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Abstract We consider distributed multiple-input–multiple-output (MIMO) antenna sys-

tems, along with their certain generalizations. We show that distributed MIMO configu-

ration can be mapped to a semicorrelated (one side correlated) Wishart model. For a given

set of large-scale fading parameters, associated with the path loss and shadow fading, we

derive exact and closed-form results for the marginal density of eigenvalues of HyH (or

HHy), where H is the channel matrix. We also obtain exact and closed-form expressions

for the ergodic channel capacity with the aid of Meijer G-function. The ergodic capacity of

semicorrelated Rayleigh fading channel follows as a special case. All analytical results are

validated by comparison with Monte-Carlo simulations.

Keywords Distributed MIMO antenna systems � Semicorrelated Wishart model � Channel

matrix � Marginal density � Ergodic capacity � Meijer G-function

1 Introduction

Achieving high capacity telecommunication is always desirable in cellular systems.

However, various unavoidable effects associated with fading, path-loss and interference

makes it extremely difficult to achieve such a goal. Multiple-input multiple-output

(MIMO) antenna systems have been found to offer huge advantage over single-antenna

systems, both with regard to capacity and error performance [1, 2]. Moreover, in recent

years the idea of deployment of spatially distributed multiple antennas, instead of being

centrally located, has caught much attention. Such distributed antenna systems (DAS), in

general, lead to increased spectral efficiency and expanded coverage, and therefore has
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emerged as a promising technique towards satisfying growing demands for future wireless

communication networks [3].

The concept of distributed antennas goes back to Salah et al. [4] who implemented this

scheme to cover the dead spots in indoor wireless systems. Clark et al. [5], in their study of

antenna array processing, showed that distributed arrays promise significant power and

capacity gains over conventional centralized arrays. Roh and Paulraj [6] extended this idea

and introduced the concept of a generalized distributed antenna system. They demonstrated

that the distributed systems with multiple antennas per port yield more capacity than

multiple co-located antennas, especially in the outage region [6, 7]. Several notable works

[8–26] have examined various aspects of the distributed antenna systems and have con-

cluded their superiority over the traditional centralized antenna systems.

Ergodic channel capacity serves as an important metric in characterizing the system

performance in communication networks [2]. It provides information about the theoretical

transmission limit, and therefore acts as a crucial guiding factor in the design of a given

communication system. Channel capacity of DAS has been investigated by several authors

by considering various scenarios [8–20]. The available analytical results are usually for

some approximation, for some particular cases or in the asymptotic limit of large number

of antennas. Therefore, a complete analytical understanding is still lacking.

In the present work we demonstrate that, remarkably, the MIMO DAS model can be

mapped to a semicorrelated Wishart scenario for which several results are already available

concerning the eigenvalue statistics [27–33]. The term semicorrelated refers to the case

when correlations are present at only one of the ends of the communication channel, and

thus the matrix elements of the channel matrix are correlated either row-wise or colum-

nwise [34, 35]. Hence, often is it also referred to as one side correlated Wishart model. We

use this connection with the semicorrelated Wishart model to tackle the MIMO DAS

problem. We consider the distributed antenna system with a given set of large-scale fading

parameters which take care of the path loss and shadow fading [12–16]. Such an

assumption can be justified by the observation that typically the large-scale fading varies

very slowly compared to the short-scale fading and therefore may be estimated. We derive

exact and closed-form result for the marginal density of the eigenvalues of HyH (or HHy),

where H is the full channel matrix. We also obtain exact and closed-form expression for

the ergodic channel capacity with the aid of Meijer G-function. The result for the ergodic

channel capacity of semicorrelated Rayleigh fading MIMO channel follows as a special

case. We also consider certain generalizations of the MIMO DAS model and provide the

corresponding marginal eigenvalue density as well as the channel capacity expressions.

The presentation scheme in this paper is as follows. In Sect. 2 we describe the channel

model for DAS. In Sect. 3 we present exact result for the marginal density of eigenvalues

of HyH (or HHy). We also give exact result for the the ergodic channel capacity. Section 4

deals with some of the possible generalizations of the setup. Finally, we conclude with a

brief summary and general discussion in Sect. 5. The proofs have been outlined in the

appendices.

