack

Brute force is an exhaustive key search attack. Intruder tries each and every possible

combination of key to find the plaintext. The proposed schemes RC4-M1 and RC4-M3 are

resistant to brute force attack as key length has increased from 256 to 512 bytes by using of

two different keys.

Optimization of the Security-Performance Tradeoff in RC4… 1233

123

Table 1 Security analysis of RC4 variants

RC4
variants

Design of RC4 variants Security analysis

RC4 This is a basic original RC4 structure Many flaws have been reported in
conventional RC4 as discussed in Sect. 3
[16–62]

Improved
RC4

Based on conventional RC4, but increased the
state space twice the original RC4 i.e. from
1700 to 3400 by including two S boxes and
two keys

It is hard for intruder to find two keys
Computational complexity is increased which

makes the algorithm resistant against brute
force attack

Statistical properties are improved using
double permutation [66]

But not as secure as RC4? [14]

FJ-RC4 Based on conventional RC4, Key is divided
into three parts, triple encryption and
decryption is performed. Both KSA and
PRGA are same as original RC4

Simply increased the computational
complexity of the algorithm [68]

No improvement in the statistical properties
of the algorithm which are the roots to
several attacks on RC4

Effective
RC4

Is a combination of plain RC4 and improved
RC4, KSA and PRGA are similar to
improved RC4 except the step
Output = M[x] xor Generated Key1 xor j1;
Output = M[x] xor Generated Key2 xor j2;
where two outputs are generated and xored
with index j1 and j2

Computational complexity is increased which
makes the algorithm resistant against brute
force attack [69]

Statistical properties are improved using
double permutation and xor operation with
index j1 and j2

But not as secure as RC4? [14]

RC4? Improvements are done in both KSA and
PRGA

KSA?: three layer scrambling is done
Initial scrambling is same as plain RC4
Layer two scrambling is done using IV
Zig zag scrambling is performed by moving
each adjacent byte

PRGA?:
Shifting and xoring of bytes is done to
increase the dependency of single byte upon
many bytes. Xor with 0xAA is done

Removes several initial byte biases [14]
Xor operation helps to remove out many

biases
Zig Zag scrambling removes the relationship

between key bytes and the permutation
bytes

Hides the relation between output keystream
and the secret key

Resistant to state recovery attacks
Resistant to distinguishing attacks
(RC? is the most secure algorithm among all
the implemented existing algorithms also
among the algorithms reported till date)

RC4-M1 Combination of RC4? and improved RC4
Three layer scrambling is used same as

KSA?
State space and randomness is further

increased using two states S1 and S2, and
two keys K1 and K2

Two indices j1 and j2 are used and two
parallel outputs are obtained

Offers similar security as provided by RC4
KSA? along with improved performance in
terms of time

Make the task of intruder more difficult by
offering him double challenge of increased
state space and two keys

Like KSA?, improves the randomness
properties of the cipher and remove many
initial state biases hence resistant to several
attacks reported in the literature

Use of double state and indices make the
algorithm resistant to state recovery attacks

1234 P. Jindal, B. Singh

123

7.1.2 Permutation Recovery Attack

The basic idea of permutation recovery attack is elaborated in [46], where permutations

can be recovered easily. The proposed schemes are resisting permutation recovery attacks,

in PRGA, output keystream [SG[SG[iG] ? SG[jG]] is not directly derived from the state

permutation, instead is masked by various other operations. For the cryptanalysis one is

required to first estimate SG[t], SG[t0], and SG[t00]. To find the output value, intruder has no

option, than to go for all the probable choices. The inclusion of additional operations in

PRGA, t0 and t00, ensures the non-recovery of RC4 permutation from the output keystream

byte and the idea of [46] will not work.

7.1.3 Distinguishing Attacks

The distinguishing attack challenges the pseudorandom generation of bytes in the stream

cipher, a basic claim of any stream cipher. This type of attack initiates from the fact that

when second state byte is 0 and first byte is not equal to 2, the second output byte will take

the value of 0. Many cryptanalysis attempts have been made on the basis of this fact [53].

In the proposed schemes, output keystream is generated in different manner as compared to

RC4 PRGA. It does not produce a non-random output and make the cipher free from such

biases.

7.1.4 Key Correlation Attacks

The attack aims at finding any correlation between output keystream and the secret key and

leads to key recovery attacks. In the proposed schemes the index i is moving first from

middle bytes to left end enables the swapping of bytes in the first quarter of permutation,

Table 1 continued

RC4
variants

Design of RC4 variants Security analysis

RC4-M2 Based on RC4?
KSA used is same as KSA?
PRGA? is modified to further increase the

security and performance as well
Two parallel outputs are generated by adding

one more layer
(t0 = (S[i � 3 xor j � 5] 1 S[i � 5xor
j � 3]) xor 0x55)

Proposed algorithm addresses all issues that
have been resolved by RC4?

Removes all the vulnerabilities of existing
ciphers

More secure than PRGA?, rather complete
RC4?

Non-uniformity is concealed by two different
bytes instead of one, unlike PRGA? output
depends on two additional bytes

Performance in terms of time is better than
RC4?

RC4-M3 KSA is similar to KSA?
PRGA of plain RC4 is used with some

modification
Two different keys are used, one in KSA and

another in PRGA
A new byte k is generated using K2, which is

further xored with the output byte

KSA is as secure as KSA?
Use of K2 makes the PRGA secure
Output byte is not directly coming from

permutation byte
Makes the state recovery attack difficult
Improved performance in terms of time

Optimization of the Security-Performance Tradeoff in RC4… 1235

123

that were in linear combination with secret key bytes. It results in the removal of initial

byte biases. Similar operation is performed on the second half and removes the biases at

the time of inverse permutation. Further the use of xor operation is also eliminating these

biases. Also the zig-zag scrambling occurring in layer 3 of KSA is preventing the for-

mation of recursive equation [24] and hiding the connection between key and permutation

bytes. So it is deduced that the proposed schemes are resistant to key recovery attacks as

there is no correlation between key bytes and secret key bytes.

7.1.5 Chosen IV Attack

In the conventional schemes, the improper use of initialization vector makes the cipher

vulnerable to IV-mode attacks [32]. The IV’s were either prefixed or suffixed with secret

key. In our proposed variants, the IV is used in the middle and added with key bytes in each

iteration during the updation of index j. Moreover, IV is involved only in Layer 2, and not

used in layer 3 where zig-zag scrambling is involved. This step helps the cipher to get rid

of chosen IV vector attack.

7.2 Randomness Analysis

It is always desirable that output of PRGA must be unpredictable without the knowledge of

any input. In particular, without knowing the key, intruder must not be able to develop the

present or future messages, even if he had gained an access to any previously generated

random sequence. There should be no correlation between the key and the generated output

sequence. We have proposed the three different RC4 variants to increase the randomness

which in turn increase the security of the cipher as compared to the existing RC4 variants.