2 Channel Model

We consider the distributed antenna system consisting of N ports at one end of the com-

munication, with L antennas per port. While, on the other end (e.g., mobile) there are M

antennas. We will refer to this scenario as the (M, N, L) DAS; see Fig. 1. The standard
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uncorrelated Rayleigh fading setup corresponds to (M, 1, L). The channel model for

(M, N, L) DAS can be written as [7]

y ¼ Hxþ n: ð1Þ

For uplink, x is the M-dimensional transmit signal vector, while y is the NL-dimensional

received signal. Also, n is a complex Gaussian noise vector with zero mean and unit

variance for each of its elements. We should remark at this point that in a very recent work

[36] the uplink ergodic sum-rate capacity of a multi-user MIMO system has been analyzed

and a tight lower bound has been obtained. Therein the authors consider a centralized and

correlated multiple-antenna deployment scheme in a base station platform and several

users, each equipped with single antenna devices. This problem can be related to the model

considered here with a downlink scenario, and hence exact results can be obtained.

The full NL�M dimensional channel H matrix, in terms of the subchannel matrices, is

H ¼
H1

..

.

HN

2
664

3
775: ð2Þ

Here the subchannel matrix Hk is an L�M channel matrix from the mobile to the kth port.

The matrix elements of Hk are taken as,

ðHkÞa;b ¼
ffiffiffiffi
vk

p
ha;b; a ¼ 1; 2; . . .; L; b ¼ 1; . . .;M: ð3Þ

Here ha;b are independent and identically distributed (i.i.d.) complex Gaussians with mean

zero and variance 1/2 for both real and imaginary parts. These represent the small-scale

fast fading of the channel. Clearly, with such a choice the envelope of ha;b is Rayleigh

distributed, viz.,

Fig. 1 The (M, N, L) distributed antenna system. It consists of N ports on the one end, each consisting of
L antennas. On the other end (e.g. a mobile) there are M antennas
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pjhjðjhjÞ ¼ 2jhj expð�jhj2Þ: ð4Þ

The parameters vk take care of the large-scale fading (including path loss and shadow

fading) of the channel at different ports and are usually modeled as

vk ¼ dkð Þ�c
sk: ð5Þ

Here dk represents the distance (normalized) between the mobile and the kth port, c is the

path loss exponent, and the sk are i.i.d. random variables with lognormal probability

distribution,

psðsÞ ¼
1ffiffiffiffiffiffi

2p
p

ars
exp �ðln sÞ2

2a2r2

 !
; s[ 0; ð6Þ

r being the shadowing standard deviation and a ¼ ðln 10Þ=10. From the above discussion it

is clear that a given subchannel matrix Hk follows the distribution

PkðHkÞ ¼ ðpvkÞ�ML
exp½�trðv�1

k H
y
kHkÞ�; ð7Þ

where ‘tr’ represents the trace. We note that individually Hk carry i.i.d. complex Gaussians

with mean zero and variance vk=2 for both real and imaginary parts. However, the different

subchannel matrices are independent but not identical because of the unequal parameters

vk. In what follows, we carry out the analysis for a fixed set of large-scale fading

parameters vk [12–16].

As we will see below, the ergodic channel capacity can be obtained using the eigenvalue

statistics of the Wishart matrices HyH or HHy [2]. Let us define, for convenience,

m ¼ minðM;NLÞ: ð8Þ

The matrices HyH and HHy share the same nonzero m-eigenvalues (k1; . . .; km), which are

the square of the singular values (nonzero) of the channel matrix H. With the assumption

of absence of channel state information at the transmitter1 and equal power allocation

scheme, the ergodic channel capacity is given by [1, 2]

C ¼ E log2 det 1M þ q
M

HyH
� �h i

¼ E log2 det 1NL þ
q
M

HHy� �h i

¼ E tr log2 1M þ q
M

HyH
� �h i

¼ E tr log2 1NL þ
q
M

HHy� �h i
;

ð9Þ

where ‘det’ represents the determinant and ‘tr’, as mentioned earlier, stands for the trace.

Moreover, q is the signal to noise ratio (SNR), and in view of unit variance for the

Gaussian-noise vector elements, equals the total transmit-power magnitude. E½�� represents

the averaging with respect to the ensemble of H matrices.

We should note that in the first line of (9), since determinant is invariant under unitary

conjugation, we obtain log2 det 1M þ q
M
HyH

� �
¼ log2 det Uy 1M þ q

M
HyH

� �
U

h i
¼

log2 det 1M þ q
M
K

� �
. We have used here U to denote the unitary matrix which diagonalizes

HyH and hence 1NL þ q
M
HyH as well. Also, K is the diagonal matrix containing nonzero

eigenvalues k0s of the matrix HyH, and may be additional zeros (if M[NL). In a similar

1 Except, may be, the large-scale channel state information.
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manner, the second line in (9) follows because tr log2 1M þ q
M
HHy� �

¼

tr Uy log2 1M þ q
M
K

� �
U

h i
¼ tr log2 1M þ q

M
K

� �� �
. Here, to go from the first expression to

the second we used the standard procedure of implementing eigenvalue decomposition to

calculate function of a matrix. In the next step we used the cyclic invariance of trace, and

UUy ¼ 1M . Therefore, in both cases the expressions can be reduced in terms of eigen-

values as log2

Qm
j¼1ð1 þ q

M
kjÞ

h i
¼
Pm

j¼1 log2ð1 þ q
M
kjÞ. Similar arguments apply when we

consider HHy instead of HyH.

As discussed above, because of the unitarily-invariant nature of the expression within E

in (9), the ergodic capacity can be expressed in terms the nonzero-eigenvalue of HyH or

HHy, viz.,

C ¼
Z 1

0

dk1 � � �
Z 1

0

dkm PKðk1; . . .; kmÞ
Xm
j¼1

log2 1 þ q
M

kj
� �

; ð10Þ

where PKðk1; . . .; kmÞ is the joint probability density of eigenvalues. In view of the sym-

metry of the eigenvalues in the unordered joint density, this expression can be determined

using the marginal density

pkðkÞ ¼
Z 1

0

dk2 � � �
Z 1

0

dkmPKðk; k2; . . .; kmÞ; ð11Þ

which is normalized to unity:

Z 1

0

dk pkðkÞ ¼ 1: ð12Þ

We obtain

C ¼ m
Z 1

0

dk pkðkÞ log2 1 þ q
M

k
� �

: ð13Þ

Therefore, to obtain the ergodic capacity we need the explicit expression for the marginal

density of nonzero eigenvalues of the matrix HyH or HHy.

3 Marginal Density and Ergodic Capacity for (M, N, L) DAS: Exact
Results

In this section we present exact result for the marginal density of the nonzero eigenvalues

of the matrix HyH or HHy. We also give the exact closed-form expression for the ergodic

channel capacity. Proofs are outlined in the appendices.

In view of (7), we can write down the density of matrices H as

PHðHÞ ¼ p�MNL det�ML V exp½�trðHyV�1HÞ�; ð14Þ

where V ¼ diag½v1; . . .; vN � � 1L. Therefore, we are looking essentially at a semicorrelated

Wishart case, with the diagonal-covariance matrix having some equal-value entries
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(degeneracy/multiplicity). This correspondence of DAS with a semicorrelated Wishart case

leads to exact solution of the former because of available exact results for the latter.

It should be noted that among other things the distribution of the matrices HyH or HHy
where H as in (14), has been studied in, for example, [37–44] for real case, complex case,

or both. Out interest here is in the complex case. Depending on the rank of these matrices,

one obtains either the regular- or the singular-Wishart distribution.

The marginal density for (M, N, L) DAS is obtained as

pkðkÞ ¼ c det

0 fk1
ðv1; kÞ½ �k1¼1;...;L � � � fkN ðvN ; kÞ½ �kN¼1;...;L

gjðkÞ
� �

j¼1;...;NL
hj1;k1

ðv1Þ
� �

j1¼1;...;NL
k1¼1;...;L

� � � hjN ;kN ðvNÞ
� �

jN¼1;...;NL
kN¼1;...;L

2
4

3
5: ð15Þ

The entries within the determinant in the above equation are given by

fkðv; kÞ ¼ CðkÞ vk�M�1 expð�k=vÞ LðM�kþ1Þ
k�1 ðk=vÞ; ð16Þ

gjðkÞ ¼ kM�j=CðM � jþ 1Þ; ð17Þ

hj;kðvÞ ¼
CðjÞ

Cðj� k þ 1Þ v
k�j: ð18Þ

The notation LðmÞ
n ðxÞ in the expression for fkðv; kÞ represents the associated Laguerre

polynomials.2 The normalization c in (15) is given by

c�1 ¼ �m det hj1;k1
ðv1Þ

� �
j1¼1;...;NL
k1¼1;...;L

� � � hjN ;kN ðvNÞ
� �

jN¼1;...;NL
kN¼1;...;L

2
4

3
5: ð19Þ

In Fig. 2 we show the comparison between the analytical predictions and numerical

simulation for the marginal density of eigenvalues. The parameters used are indicated in

the caption. The Monte-Carlo simulation nicely corroborate the analytical result.