To analyze the security of different RC4 variants we have studied the degree of ran-

domness associated with each cipher. To investigate the degree of randomness offered by

RC4 PRGA, we have performed extensive experimentation with the NIST statistical test

suite. We have opted NIST test suite for its accuracy and popularity. The NIST framework,

based on hypothesis testing, is a set of 15 statistical tests to examine the randomness of

binary sequences (a long sequence) generated by any PRGA. The NIST statistical test suit

emphasis on a number of different type of non-randomness that could exist in any binary

sequence.

Each test has been designed to detect specific type of flaws. The different tests and their

general characteristics are shown in Table 2. Using NIST STS for RC4, we have inves-

tigated, whether or not the generated sequence of zeros and ones is random. We have

implemented all the variants and statistical tests in MATLAB 13. We have conducted our

experiments on over 10 lac bytes. All the generated RC4 PRGA sequences are applied to

the NIST STS and the result of each test was analyzed to decide whether or not it passes

the randomness tests. A generated random sequence to be accepted or rejected is decided

by comparing the p value to 0.01.

If p value is more than 0.01, the sequence is random and is accepted else the sequence is

non-random and is rejected. If the generated sequence will pass all the statistical tests, only

then it will be concluded that the resultant sequence is truly random and RC4 can be

securely used in wireless networks. p Values obtained after implementing all the 15

statistical tests are shown in Table 3, where ‘Success’ indicates that for all implemented

RC4 variants, the obtained p values are [0.01. All the algorithms are passing the NIST

1236 P. Jindal, B. Singh

123

Table 2 NIST statistical test suite

NIST statistical
test

Test purpose Flaws detected

1 Frequency
(Monobit) Test

Probability of the occurrence of number
of 0’s and 1’s should be approximately
same i.e. 0.5

Number of 0’s is more than number
of 1’s or vice versa

2 Frequency test
within a block

To determine whether the number of 1’s
in P bit block is approximately P/2

Too many 0’s or 1’s in P bit block

3 Runs Test Focus on the total number of runs in the
sequence. Determine whether the
number of runs of o’s and 1’s of
different length is as desired for a
random sequence

More or less total runs show that the
oscillation between the bit streams
is too fast or too slow

4 Test for the
longest Run of
1’s in a Block

The test is focused on whether the length
of the longest run of 1’s in the tested
sequence is as expected in a random
sequence

Irregularity in the distribution of
longest run of 1’s within the P-bit
block

5 Binary Matrix
Rank Test

The purpose of the test is to check for the
linear dependence among fixed length
sub-strings of the actual sequence by
finding the rank of the disjoint sub-
matrices of the whole sequence

Irregularity in the rank distribution
from consistent random sequence

6 Discrete Fourier
Transform Test/
Spectral Test

The purpose of the test is to detect the
repetitive patterns that are close to each
other of the tested sequence

Periodic features of the bit stream

7 Non-overlapping
Template
Matching test

Occurrence of aperiodic pattern in the
sequence using non-overlapping p-bit
window

Very large occurrences of aperiodic
templates

8 Overlapping
Template
Matching test

Occurrence of aperiodic pattern in the
sequence using overlapping p-bit
window

High occurrence of p-bit runs of 1’s

9 Maurer’s
Universal
Statistics Test

To check whether the sequence can be
compressed without losing any
information

Compressibility reflects the non-
random behavior of the sequence

10 Linear
Complexity
Test

To find the length of the linear feedback
shift register (LFSR) and to determine
whether the sequence is complex
enough to be considered as random

Longer LFSR and less complex
sequence imply better randomness

11 Serial Test To determine that every m-pattern is
getting the same chance of appearing as
every other pattern

Non-uniformity in the distribution of
patterns

12 Approximate
Entropy Test

The purpose of the test is to compare the
frequency of all possible overlapping
blocks of two adjacent lengths (m and
m ? 1)

Non-uniformity in the distribution of
patterns

13 Cumulative Sums
test/Cusum Test

Whether the cumulative sum of the test
sequence is very large or small as
compared to the expected behavior of
the random sequence

More number of 0’s or 1’s at the
beginning of the sequence

14 Random
Excursions Test

Determine if the number of visits to a
particular state within a cycle varies
from the one that would be expected
from a random sequence

Irregularity in the distribution of the
number of visits

Optimization of the Security-Performance Tradeoff in RC4… 1237

123

statistical test suite; hence the generated PRGA keystream is truly random and uniformly

distributed.

7.3 Computational Complexity (CC)

In this paper, we have analyzed the computational complexity in terms of the number of

operations (No) incurred in each RC4 variant. Computational complexity of each cipher is

shown in Table 4. CC is evaluated by finding out the total number of operations incurred in

both KSA and PRGA. More the number of operations more will be the complexity of the

cipher. Complexity of each variant is analyzed as below:

In basic RC4 in KSA No ¼ 3 � 256 ¼ 768

where 256 is the total number of bytes in the state box S and

PRGA No ¼ 6 � N ¼ 6N bytes

N represents the number of plaintext bytes. For example if N = 40 then number of

iterations in PRGA will be 40 and the number of operations will be 6 9 40 = 240. So the

computational complexity of

Basic RC4 CC ¼ 768 þ 6NðTotal number of operations in KSA þ PRGAÞ

Similarly we have evaluated total number of operations for each RC4 variant and

calculated the complexity associated with each cipher.

For

Improved RC4 CC ¼ 1536 þ 14N

FJ-RC4 CC ¼ 2304 þ 18N

Effective RC4 CC ¼ 1536 þ 14N

RC4þ CC ¼ 4608 þ 16N

RC40M1 CC ¼ 9216 þ 14N

RC40M2 CC ¼ 4608 þ 29N

RC40M3 CC ¼ 4608 þ 8N

It is interpreted that complexity associated with basic RC4 is minimum (768 ? 6N)

which leads for better time and poor security performance. Though CC in improved RC4,

effective RC4 and proposed RC4-M1 PRGA are same (14N) but they vary in their security

performance due to the complexity of KSA which is very high in RC4-M1 (CC = 9216).

CC of FJ-RC4 are thrice that of basic RC4 (2304 ?18N). In this case with increase in CC,

security is enhanced with degraded time performance. CC in the case of RC4?, RC4-M2

and RC4-M3 is 4608 ? 16N, 4608 ?29N, 4608 ? 8N. As the complexity associated with

Table 2 continued

NIST statistical
test

Test purpose Flaws detected

15 Random
Excursions
Variant Test

To determine the total number of times
the event is occurred in a cumulative
sum random walk

Deviation from the expected number
of occurrences

1238 P. Jindal, B. Singh

123

T
a
b
le

3
R

an
d

o
m

n
es

s
te

st
re

su
lt

s

T
es

t
n

o
.

S
ta

ti
st

ic
al

te
st

s
C

al
cu

la
te

d
p

v
al

u
es

R
C

4
R

C
4

K
S

A
?