The ergodic channel capacity can be expressed in a closed form with the aid of Meijer

G-function. We have

C ¼ �m c
Xm
l¼1

det ½wðlÞ
j1;k1

ðv1Þ�j1¼1;...;NL
k1¼1;...;L

� � � ½wðlÞ
jN ;kN

ðvNÞ�jN¼1;...;NL
kN¼1;...;L

	 

: ð20Þ

Here

wðlÞ
j;k ðvÞ ¼

Gj;kðvÞ; j ¼ l;

hj;kðvÞ; j 6¼ l;

�
ð21Þ

with

Gj;kðvÞ ¼
vk�1

ðln 2ÞCðM � jþ 1Þ
q
M

� �j�1

G
3;2
3;4

0; j� 1; j

j� 1; j� 1; M; k � 1

�����
M

q v

 !
; ð22Þ

and hj;kðvÞ as in (18). The results for the uncorrelated Rayleigh fading follow trivially by

setting N ¼ 1.

2 We use the notation LðmÞ
n ðxÞ for the associated Laguerre polynomials, instead of the usual LðmÞn ðxÞ, to avoid

confusion with the number L of the antennas.
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Figure 3 shows the comparison of ergodic channel capacity for various cases, as

indicated in the labels and the caption. In all cases, an excellent agreement is found

between the analytical prediction and the numerical simulation outcome.

4 Generalizations

In this section we consider certain generalizations of the case dealt in the preceding

section. We, again, present the explicit results for the marginal density and the ergodic

capacity, and defer the proofs to the appendices.

4.1 Different Antenna Numbers at Different Ports

One can relax the condition of equal number of antennas, L, at different ports and allow Lk
antennas at the kth port; k ¼ 1; . . .;N. This results in something like ðM;N; fL1; . . .; LNgÞ
DAS. Therefore, the subchannel matrix Hk becomes Lk �M dimensional. Moreover, the

(a) (b)

Fig. 2 Marginal density of eigenvalues: Comparison between analytical (solid line) and simulation
(histogram) results for a (2, 3, 2) DAS with ðv1; v2; v3Þ ¼ ð3=2; 2=3; 1=5Þ, and b (4, 5, 3) DAS with
ðv1; v2; v3; v4; v5Þ ¼ ð7=10; 2=5; 1=11; 2; 6=5Þ

Fig. 3 Ergodic capacity for
various (M, N, L) DAS, as
indicated beside the curves.
Parameter values are ðv1; v2Þ ¼
ð3=2; 2=3Þ for (2, 2, 3) DAS;
ðv1; v2; v3; v4Þ ¼
ð3=2; 2=3; 7=10; 2Þ for (2, 4, 3)
DAS; ðv1; v2Þ ¼ ð3=2; 2=3Þ for
(4, 2, 4) DAS; and
ðv1; v2; v3; v4; v5Þ ¼
ð3=2; 2=3; 7=10; 2; 1=11Þ for (4,
5, 3) DAS
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covariance matrix is now V ¼ diag½v11L1
; . . .; vN1LN �, and the parameter m has to be

modified to

m ¼ minðM; LÞ; L ¼ L1 þ � � � þ LN : ð23Þ

The marginal density in the above setting is given by

pkðkÞ ¼ c det

0 fk1
ðv1; kÞ½ �k1¼1;...;L1

� � � fkN ðvN ; kÞ½ �kN¼1;...;LN

gjðkÞ
� �

j¼1;...;L
hj1;k1

ðv1Þ
� �

j1¼1;...;L
k1¼1;...;L1

� � � hjN ;kN ðvNÞ
� �

jN¼1;...;L
kN¼1;...;LN

2
4

3
5 ð24Þ

The entries fkðv; kÞ; gjðkÞ; hj;kðvÞ inside the determinant in the above expression are still

given by (16), (17) and (18), respectively. The normalization c in (24) is given by

c�1 ¼ �m det hj1;k1
ðv1Þ

� �
j1¼1;...;L
k1¼1;...;L1

� � � hjN ;kN ðvNÞ
� �

jN¼1;...;L
kN¼1;...;LN

2
4

3
5: ð25Þ

The ergodic channel capacity turns out to be

C ¼ �m c
Xm
l¼1

det ½wðlÞ
j1;k1

ðv1Þ�j1¼1;...;L
k1¼1;...;L1

� � � ½wðlÞ
jN ;kN

ðvNÞ�jN¼1;...;L
kN¼1;...;LN

	 

; ð26Þ

where wðlÞ
j;k ðvÞ is same as in (21). Equations (15) and (20) follow from these more general

expressions when the Lk’s are equal.

In Fig. 4 we show the marginal density obtained using the analytical expression as well

as using Monte-Carlo simulation. The parameters used are mentioned in the caption.

Figure 5 shows the comparison of ergodic channel capacity for several parameter values,

as indicated in the labels and the caption. We find excellent agreement in all cases.

4.2 Unequal Large-Scale Fading Parameters

For the sake of completeness, and also because all above cases follow from this one, we

consider the situation when all the large-scale fading parameters vk are different. Such a

scenario can arise when the antennas connected to each port are themselves spatially

distributed to constitute a cell, and then all such cells are utilized simultaneously for

communication [11, 14, 21]. In this case V ¼ diag½v1;1; . . .; v1;L1
; . . .; vN;1; . . .; vN;LN � �

diag½v̂1; v̂2; . . .; v̂L1þ���þLN �, while parameter m is still given by (23). It is obvious that this

case actually maps to a semicorrelated Rayleigh fading with different correlations at the

receiver end.

As discussed in Appendix 6, the marginal density in this case is given as

pkðkÞ ¼ c det
0 fkðv̂; kÞ½ �k¼1;...;L

gjðkÞ
� �

j¼1;...;L
hj;kðv̂Þ
� �

j;k¼1;...;L

" #
; ð27Þ

where now

fkðv̂; kÞ ¼ v̂�M
k expð�k=v̂kÞ; ð28Þ
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hj;kðv̂Þ ¼ v̂
�jþ1
k ; ð29Þ

and gjðkÞ continues to be same as that in (17). The normalization is determined using

c�1 ¼ �m det½hj;kðv̂Þ�j;k¼1;...;L: ð30Þ

The ergodic channel capacity is given by

C ¼ �m c
Xm
l¼1

det wðlÞ
j;k ðv̂Þ

h i
j;k¼1;...;L

: ð31Þ

Here

Fig. 5 Ergodic channel capacity.
Parameter values are ðv1; v2Þ ¼
ð1=4; 5=4Þ for ð2; 2; f2; 3gÞ DAS;
ðv1; v2; v3Þ ¼ ð5=3; 1=2; 2Þ for
ð2; 3; f2; 3; 4gÞ DAS;
ðv1; v2; v3Þ ¼ ð9=7; 3=4; 4=3Þ for
ð4; 3; f3; 4; 1gÞ DAS; and
ðv1; v2; v3; v4Þ ¼
ð7=5; 3=2; 7=10; 3Þ for
ð4; 4; f4; 2; 3; 2gÞ DAS

Fig. 4 Analytical (solid line) and simulation (histogram) results for ð2; 4; f2; 4; 1; 3gÞ DAS marginal
density. Parameter values are ðv1; v2; v3; v4Þ ¼ ð1; 3=4; 2; 3=2Þ
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wðlÞ
j;k ðv̂Þ ¼

Gj;kðv̂Þ; j ¼ l

hj;kðv̂Þ; j 6¼ l:

�
ð32Þ

with

Gj;kðv̂Þ ¼
1

ðln 2ÞCðM � jþ 1Þ
q
M

� �j�1

G
3;1
2;3

j� 1; j

j� 1; j� 1; M

�����
M

q v̂k

 !
: ð33Þ

We note that Gj;kðv̂Þ has a simple representation in terms of exponential integral (Ei) as

well:

Gj;kðv̂Þ ¼
eM=ðq v̂kÞ

ðln 2Þ v̂j�1
k

XM�jþ1

i¼1

Ei
M

q v̂k


 �
: ð34Þ

The expressions in preceding sections follow from (27) and (31) by considering appro-

priate limits; see Appendix 7. Furthermore, it should be noted that using L ¼ 1 with

arbitrary N in (15) and (20) produces the same results as in this section.

We validate the analytical result for the marginal density using Monte-Carlo simulation

in Fig. 6. The parameters values used are indicated in the caption. Similarly, Fig. 7 shows

the comparison of ergodic channel capacity in several cases, as specified in the labels and

the caption.

5 Summary and Conclusion

We demonstrated that the MIMO DAS configuration is mathematically equivalent to a

semicorrelated Wishart model with a diagonal covariance (scale) matrix with multiplicities

in its entries. With this information at our disposal we considered the distributed MIMO

antenna system with a given set of large-scale fading parameters. We provided exact result

for the marginal density of eigenvalues of HyH (or HHy), where H is the channel matrix.

These were further used to obtain exact and closed form result for the ergodic channel

capacity with the aid of Meijer G-function. The expressions possess a determinantal

Fig. 6 Analytical (solid line) and simulation (histogram) results for ð3; 2; f3; 2gÞ DAS marginal density.
Parameter values areðv1;1; v1;2; v1;3; v2;1; v2;2Þ ¼ ð4=3; 5=6; 5=2; 4=7; 2=3Þ
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structure and can be readily implemented in computation software packages such as

Mathematica [45], that incorporates Meijer-G as an inbuilt function with option for high

precision evaluation.