Im
p

ro
v

ed
R

C
4

R
C

4
F

J
E

ff
ec

ti
v
e

R
C

4
R

C
4

M
1

R
C

4
M

2
R

C
4

M
3

C
o

n
cl

u
si

o
n

1
F

re
q
u
en

cy
(M

o
n
o
b
it

)
T

es
t

0
.3

1
5
3

0
.1

0
4
8

0
.1

7
9
5

0
.9

4
2
6

0
.2

1
3
5

0
.8

2
4
3

0
.8

5
7
1

0
.0

2
8
0

S
u
cc

es
s

2
F

re
q

u
en

cy
te

st
w

it
h

in
a

b
lo

ck
1

1
1

1
1

1
1

1
S

u
cc

es
s

3
R

u
n

s
T

es
t

0
.8

6
1
6

0
.8

6
1
5

0
.6

7
1
0

0
.5

6
8
8

0
.6

1
3
6

0
.2

1
4
5

0
.5

9
6
3

0
.2

1
3
4

S
u
cc

es
s

4
T

es
t

fo
r

th
e

lo
n
g

es
t

R
u

n
o

f
1

’s
in

a
B

lo
ck

0
.9

5
5

7
0

.8
5

0
3

0
.6

6
0

1
0

.0
1
6

2
0

.8
5

5
7

0
.6

0
4

4
0

.1
8
3

0
0

.6
8
3

0
S

u
cc

es
s

5
B

in
ar

y
M

at
ri

x
R

an
k

T
es

t
0
.8

6
5
4

0
.8

6
1
5

0
.7

5
2
1

0
.5

0
1
2

0
.8

5
4
3

0
.6

5
2
1

0
.4

6
2
8

0
.5

1
2
5

S
u
cc

es
s

6
D

is
cr

et
e

F
o

u
ri

er
T

ra
n

sf
o

rm
T

es
t/

S
p

ec
tr

al
T

es
t

0
.7

1
3

4
0

.7
5

4
1

0
.5

1
2

4
0

.2
4
9

0
.7

2
3

4
0

.7
5

2
4

0
.2

1
4

8
0

.6
5
2

1
S

u
cc

es
s

7
N

o
n

-o
v

er
la

p
p

in
g

T
em

p
la

te
M

at
ch

in
g

te
st

0
.3

3
3

3
0

.6
3

1
3

0
.4

6
4

7
0

.9
8
0

1
0

.3
9

8
7

0
.8

7
7

8
0

.7
5
3

2
0

.5
7
7

4
S

u
cc

es
s

8
O

v
er

la
p

p
in

g
T

em
p

la
te

M
at

ch
in

g
te

st
1

1
1

1
1

1
1

1
S

u
cc

es
s

9
M

au
re

r’
s

U
n

iv
er

sa
l

S
ta

ti
st

ic
s

T
es

t
0

.0
1
8

6
0

.0
1

8
6

0
.0

1
8

6
0

.0
1
8

6
0

.0
1

8
6

0
.0

1
8

5
0

.0
1
8

6
0

.0
1
8

6
S

u
cc

es
s

1
0

L
in

ea
r

C
o
m

p
le

x
it

y
T

es
t

0
.9

8
4
2

0
.9

6
6
1

0
.9

2
5
7

0
.9

8
1
7

0
.9

7
2
8

0
.8

7
2
6

0
.8

7
2
8

0
.9

8
8
3

S
u
cc

es
s

1
1

S
er

ia
l

T
es

t
0
.3

4
5
1

0
.2

2
1
6

0
.9

8
6
7

0
.9

3
6
3

0
.3

9
5
2

0
.9

7
3
6

0
.9

8
6
9

0
.7

5
1
5

S
u
cc

es
s

1
2

A
p
p
ro

x
im

at
e

E
n
tr

o
p
y

T
es

t
0
.0

2
5
7

0
.2

7
7
4

0
.5

5
8
7

0
.3

9
7
2

0
.0

2
2
6

0
.9

1
8
1

0
.9

9
9
2

0
.2

8
1
5

S
u
cc

es
s

1
3

C
u
m

u
la

ti
v

e
S

u
m

s
te

st
/C

u
su

m
T

es
t

0
.2

8
0

4
0

.1
6

9
7

0
.3

3
9

4
0

.9
9
8

1
0

.2
5

2
7

0
.7

2
7

0
0

.2
5
7

0
0

.0
4
6

4
S

u
cc

es
s

1
4

R
an

d
o
m

E
x
cu

rs
io

n
s

T
es

t
0
.7

3
4
6

0
.4

9
0
9

0
.1

9
1
9

0
.1

6
5
7

0
.2

6
8
3

0
.5

6
1
7

0
.1

8
5
9

0
.3

7
3
5

S
u
cc

es
s

1
5

R
an

d
o
m

E
x
cu

rs
io

n
s

V
ar

ia
n
t

T
es

t
0
.9

9
9
6

0
.9

9
9
5

1
0
.9

9
8
8

0
.9

9
4
2

0
.9

9
8
7

0
.9

9
9
4

0
.9

9
6
2

S
u
cc

es
s

Optimization of the Security-Performance Tradeoff in RC4… 1239

123

RC4-M2 is the maximum, it provides maximum security with little bit high execution time

but less than RC4?.

8 Performance Analysis

RC4 is a stream cipher, where byte-by-byte processing is performed under MOD N con-

dition. Key size and state length are the two important attributes of this stream cipher. In

the present work, Key size is considered of 16 bytes and state box of 256 bytes. In each

round a single byte is generated after PRGA, which is xored with single input byte to

generate a cipher text byte. Performance analysis of all the RC4 variants has been carried

out in terms of running time, CPU cycles, energy cost and throughput. All the simulations

have been carried out in C language on Intel i5, 2.5 GHz, 2.2 V and 28namp machine. We

have encrypted 1.25 million bytes with all the variants.

8.1 Run Time

Run time is the time taken by any cipher in encryption or decryption of data. Table 5 and

Fig. 1 present the run time analysis of all the RC4 variants along with their security

performance tradeoff. We have evaluated the time consumed in generating 1.25 million

output bytes from PRGA for each cipher. In this case, key size does not affect the per-

formance of the cipher. It is used only once in KSA and not used in PRGA. Moreover, if

Table 4 Analysis of computational complexity

RC4 variants Algorithm Type of operation Number of
operations
(NO) in KSA
and PRGA

Computational
complexity
(C)XOR SWAP ADD MOD SHIFT

RC4 KSA 0 1 1 1 0 3 9 256* = 768 768 ? 6N

PRGA 1 1 2 2 0 6 9 N** bytes

Improved RC4 KSA 0 2 2 2 0 6 9 256 = 1536 1536 ? 14N

PRGA 2 4 4 4 0 14 9 N bytes

FJ-RC4 KSA 0 3 3 3 0 9 9 256 = 2304 2304 ? 18N

PRGA 3 3 6 6 0 18 9 N bytes

Effective RC4 KSA 0 2 2 2 0 6 9 256 = 1536 1536 ? 14N

PRGA 2 4 4 4 0 14 9 N bytes

RC4? KSA? 2 4 6 6 0 18 9 256 = 4608 4608 ? 16N

PRGA? 4 1 4 3 4 16 9 N bytes

RC4-M1 KSA 4 8 12 12 0 36 9 256 = 9216 9216 ? 14N

PRGA 2 4 4 4 0 14 9 N bytes

RC4-M2 KSA 2 4 6 6 0 18 9 256 = 4608 4608 ? 29N

PRGA 8 1 8 4 8 29 9 N bytes

RC4-M3 KSA 2 4 6 6 0 18 9 256 = 4608 4608 ? 8N

PRGA 1 1 3 3 0 8 9 N bytes

* 256 represents the total number of state bytes

** N represents the length of plain text

1240 P. Jindal, B. Singh

123

T
a
b
le

5
P

er
fo

rm
an

ce
an

al
y

si
s

o
f

R
C

4
v

ar
ia

n
ts

R
C

4
v

ar
ia

n
t

R
u

n
ti

m
e

C
P

U
cy

cl
es

(M
cy

cl
es

)
E

n
er

g
y

(J
)

T
h

ro
u
g

h
p

u
t

(M
b

p
s)

S
ec

u
ri

ty
an

d
p

er
fo

rm
an

ce
tr

ad
eo

ff
an

al
y

si
s

K
S

A
(l

se
c)

P
R

G
A

(s
ec

)
P

R
G

A
P

R
G

A
P

R
G

A

R
C

4
1

8
.3

0
.0

6
2

1
5

5
9

.5
4
8

2
0

.1
6

1
V

er
y

fa
st

,
ef

fi
ci

en
t

an
d

si
m

p
le

in
d

es
ig

n
b

u
t

n
o

t
a

se
cu

re
ci

p
h

er

Im
p

ro
v

ed
R

C
4

2
3

0
.1

0
9

2
7

2
.5

1
6

.7
8

6
1

1
.4

6
7

S
ec

u
ri

ty
is

in
cr

ea
se

d
d

u
e

to
in

cr
ea

se
d

st
at

e
sp

ac
e

as
co

m
p

ar
ed

to
p

la
in

R
C

4
w

it
h

p
o

o
r

p
er

fo
rm

an
ce

in
te

rm
s

o
f

ti
m

e,
cy

cl
es

,
en

er
g

y
an

d
th

ro
u

g
h

p
u

t

F
J-

R
C

4
5

4
.9

0
.1

7
4

2
5

2
6

.1
8

7
.3

5
2

T
im

e
is

al
m

o
st

th
ri

ce
as

co
m

p
ar

ed
to

p
la

in
R

C
4

b
ec

au
se

o
f

tr
ip

le
en

cr
y

p
ti

o
n

an
d

d
ec

ry
p

ti
o

n
re

su
lt

in
p

o
o

r
p

er
fo

rm
an

ce

E
ff

ec
ti

v
e

R
C

4
2

3
0

.1
1
0

2
8

0
1

7
.2

4
8

1
1

.1
6

0
T

im
e

co
n

su
m

ed
is

sl
ig

h
tl

y
g

re
at

er
th

an
im

p
ro

v
ed

R
C

4
d

u
e

to
th

e
ad

d
it

io
n

al
x

o
r

o
p

er
at

io
n

R
C

4
?

4
3

.7
0

.1
5
6

3
9

0
2

4
.0

2
4

8
.0

1
2

R
u
n

n
in

g
ti

m
e

o
f

R
C

4
?

is
v

er
y

h
ig

h
as

co
m

p
ar

ed
to

p
la

in
R

C
4

an
d

it
s

im
p

ro
v

ed
v

ar
ia

n
ts

d
u

e
to

sh
if

ts
an

d
x

o
r

o
p

er
at

io
n

s.
S

ec
u
ri

ty
is

ac
h
ie

v
ed

at
th

e
co

st
o
f

p
er

fo
rm

an
ce

R
C

4
-M

1
6

4
.9

0
.1

0
9

2
7

2
.5

1
6

.7
8

6
1

1
.4

6
7

S
ec

u
ri

ty
p

ro
v

id
ed

is
m

o
re

th
an

Im
p

ro
v

ed
R

C
4

w
it

h
si

m
il

ar
ex

ec
u
ti

o
n

ti
m

e
S

ec
u

ri
ty

p
ro

v
id

ed
b

y
K

S
A

is
si

m
il

ar
to

K
S

A
?

T
im

e
co

n
su

m
ed

is
le

ss
th

an
R

C
4
?

b
ec

au
se

o
f

th
e

si
m

p
le

st
ru

ct
u

re
o

f
P

R
G

A

R
C

4
-M

2
4

3
.7

0
.1

4
3

5
0

2
1

.5
6

8
.9

2
8

R
u
n

ti
m

e
is

le
ss

th
an

R
C

4
?

d
u

e
to

th
e

g
en

er
at

io
n

o
f

tw
o

p
ar

al
le

l
o

u
tp

u
ts

S
ec

u
ri

ty
is

ac
h
ie

v
ed

w
it

h
o

u
t

co
m

p
ro

m
is

in
g

th
e

p
er

fo
rm

an
ce

o
f

th
e

ci
p

h
er

R
C

4
-M

3
4

3
.7

0
.0

8
2

0
0

1
2

.3
2

1
5

.6
2

5
T

im
e

co
n

su
m

ed
is

sl
ig

h
tl

y
g

re
at

er
th

an
p

la
in

R
C

4
b

u
t

le
ss

th
an

al
l

th
e

ex
is

ti
n

g
an

d
p

ro
p

o
se

d
v

ar
ia

n
ts

Optimization of the Security-Performance Tradeoff in RC4… 1241

123

we keep both the key size and the state [S] smaller, it will reduce the security of cipher.

The size of text affects the encryption time in PRGA. Larger will be the text, more number

of times the PRGA will run resulting in greater time consumption.

We have computed the time consumed by KSA in generating the new keystream. KSA

runs only once, hence it will not affect the performance of RC4 to large extent. PRGA will

run with the length of plaintext to generate the ciphertext bytes. Every time it will be

incremented to produce the output byte. It is observed that the time incurred is the min-

imum for plain RC4 due to its design simplicity and is the least secure algorithm. As we

increase the security of the cipher, encryption time increases.

Though the execution time of improved RC4 and effective RC4 is not very high but

these algorithms are not resistant to many security attacks as compared to RC4?. The

RC4? is the most secure algorithm but time consumption is almost thrice as compared to

the basic RC4. We have proposed three RC4 variants while focusing on this security

performance tradeoff. Figure 2 presents the comparative analysis of conventional RC4,

RC4? and the proposed RC4 variants. It demonstrates that the execution time incurred in

RC4? is 60, 30, 10, and 48.7 % higher than conventional RC4, RC4-M1, RC4-M2 and

RC4-M3 respectively. In the proposed variants, encryption time is decreased as compared

to RC4? and reflects the computational efficiency of proposed schemes. In RC4-M1 and

RC4-M2, two parallel outputs are obtained, hence reduces the time consumption. In RC4-

M3 PRGA is based on plain RC4 with the additional byte that is generated using K2 and

further xored with output byte and plain text which increase the security of the cipher

without compromising the performance.