It is highly desirable to relax the fixed-valued conditions for the large-scale fading

parameters and to be able to perform the averaging over them using the corresponding

probability distributions, see for example (5) and (6). Interestingly, the individual large-

scale fading parameters appear in distinct columns of the determinants in the final results.

Unfortunately, in addition, the expressions involve ratios of two such determinants, thereby

making the desired averaging nontrivial. It, therefore, remains an outstanding problem to

derive exact expressions for the general scenario when both the short-scale and the large-

scale fadings are stochastic in nature.

Finally we would like to remark that the problem involving the weighted sum of

Wishart matrices, with covariance matrices as identity matrix, can also be mapped to a

semicorrelated Wishart model [46]. Weighted sum of Wishart matrices appears in the

calculation of sum rate capacity in MIMO multiuser communication. Therefore we find a

remarkable mathematical relationship between the MIMO DAS-, sum of Wishart-, and

semicorrelated Wishart-models.

Proofs for Eqs. (27) and (31)

As pointed out in Sect. 5, the MIMO DAS model and weighted sum of Wishart matrices,

both can be mapped to a semicorrelated Wishart scenario. The eigenvalue statistics for

weighted sum of Wishart matrices has already been worked out in [46]. As a consequence

the proofs in the present case run parallel to those in [46]. However, for the sake of

completeness, we reproduce the derivations here as well.

Fig. 7 Ergodic channel capacity. Parameter values are ðv1;1; v2;1; v2;2Þ ¼ ð4=5; 3=4; 1=2Þ for ð2; 2; f1; 2gÞ
DAS; ðv1;1; v1;2; v2;1; v2;2; v2;3; v2;4Þ ¼ ð1=4; 3=4; 1=3; 2=3; 4=3; 2Þ for ð2; 2; f2; 4gÞ DAS; ðv1;1; v1;2; v2;1;
v2;2; v2;3; v3;1; v3;2Þ ¼ ð1=9; 2=5; 2=3; 4=9; 3=7; 1=4; 7=5Þ for ð3; 3; f2; 3; 2gÞ DAS; and ðv1;1; v1;2; v2;1;
v3;1; v41; v4;2Þ ¼ ð4=7; 5=3; 1; 2; 1=2; 9=4Þ for ð4; 4; f2; 1; 1; 2gÞ DAS
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Exact result for the marginal density of eigenvalues for semicorrelated Wishart matrices

is available from the notable works of several authors [27–33]. We employ here the

determinantal expression obtained in [32, 33].

Consider n� m dimensional complex matrices W taken from the distribution

PWðWÞ ¼ p�mn det�m V̂ exp½�trðWyV̂�1WÞ�; ð35Þ

where the n� n dimensional covariance matrix is V̂ ¼ diagðv̂1; . . .; v̂nÞ. We assumed here

that there are no multiplicities in the entries of V̂, i.e., v̂1; . . .; v̂n are distinct. In such a

scenario the marginal density of nonzero-eigenvalues of WWy or WyW is given by

pkðkÞ ¼
1

mDmðfv̂�1gÞ det

0
expð�k=v̂kÞ

v̂mk

	 


k¼1;...;n

km�j

Cðm� jþ 1Þ

	 


j¼1;...;n

v̂
�jþ1
k

h i
j;k¼1;...;n

2
6664

3
7775: ð36Þ

Here m ¼ minðm; nÞ, and Dmðfv̂�1gÞ ¼
Q

j[ kðv̂�1
j � v̂�1

k Þ is the Vandermonde determi-

nant. Equation (27) follows from (36) by setting m ¼ M and n ¼ L and using the well

known result DðfrgÞ ¼ det½rk�1
j �.

We now proceed to derive the ergodic channel capacity using the relation (13). To this

end we expand (27) using the first column and obtain

pkðkÞ ¼ c
XL
l¼1

ð�1ÞlglðkÞ det

fkðv̂; kÞ½ �k¼1;...;L1þ���þLN

hj;kðv̂Þ
� �

j;k¼1;...;L
ðj 6¼lÞ

2
64

3
75: ð37Þ

We note at this point that gjðkÞ ¼ kM�j=CðM � jþ 1Þ ¼ 0 if j[M because of the

diverging gamma function in the denominator. If L�M this situation is not encountered.