Fig. 1 Running time comparison of RC4 variants

Fig. 2 Comparative analysis of run time of conventional RC4, RC4? and proposed RC4 variants

1242 P. Jindal, B. Singh

123

8.2 CPU Cycles

It measures the number of clock cycles incurred in encrypting 1.25 million bytes with

various RC4 variants. Table 5 and Fig. 3 present the results for the number of clock cycles.

It is observed that similar trends as with run time are followed for clock cycles. To be more

specific we have presented the encryption speed of all the RC4 variants in terms of cycles/

byte in Table 6. The encryption speeds for RC4?, RC4-M1, RC4-M2 and RC4-M3 are 312

cycles/byte, 218 cycles/byte, 280 cycles/byte and 160 cycles/byte respectively. Speed of

the proposed schemes—RC4-M1, RC4-M2 and RC4-M3 PRGA are 1.43, 1.11 and 1.95

times greater than RC4? PRGA? respectively.

8.3 Energy Cost

It is the amount of energy consumed during encryption process. Energy consumption can

be measured by counting the number of cycles incurred in the encryption process. Energy

cost is determined by the number of cycles, operating voltage of CPU, and average current

drawn for each cycle in accordance with the procedure followed in [70]. It is given by

E ¼ Vcc � I � N ð1Þ

where E is the energy cost, Vcc is the supply voltage of the system (2.2 V), N is the

number of cycles, and I is the average current drawn from the power source (28 namp).

Typically, for 155 Mega cycles consumed in the plain RC4 is computed as

Table 6 Cycles/byte consumed
in RC4 variants

RC4 variant Cycles/byte

RC4 124

Improved RC4 218

FJ-RC4 340

Effective RC4 224

RC4? 312

RC4-M1 218

RC4-M2 280

RC4-M3 160

Fig. 3 CPU cycles consumed in various RC4 variants

Optimization of the Security-Performance Tradeoff in RC4… 1243

123

E ¼ 155Mcycles � 2:2V � 28namp ¼ 9:548J ð2Þ

This operation is used to evaluate the energy cost for all the existing and proposed RC4

variants. As shown in Fig. 4, the energy cost of RC4 variants varies in the order of

RC4?[RC4-M2[RC4-M1[RC4-M3[RC4 as depicted in the Table 5. It shows that

RC4? consumes the maximum energy due to the highest time incurred in the encryption/

decryption process and the energy cost of the proposed algorithms is less than RC4?.

8.4 Throughput

It is the amount of data bytes encrypted per second, measured in Mbps. Throughput

obtained varies as RC4?\RC4-M2\RC4-M1\RC4-M3\RC4 as depicted in Fig. 5

and Table 5.

8.5 Performance Comparison of RC4 and HC-128

Performance analysis of HC-128 and conventional RC4 is given in the Table 7, which

shown that RC4 outperforms HC-128 for all the considered performance measures.

In this paper we have carried out the performance analysis of some of the recently

proposed existing variants and compared with the proposed RC4 variants. The results

Fig. 5 Throughput comparison of RC4 variants

Fig. 4 Energy consumption in RC4 variants

1244 P. Jindal, B. Singh

123

presented in the paper demonstrate that security and network performance work in contrast

to each other. The simulation results presented in this paper proves that the proposed RC4

variants results in better security performance tradeoff as compared to the existing variants.

Hence the proposed algorithms outperform the existing variants in terms of both security

and performance.

9 Recommendations for Potential Applications

Our simulation results and their analysis identify the appropriate security algorithm in the

given network scenario. An acceptable level of both security and its associated perfor-

mance is always required for designing any application. Application designers always have

different inclinations, on the basis of the risk they can tolerate and the performance price.

For instance, in conversational services for audio and video conversation, security can

be compromised but not the speed [74, 75]. In these applications, high throughput is always

desired. More complex RC4 variants cannot be used in such scenarios, because increase in

complexity will decrease the throughput. In such a scenario, RC4-M3, providing high

speed without compromising the security to large extent is recommended.

In interactive services low throughput and high run time greater than conversational

services can be tolerated. For transaction services high security even at the cost of per-

formance is required. For such scenarios, RC4-M2, due to its high security is recom-

mended as the proposed variant provides high security without incurring any transactional

delays. Streaming services require high data rate values. On the basis of the sensitivity of

data and user requirements RC4-M1 and RC4-M2 can be used in such applications.

Background services, also known as best effort services do not have any specific per-

formance constraints. Depending on the security requirements any of the proposed variants

RC4-M1, RC4-M2 and RC4-M3 can be implemented in these services. The numerical

results presented in this paper can be used to choose a security algorithm, depending upon

the sensitivity of data transmitted and the performance requirements by users.

10 Conclusion

In this paper, we have presented different implementations of RC4 stream cipher and

elaborated on the various weaknesses in the existing variants. Further, we have proposed

three RC4 variants by introducing additional layers of scrambling in the existing variants.

The security of the proposed algorithms is tested by performing their randomness analysis

using NIST STS, which is a package of 15 randomness analysis tests. It is proved that the

proposed ciphers conform to all these randomness tests. Secondly the security of the

proposed variants on the basis of their design structure has been analyzed and proved that

Table 7 Performance comparison of RC4 and HC-128

Stream cipher Run time (s) CPU cycles (MCycles) Energy(J) Throughput (Mbps) cycles/byte

RC4 0.062 155 9.548 20.161 124

HC-128 0.075 187.5 11.55 16.6 150

Optimization of the Security-Performance Tradeoff in RC4… 1245

123

the proposed algorithms are offering more challenges and complexity to the intruder as

compared to the existing RC4 variants. Resistance of proposed schemes against several

cryptanalytic attempts is discussed and justified their strength in removing these attacks.

Further, performance analysis of all the RC4 variants has been carried out in terms of run

time, CPU cycles, energy cost and throughput. It is observed that while providing the

comparable security, the running time of RC4-M1, RC4-M2 and RC4-M3 is 30, 10, and

48.7 % lower than that of RC4?. Similar variations are observed for number of cycles and

energy cost. The throughput achieved with proposed variants is high as compared to RC4?

and other variants. These results show that computation load of the proposed variants as

compared to the RC4? is significantly reduced, concluding that the proposed schemes are

computationally efficient.

Due to computational complexity of the proposed algorithms, the execution time

incurred is higher than the basic RC4, which corroborates the fact that there is always a

tradeoff between security and network performance. This tradeoff is optimized in the

proposed RC4 variants. The performance analysis presented herein may be used as ref-

erence for selecting the particular RC4 variant for given applications/service as required.

The analysis presented in this paper shows that there is a tradeoff between security and

network performance and efforts can be made to further optimize this tradeoff.

References

1. Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. (1996). Hand-book of applied cryptography
(2011th ed.). Boca Raton: CRC Press (fifth printing).

2. Stinson, D. R. (1995). Cryptography: Theory and practice (2005th ed.). Boca Raton: CRC Press.
3. Biryukov, A., Shamir, A., & Wagner, D. (2000). Real time cryptanalysis of A5/1 on a PC. In B.

Schneier (Ed.), FSE, volume 1978 of lecture notes in computer science (pp. 1–18). New York: Springer.
4. Bluetooth, T. M. (2010). Bluetooth specification, v4.0. E0 encryption algorithm described in volume 2,

pp. 1072–1081. http://www.bluetooth.org.
5. Briceno, M., Goldberg, I., & Wagner, D. (1998). A pedagogical implementation of the GSM A5/1 and

A5/2 ‘‘voice privacy’’ encryption algorithms. http://www.scard.org/gsm/a51.html.
6. Third Generation Partnership Project. (2006). Specification of the 3GPP confidentiality and integrity

algorithms UEA2 & UIA2. ETSI/SAGE Specification Document 2: SNOW 3G Specification, v1.1,
pp. 1–27. ESTI/SAGE Specifications.

7. ECRYPT Stream Cipher Project eSTREAM. The current eSTREAM portfolio. http://www.ecrypt.eu.
org/stream/index.html.

8. ECRYPT Stream Cipher Project eSTREAM. Software performance results from the eSTREAM project.
http://www.ecrypt.eu.org/stream/perf/#results.

9. Rivest, R. L. (2001). RSA security response to weaknesses in key scheduling algorithm of RC4.
Technical note, RSA Data Security, Inc.

10. Nawaz, Y., Gupta, K. C., & Gong, G. (2005). A 32-bit RC4-like keystream generator. IACR Cryptology
ePrint Archive, 2005, 175.

11. Biham, E., & Seberry, J. (2006). Pypy: Another version of Py. eSTREAM, ECRYPT Stream Cipher
Project, Report, 38, 2006.

12. Biham, E., & Seberry, J. (2007). Tweaking the IV setup of the Py family of stream ciphers—The ciphers
TPy, TPypy, and TPy6. http://www.cs.technion.ac.il/biham/. Accessed 25 Jan 2007. 2, 4.

13. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., & Barker, E. (2001). A statistical test suite for random and
pseudorandom number generators for cryptographic applications. Mclean: Booz-Allen and Hamilton
Inc Mclean Va.

14. Maitra, S., & Paul, G. (2008). Analysis of RC4 and proposal of additional layers for better security
margin. In D. R. Chowdhury, V. Rijmen, A. Das (Eds.), Progress in cryptology INDOCRYPT 2008 (pp.
27–39). Springer: Berlin.

15. Jindal, P., & Singh, B. (2015). RC4 encryption-A literature survey. Procedia Computer Science, 46,
697–705.

1246 P. Jindal, B. Singh

123

http://www.bluetooth.org
http://www.scard.org/gsm/a51.html
http://www.ecrypt.eu.org/stream/index.html
http://www.ecrypt.eu.org/stream/index.html
http://www.ecrypt.eu.org/stream/perf/%23results
http://www.cs.technion.ac.il/biham/

16. Roos, A. (1995). A class of weak keys in the RC4 stream cipher. Two posts in sci.crypt, message-id
43u1eh$1j3@hermes.is.co.za and 44ebge$llf@hermes.is.co.za, http://www.impic.org/papers/
WeakKeys-report.pdf.

17. Paul, G., Rathi, S., & Maitra, S. (2008). On non-negligible bias of the first output byte of RC4 towards
the first three bytes of the secret key. Designs, Codes and Cryptography, 49(1–3), 123–134 (initial
version in proceedings of WCC 2007).

18. Wagner, D. A. (1995). My RC4 weak keys. Post in sci.crypt, messageid 447o1 l$cbj@cnn.Prince-
ton.EDU. http://www.cs.berkeley.edu/*daw/my-posts/my-rc4-weak-keys.

19. Grosul, A. L., & Wallach, D. S. (2000). A related-key cryptanalysis of RC4. Technical Report TR-00-
358, Department of Computer Science, Rice University.

20. Biham, E., & Dunkelman, O. (2007). Differential cryptanalysis in stream ciphers. IACR Cryptology
ePrint Archive, 2007, 218.

21. Matsui, M. (2009). Key collisions of the RC4 stream cipher. In O. Dunkelman (Ed.), FSE, volume 5665
of lecture notes in computer science (pp. 38–50). New York: Springer.

22. Chen, J., & Miyaji, A. (2011). How to find short RC4 colliding key pairs. In X. Lai, J. Zhou, & H. Li
(Eds.), ISC volume 7001 of lecture notes in computer science (pp. 32–46). Springer: New York.

23. Maitra, S., Paul, G., Sarkar, S., Lehmann, M., & Meier, W. (2013). New results on generalization of
roostype biases and related keystreams of RC4. In A. Youssef, A. Nitaj, & A. E. Hassanien (Eds.),
AFRICACRYPT, volume 7918 of lecture notes in computer science (pp. 222–239). New York: Springer.

24. Paul, G., & Maitra, S. (2007). Permutation after RC4 key scheduling reveals the secret key. In C.
M. Adams, A. Miri, & BIBLIOGRAPHY M. J. Wiener (Eds.), Selected areas in cryptography, volume
4876 of lecture notes in computer science, (pp. 360–377). Springer.

25. Biham, E., & Carmeli, Y. (2008). Efficient reconstruction of RC4 keys from internal states. In K.
Nyberg (Ed.), FSE, volume 5086 of lecture notes in computer science (pp. 270–288). New York:
Springer.

26. Akgün, M., Kavak, P., & Demirci, H. (2008). New results on the key scheduling algorithm of RC4. In
D. Chowdhury, V. Rijmen, & A. Das (Eds.), INDOCRYPT, volume 5365 of lecture notes in computer
science (pp. 40–52). New York: Springer.

27. Khazaei, S., & Meier, W. (2008). On reconstruction of RC4 keys from internal states. In J. Calmet, W.
Geiselmann, & J. Müller-Quade (Eds.), MMICS, volume 5393 of lecture notes in computer science (pp.
179–189). New York: Springer.

28. Basu, R., Maitra, S., Paul, G., & Talukdar, T. (2009). On some sequences of the secret pseudo-random
index j in RC4 key scheduling. In M. Bras-Amorós & T. Høholdt (Eds.), AAECC, volume 5527 of
lecture notes in computer science (pp. 137–148). New York: Springer.

29. Fluhrer, S. R., Mantin, I., & Shamir, A. (2001). Weaknesses in the key scheduling algorithm of RC4. In
S. Vaudenay & A. M. Youssef (Eds.), Selected areas in cryptography, volume 2259 of lecture notes in
computer science (pp. 1–24). New York: Springer.