However, if L[M then gjðkÞ is nonzero only for 1� j�M. Thus in both cases we see that

the nonzero terms in the summation in (37) involve j ¼ 1; . . .; m, with m ¼ minðM; LÞ. We

incorporate this observation by changing the upper limit of the summation. We now bring

in the glðkÞ occurring before the determinants to the respective first rows, i.e., with fkðv̂; kÞ,
and obtain

pkðkÞ ¼ c
Xm
l¼1

ð�1Þl det

glðkÞfkðv̂; kÞ
� �

k¼1;...;L

hj;kðv̂Þ
� �

j;k¼1;...;L
ðj 6¼lÞ

2
64

3
75: ð38Þ

This equation serves as yet another expression for the marginal density. We now use (13)

and obtain the following expression for the ergodic capacity by interchanging the k-

integral and the summation:

C ¼ m c
Xm
l¼1

ð�1Þl
Z 1

0

dk det

glðkÞfkðv̂; kÞ
� �

k¼1;...;L

hj;kðv̂Þ
� �

j;k¼1;...;L
ðj 6¼lÞ

2
64

3
75

0
B@

1
CA log2 1 þ q

M
k

� �
: ð39Þ

The k-integral can be introduced in the first row of the determinant, along with the term

log2 1 þ q
M
k

� �
to yield
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C ¼ m c
Xm
l¼1

ð�1Þl det

Gl;kðv̂Þ
� �

k¼1;...;L

hj;kðv̂Þ
� �

j;k¼1;...;L
ðj 6¼lÞ

2
64

3
75; ð40Þ

where

Gl;kðv̂Þ ¼
Z 1

0

dk glðkÞfkðv̂; kÞ log2 1 þ q
M

k
� �

: ð41Þ

This integral can be expressed in a closed form in terms of Meijer G-function or expo-

nential-integral-functions as in (33) and (34), respectively. To obtain (33) we identify the

following special cases of Meijer G-functions [47]:

G
1;0
0;1 b

���� z

 �

¼ zbe�z; ð42Þ

G
1;2
2;2

1; 1

1; 0

���� z

 �

¼ lnð1 þ zÞ; ð43Þ

We also employ the convolution integral for Meijer G-function:

Z 1

0

dzGm;n
p;q

a1; . . . ap

b1; . . . bq

���� gz

 �

Gl;m
r;s

c1; . . . cr

d1; . . . ds

����xz

 �

¼ 1

g
G

nþl;mþm
qþr;pþs

�b1; . . .;�bm; c1; . . . cr; �bmþ1; . . .; �bq

�a1; . . .;�an; d1; . . . ds; �anþ1; . . .; �ap

�����
x
g

 !

¼ 1

x
G

mþm;nþl
pþs;qþr

a1; . . .; an; �d1; . . . � ds; anþ1; . . .; ap

b1; . . .; bm; �c1; . . . � cr; bmþ1; . . .; bq

�����
g
x

 !
:

ð44Þ

The restrictions on the indices for this integration formula can be found in [47]. Next we

perform row interchanges in the determinants to bring Gl;k in the respective lth row.

Consequently, we have the expression for ergodic channel capacity as provided in (31).

Proofs for Eqs. (15), (20), (24), and (26)

To arrive at Eqs. (24) and (26) we need to set v̂1 ¼ � � � ¼ v̂L1
¼ v1; v̂L1þ1 ¼ � � � ¼ v̂L2

¼
v2 ; . . .; v̂LðN�1Þþ1 ¼ � � � ¼ v̂LN ¼ vN in (27) and (31). However, direct substitution of these

values makes the determinant in the numerator, as well as the determinant in the

denominator (contained in the normalization) to become zero. Therefore, we must invoke a

limiting procedure to obtain the proper results, as described below.

Let us focus on the columns involving up to L1 in (27). The ratio of the determinants

appears as
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det
0 ðv̂�1

1 ÞMev̂�1
1
k ðv̂�1

2 ÞMev̂�1
2
k . . . ðv̂�1

L1
ÞMev̂

�1
L1
k . . .

gjðkÞ ðv̂�1
1 Þj�1 ðv̂�1

2 Þj�1 . . . ðv̂�1
L1
Þj�1 . . .

" #

det ðv̂�1
1 Þj�1 ðv̂�1

2 Þj�1 . . . ðv̂�1
L1
Þj�1 . . .

h i ð45Þ

We take v̂�1
k ¼ v̂�1

1 þ �k with small �k for k ¼ 2; 3; . . ., and Taylor-expand up to the term

�k�1
k :

ðv̂�1
k ÞMev̂�1

k
k 	

Xk�1

r¼0

�rk
r!

or

oðv̂�1
1 Þr ðv̂

�1
1 ÞMev̂�1

1
k;

ðv̂�1
k Þj�1 	

Xk�1

r¼0

�rk
r!

or

oðv̂�1
1 Þr ðv̂

�1
1 Þj�1:

Now, employing adequate column operations, we obtain

det

0 ðv̂�1
1 ÞMev̂�1

1
k �k

1!

o

oðv̂�1
1 Þ ðv̂

�1
1 ÞMev̂�1

1
k . . .