30. Korek. (2004). Need security pointers. http://www.netstumbler.org/showthread.php?postid=
89036#pos%t89036.

31. Korek. (2004). Next generation of WEP attacks? http://www.netstumbler.org/showpost.php?p=
93942&postcount=%35.

32. Mantin, I. (2005). A practical attack on the fixed RC4 in the WEP mode. In B. K. Roy (Ed.), ASIA-
CRYPT, volume 3788 of lecture notes in computer science (pp. 395–411). New York: Springer.

33. Klein, A. (2008). Attacks on the RC4 stream cipher. Designs, Codes and Cryptography, 48(3), 269–286
(published online in 2006, and accepted in WCC 2007 workshop).

34. Tews, E., Weinmann, R.-P., & Pyshkin, A. (2007). Breaking 104 bit WEP in less than 60 seconds. In S.
Kim, M. Yung, & H.-W. Lee (Eds.), WISA, volume 4867 of lecture notes in computer science (pp.
188–202). New York: Springer.

35. Vaudenay, S., & Vuagnoux, M. (2007). Passive-only key recovery attacks on RC4. In C. M. Adams, A.
Miri, & M. J. Wiener (Eds.), Selected areas in cryptography, volume 4876 of lecture notes in computer
science (pp. 344–359). New York: Springer.

36. Tews, E., & Beck, M. (2009). Practical attacks against WEP and WPA. In D. A. Basin, S. Capkun, & W.
Lee (Eds.), WISEC (pp. 79–86). New york: ACM.

37. Sepehrdad, P. (2012). Statistical and algebraic cryptanalysis of lightweight and ultra-lightweight
symmetric primitives. Ph.D. thesis No. 5415, École Polytechnique Fédérale de Lausanne (EPFL). http://
lasecwww.epfl.ch/*sepehrdad/Pouyan_Sepehrdad_PhD_Thesis.pdf.

38. Sepehrdad, P., Vaudenay, S., & Vuagnoux, M. (2010). Discovery and exploitation of new biases in
RC4. In A. Biryukov, G. Gong, & D. R. Stinson (Eds.), Selected areas in cryptography, volume 6544 of
lecture notes in computer science (pp. 74–91). New York: Springer.

Optimization of the Security-Performance Tradeoff in RC4… 1247

123

http://www.impic.org/papers/WeakKeys-report.pdf
http://www.impic.org/papers/WeakKeys-report.pdf
http://www.cs.berkeley.edu/%7edaw/my-posts/my-rc4-weak-keys
http://www.netstumbler.org/showthread.php%3fpostid%3d89036%23pos%25t89036
http://www.netstumbler.org/showthread.php%3fpostid%3d89036%23pos%25t89036
http://www.netstumbler.org/showpost.php%3fp%3d93942%26postcount%3d%2535
http://www.netstumbler.org/showpost.php%3fp%3d93942%26postcount%3d%2535
http://lasecwww.epfl.ch/%7esepehrdad/Pouyan_Sepehrdad_PhD_Thesis.pdf
http://lasecwww.epfl.ch/%7esepehrdad/Pouyan_Sepehrdad_PhD_Thesis.pdf

39. Sepehrdad, P., Vaudenay, S., & Vuagnoux, M. (2011). Statistical attack on RC4—Distinguishing WPA.
In K. G. Paterson (Ed.), EUROCRYPT, volume 6632 of lecture notes in computer science (pp. 343–363).
New York: Springer.

40. Sepehrdad, P., Sušil, P., Vaudenay, S., & Vuagnoux, M. (2013). Smashing WEP in a passive attack. In
S. Morial (Ed.), Internaional Workshop on Fast Software Encryption (pp. 155–178). Berlin: Springer.

41. Knudsen, L. R., Meier, W., Preneel, B., Rijmen, V., & Verdoolaege, S. (1998). Analysis methods for
(alleged) RC4. In K. Ohta & D. Pei (Eds.), ASIACRYPT, volume 1514 of lecture notes in computer
science (pp. 327–341). New York: Springer.

42. Mister, S., & Tavares, S. E. (1998). Cryptanalysis of RC4-like ciphers. In S. E. Tavares & H. Meijer
(Eds.), Selected areas in cryptography, volume 1556 of lecture notes in computer science (pp. 131–143).
New York: Springer.

43. Golic, J. D. (2000). Iterative probabilistic cryptanalysis of RC4 keystream generator. In E. Dawson, A.
Clark, & C. Boyd (Eds.), ACISP, volume 1841 of lecture notes in computer science (pp. 220–233). New
York: Springer.

44. Shiraishi, Y., Ohigashi, T., & Morii, M. (2003). An improved internal-state reconstruction method of a
stream cipher RC4. In M. H. Hamza (Ed.), Proceedings of Communication, Network, and Information
security, Track 440–088, Newyork, USA, December 10–12, (pp.440–488). Canada: ACTA press.

45. Tomasevic, V., Bojanic, S., & Nieto-Taladriz, O. (2007). Finding an internal state of RC4 stream cipher.
Information Sciences, 177(7), 1715–1727.

46. Maximov, A., & Khovratovich, D. (2008). New state recovery attack on RC4. In D. Wagner (Ed.),
CRYPTO, volume 5157 of lecture notes in computer science (pp. 297–316). New York: Springer.

47. Golic, J. D., & Morgari, G. (2008). Iterative probabilistic reconstruction of RC4 internal states. IACR
Cryptology ePrint Archive, 2008, 348.

48. Gupta, S. S., Maitra, S., Paul, G., & Sarkar, S. (2011). Proof of empirical RC4 biases and new key
correlations. In A. Miri & S. Vaudenay (Eds.), Selected areas in cryptography, volume 7118 of lecture
notes in computer science (pp. 151–168). New York: Springer.

49. Gupta, S. S., Maitra, S., Paul, G., & Sarkar, S. (2014). (Non-) Random Sequences from (Non-) Random
Permutations—Analysis of RC4 stream cipher. Journal of Cryptology, 27(1), 67–108.

50. Isobe, T., Ohigashi, T., Watanabe, Y., & Morii, M. (2013). Full plaintext recovery attack on broadcast
RC4. In Proceedings of the 20th international workshop on fast software encryption (FSE 2013).

51. Sarkar, S., Gupta, S. S., Paul, G., & Maitra, S. (2013). Proving TLS-attack related open biases of RC4.
IACR Cryptology ePrint Archive, 2013, 502.

52. Jenkins Jr, R. J. (1996). ISAAC and RC4. http://burtleburtle.net/bob/rand/isaac.html.
53. Mantin, I., & Shamir, A. (2001). A practical attack on broadcast RC4. In M. Matsui (Ed.), FSE, volume

2355 of lecture notes in computer science (pp. 152–164). New York: Springer.
54. Mantin, I. (2001). Analysis of the stream cipher RC4. Master’s thesis, The Weizmann Institute of

Science, Israel. www.wisdom.weizmann.ac.il/*itsik/RC4/RC4.html.
55. Paul, G., Maitra, S., & Srivastava, R. (2007). On non-randomness of the permutation after RC4 key

scheduling. In S. Boztas & H. F. Lu (Eds.), AAECC, volume 4851 of lecture notes in computer science
(pp. 100–109). New York: Springer.