�k�1
k

ðk� 1Þ!
ok�1

oðv̂�1
1 Þk�1

ðv̂�1
1 ÞMev̂�1

1
k . . .

gjðkÞ ðv̂�1
1 Þj�1 �k

1!

o

oðv̂�1
1 Þðv̂

�1
1 Þj�1 . . .

�k�1
k

ðk� 1Þ!
ok�1

oðv̂�1
1 Þk�1

ðv̂�1
1 Þj�1 . . .

2
66664

3
77775

det ðv̂�1
1 Þj�1 �k

1!

o

oðv̂�1
1 Þðv̂

�1
1 Þj�1 . . .

�k�1
k

ðk� 1Þ!
ok�1

oðv̂�1
1 Þk�1

ðv̂�1
1 Þj�1 . . .

" #

ð46Þ

The factors containing �k and factorial can be taken out of the columns, both from

numerator and denominator, and cancelled out. This leaves us with

det

0 ðv̂�1
1 ÞMev̂�1

1
k o

oðv̂�1
1 Þ ðv̂

�1
k ÞMev̂�1

1
k . . .

ok�1

oðv̂�1
1 Þk�1

ðv̂�1
k ÞMev̂�1

1
k . . .

gjðkÞ ðv̂�1
1 Þj�1 o

oðv̂�1
1 Þ ðv̂

�1
1 Þj�1 . . .

ok�1

oðv̂�1
1 Þk�1

ðv̂�1
1 Þj�1 . . .

2
66664

3
77775

det ðv̂�1
1 Þj�1 o

oðv̂�1
1 Þ ðv̂

�1
1 Þj�1 . . .

ok�1

oðv̂�1
1 Þk�1

ðv̂�1
1 Þj�1 . . .

" #

ð47Þ

To evaluate the derivatives of ðv̂�1
k ÞMev̂�1

1
k we use Rodrigues’ formula for the associated

Laguerre polynomials,

LðbÞ
k ðzÞ ¼ z�bez

k!

ok

ozk
zkþbe�z
� �

; ð48Þ

with adequate scaling of the variables. Similar steps are followed for rest of the columns

and consequently we arrive at (24).

We employ a similar procedure in (31) to arrive at (26). To evaluate the derivative of

Meijer G-function we use the result
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zr
or

ozr
G

3;1
2;3

a1; a2

b1; b2; b3

����� z
 !

¼ G
3;2
3;4

0; a1; a2

b1; b2; b3; r

����� z
 !

; ð49Þ

which follows from the following more general expression [47]:

zr
or

ozr
Gm;n

p;q

a1; . . .; ap

b1; . . .; bq

���� z

 �

¼ G
m;nþ1
pþ1;qþ1

0; a1; . . .; ap

b1; . . .; bq; r

���� z

 �

: ð50Þ

Finally, (15) and (20) follow trivially from, respectively, (24) and (26) by setting identical

number of antennas at each port, i.e., L1 ¼ � � � ¼ LN ¼ L.
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Vol. 3: More special functions. London: Gordon and Breach Science Publishers.

Santosh Kumar received his Ph.D. degree in Physics from the
Jawaharlal Nehru University, India, in 2011. Afterwards, he pursued
his post-doctoral research at AG Guhr, University of Duisburg-Essen,
Germany, till June 2013. Since July 2013 he is engaged as an Assistant
Professor at the Department of Physics, Shiv Nadar University, India.
His research interests includes Random Matrix Theory, Supersym-
metry, and their applications to varied fields of knowledge. He is
particularly interested in multivariate statistics, analysis of multiple
antenna communication systems, quantum transport problem in chaotic
mesoscopic systems, and study of entanglement in random pure states.

On the Ergodic Capacity of Distributed MIMO Antenna Systems 397

123

http://arxiv.org/abs/1504.00222

	On the Ergodic Capacity of Distributed MIMO Antenna Systems
	Abstract
	Introduction
	Channel Model
	Marginal Density and Ergodic Capacity for (M, N, L) DAS: Exact Results
	Generalizations
	Different Antenna Numbers at Different Ports
	Unequal Large-Scale Fading Parameters

	Summary and Conclusion
	Proofs for Eqs. (27) and (31)
	Proofs for Eqs. (15), (20), (24), and (26)
	References