56. Sarkar, S. (2015). Further non-randomness in RC4, RC4A and VMPC. Cryptography and Communi-
cations, 7(3), 317–330.

57. Maitra, S., Paul, G., & Gupta, S. S. (2011). Attack on broadcast RC4 revisited. In A. Joux (Ed.), FSE,
volume 6733 of lecture notes in computer science (pp. 199–217). New York: Springer.

58. AlFardan, N., Bernstein, D., Paterson, K. G., Poettering, B., & Schuldt, J. C. N. (2013). On the security
of RC4 in TLS. In USENIX security symposium. Presented at FSE 2013 as an invited talk [14] by Dan
Bernstein. Full version of the research paper and relevant results are available online at http://www.isg.
rhul.ac.uk/tls/.

59. Golic, J. D. (1997). Linear statistical weakness of alleged RC4 keystream generator. In W. Fumy (Ed.),
EUROCRYPT, volume 1233 of lecture notes in computer science (pp. 226–238). New York: Springer.

60. Fluhrer, S. R., & McGrew, D. A. (2000). Statistical analysis of the alleged RC4 keystream generator. In
B. Schneier (Ed.), FSE, volume 1978 of lecture notes in computer science (pp. 19–30). New York:
Springer.

61. Mantin, I. (2005). Predicting and distinguishing attacks on RC4 keystream generator. In R. Cramer
(Ed.), EUROCRYPT, volume 3494 of lecture notes in computer science (pp. 491–506). New York:
Springer.

62. Basu, Riddhipratim, Ganguly, Shirshendu, Maitra, Subhamoy, & Paul, Goutam. (2008). A complete
characterization of the evolution of RC4 pseudo random generation algorithm. Journal of Mathematical
Cryptology, 2(3), 257–289.

1248 P. Jindal, B. Singh

123

http://burtleburtle.net/bob/rand/isaac.html
http://www.wisdom.weizmann.ac.il/%7eitsik/RC4/RC4.html
http://www.isg.rhul.ac.uk/tls/
http://www.isg.rhul.ac.uk/tls/

63. Jindal, P., & Singh, B. (2015). A survey on RC4 stream cipher. Journal of Computer Network and
Information Security, 2015(7), 37–45.

64. Gong, G., Gupta, K. C., Hell, M., & Nawaz, Y. (2005). Towards a general RC4-like keystream
generator. In D. Feng, D. Lin, M. Yung (Eds.), Information security and cryptology (pp. 162–174).
Springer: Berlin.

65. Orumiehchiha, M. A., Pieprzyk, J., Shakour, E., & Steinfeld, R. (2013). Cryptanalysis of RC4 (n, m)
Stream Cipher. In Proceedings of the 6th international conference on security of information and
networks, (pp. 165–172). ACM.

66. Xie, J., & Pan, X. (2010). An improved RC4 stream cipher. In 2010 International conference on
computer application and system modeling (ICCASM), (Vol. 7, pp. V7–156). IEEE.

67. Paul, G., Maitra, S., & Chattopadhyay, A. (2013). Quad-RC4: Merging Four RC4 States towards a
32-bit stream cipher. IACR Cryptology ePrint Archive, 2013, 572.

68. Kherad, F. J., Naji, H. R., Malakooti, M. V., & Haghighat, P. (2010). A new symmetric cryptography
algorithm to secure e-commerce transactions. In 2010 International conference on financial theory and
engineering (ICFTE), (pp. 234–237). IEEE.

69. Weerasinghe, T. D. B. (2014). An effective RC4 stream cipher. IACR Cryptology ePrint Archive, 2014,
171.

70. Jindal, P., & Singh, B. (2014). Performance analysis of modified RC4 encryption algorithm. In Recent
advances and innovations in engineering (ICRAIE), (pp. 1–5). IEEE.

71. Lv, J., Zhang, B., & Lin, D. (2013). Distinguishing attacks on RC4 and a new improvement of the
cipher. IACR Cryptology ePrint Archive, 2013, 176.

72. Khine, L. L. (2009). A new variant of RC4 stream cipher. World Academy of Science, Engineering and
Technology, 50, 958–961.

73. Naik, K., & Wei, D. S. (2001). Software implementation strategies for power-conscious systems.
Mobile Networks and Applications, 6(3), 291–305.

74. Farkas, K., Wellnitz, O., Dick, M., Gu, X., Busse, M., Effelsberg, W., et al. (2006). Realtime service
provisioning for mobile and wireless networks. Computer Communications, 29(5), 540–550.

75. Jindal, P., & Singh, B. (2015). Experimental study to analyze the security performance in wireless
LANs. Wireless Personal Communications, 83(3), 2085–2131.

Poonam Jindal received B.E. (ECE) from P.T.U. Punjab, M.E. (ECE)
from Thapar University, Patiala and Ph.D. from NIT Kurukshetra. She
is with ECE department of NIT Kurukshetra (India) working as
Assistant Professor having 11 years of teaching experience. She has 25
research publications in international/national journals and conferences
to her credit. Her research interests include wireless network security
and mobile communication. She is member of IEEE.

Optimization of the Security-Performance Tradeoff in RC4… 1249

123

Prof. Brahmjit Singh received B.E. degree from MNIT Jaipur, M.E.
from IIT Roorkee and Ph.D. from GGS Indraprastha University, Delhi.
He is with ECE department of NIT Kurukshetra (India), working as
Professor with more than 27 years of teaching and research experience.
He has held several administrative and academic positions in NIT
Kurukshetra. These include Chairman ECE Department, Chairman
Computer Engineering Department, Professor in-Charge Centre of
Computing and Networking, and Member Planning and Development
Board. He has published 140 research papers in international/national
journals and conferences in the area of wireless communications,
sensor networks, wireless network security and cognitive radios. He
has been awarded The Best Research Paper Award on behalf of ‘The
Institution of Engineers (India)’. He is the member of IEEE, Life
member of IETE, and Life Member of ISTE.

1250 P. Jindal, B. Singh

123

	Optimization of the Security-Performance Tradeoff in RC4 Encryption Algorithm
	Abstract
	Introduction
	Why RC4?
	Weaknesses of RC4 Stream Cipher
	Enhancements in RC4 Stream Cipher
	RC4 and its Variants
	RC4
	RC4+
	Improved RC4
	FJ-RC4
	Effective RC4 Stream Cipher

	Proposed RC4 Algorithm
	RC4-M1
	RC4-M2
	RC4-M3

	Security Analysis of RC4 Variants
	Security Analysis
	Brute Force Attack
	Permutation Recovery Attack
	Distinguishing Attacks
	Key Correlation Attacks
	Chosen IV Attack

	Randomness Analysis
	Computational Complexity (CC)

	Performance Analysis
	Run Time
	CPU Cycles
	Energy Cost
	Throughput
	Performance Comparison of RC4 and HC-128

	Recommendations for Potential Applications
	Conclusion
	References

