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Abstract In this paper we introduce a multi secret sharing (MSS) scheme based on lattice

conception. Lattice constitutes the core of many cryptographic constructions. The advantage of

using lattice,whichour schemewill inherit, is twofold: first is that the hardness of latticeproblems

iswell understood.Wewill show that breaking our scheme leads to a solution for the robust Short

Integer Solution problem. Hence, the presented scheme’s security is guaranteed by leveraging

lattice based conceptions. Second advantage is that working with lattice is simple and, conse-

quently, execution is fast.Amain problemwith previous schemes is that theymostly are based on

numerical assumptions which are slow and need much throughput. Inheriting simplicity and

fastnessmake our scheme an excellent choice to implement in facilities with limit computational

power and resources. In secret sharing schemes, typically in any protocol, dishonest participants

and dealer can cheat during execution. Tomitigate these concerns we augment our scheme with

verifiability properties, say verifiable and public verifiable secret sharing. Verifiability prevents

the dealer to share wrong shares and public verifiability forces participants to submit their sub-

shares correctly. InMSSschemes, releasing somepublic valueswhich are used in recovering step

is inevitable. At the end, a comprehensive comparison by a table in the conclusion section shows

that the presented scheme has minimum number of public values among MSS schemes.

Keywords Secret sharing � Multi secret � Lattice � Short Integer Solution � Verifiability

Mathematics Subject Classification 94A60 � 94A62

1 Introduction

Secret sharing is defined as a method to share a secret between many participants such that

an authorized subset of them can recover the secret by submitting their shares. In this

process each of the participants is given a private information which is called share or
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private share. The set of the subsets of authorized participants is called access structure and

is denoted by C. If all of the elements which belong to an access structure have cardinal t,

then we call this scheme a (t, n)-threshold secret sharing scheme. In this definition n

denotes the number of participants. Secret sharing was introduced by Shamir [1] and

Blakeley [2] independently. Shamir presented a (t, n)-threshold scheme based on inter-

polation. In his scheme every t � 1 participant cannot obtain any information about the

secret (in view of information theory). Secret sharing plays an important role in many

cryptographic protocols such as Multi-Party Protocols [3], distributed signature [4, 5],

E-Voting [6], etc. hence many researchers were motivated to work in this area [7–10].

Firs type of secret sharing has four major shortcomings that should be addressed. Before

delving into details, we outline these important shortcomings,

1. They share one secret, but in many situations we need to share more than one secret.

2. Dealer can distribute wrong shares among the participants. Consequently, different

subsets of participants recover different values.

3. In recovering phases, malicious parties can submit wrong information to attain the

other parties secret shares.

4. Most of secret sharing schemes are based on numerical assumptions.

Scholars introduced multi secret sharing scheme to resolve the first shortcoming. He and

Dawson [11] present the first MSS Scheme in which many secrets are shared while just one

share is assigned to each participants. Their scheme has a restriction in recovering phase. In

fact, in their scheme recovering the secrets should be done in a predetermined order

otherwise it endangers security of unrecovered secrets which is undesirable. In their

scheme some public values are publishes by the dealer. These public values are used in

recovering the secrets process. Typically, in recovering stage, parties compute specific

values regarding the target secret called sub-share. This process is done by an algorithm

that takes the shares and index of the target secret and outputs the corresponding sub-share.

Using these produced sub-shares and published public values the target secret can be

recovered. After their scheme other schemes have presented to remove the constraint on

recovering order and reducing the number of public values [12]. Less public values would

be an advantage because it has direct impact on efficiency.

Another important improvement, which addresses the second drawback, is verifiability.

Verifiable secret sharing schemes have introduced by Chor et al. [13]. In this kind of

schemes, dealer cannot deceive the participants and assign them wrong shares. The exact

definition of verifiable secret sharing scheme is presented in the next section. Harn [7]

proposed a MSS scheme that enjoys verifiability property. After presenting a verifiable

MSS (VMSS) almost all of the new MSS schemes are equipped with this property and it

has become an inseparable part of secret sharing schemes, especially MSS.

The third drawback is related to cheatingparticipants. In recoveringprocess, cheatingparties

should not be permitted to submit wrong shares. Otherwise, they can see other parties sub-

shares, which jeopardizes the security of the scheme. In order to overcome this drawback,

public verifiable secret sharing scheme was proposed [14]. In this scheme, by using mathe-

matical conceptions they presented a secret sharing which is public verifiable. In public veri-

fiable secret sharing schemes participants using a specific protocol prove their shares validity.

Most of the secret sharing are based on numerical assumptions, e.g. RSA assumption,

Factorization, Dicrete Logarithm, etc. Shor in 1994 presented a quantum algorithm that

solves the factorization problem in polynomial time [15]. This paper shows vulnerability of

previous protocols that use numerical assumptions. Consequently, previous secret sharing

schemes will collapse after advent of quantum computers. Therefore researchers have been
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seeking new candidates that can resist against quantum algorithms. Another disadvantage

of using numerical based protocols is that they impose heavy computations to protocol

executioner. This factor has adverse influence on performance. In many cases we have not

access to much resource to implement heavy schemes. It shows our demand to lightweight

schemes which, obviously, cannot be reached by numerical based schemes.

Aforementioned shortcomingsmotivated researchers to use lattice in secret sharing schemes

[16, 17]. Informally, lattice is a discrete subgroup ofRn or equivalently integer combination of

a few independent vectors in Rn. Many computational problems are related to the lattice

conception [18, 19], e.g. finding shortest vector problem (SVP), closest vector problem

(CVP), shortest independent vector problem (SIVP), Short Integer Solution (SIS) and many

other problems. This problems are believed to be hard and the best algorithm for solving them

need exponential time. For instance, it is proved that CVP is a NP-Hard (non-deterministic

polynomial-time hard) problem. Therefore, until NP 6¼ P no one can solve CVP problem in

polynomial time (P stands for the class of problems that have polynomial time solution). In

other word, cryptographic constructions which are formed base on CVP cannot be broken in

polynomial time untilNP ¼ P holds . Robustness of lattice based cryptography hasmade it to

one of the nominees in post quantum cryptography [20]. Moreover, the operations which are

used in lattice are fast and simple. These specifications have caused using lattice widely in

new cryptographic constructions which are robust and lightweight [21–23].

In this paper, we present an MSS scheme and verifiable versions (verifiable and public

verifiable) of it based on SIS to address the four stated shortcomings. In the presented

scheme secrets can be shared among the participants such that they can recover any secret

in an undetermined order while participants get one share. The scheme inherits good

features of lattice such as simplicity, fastness and security. It is fast and lightweight in

comparison to previous schemes which are chiefly based on number theoretic assumptions.

As a consequence, executing this scheme is easy and it can be implemented in computers

with low throughput capacity such as smart phones. Another benefit of using lattice is that

the introduced scheme is reliable because its security is based on well-studied problem SIS.

We demonstrate that breaking our scheme leads to solving the hard lattice problem SIS. As

a result, our scheme will resist against quantum algorithms. The presented scheme is

verifiable. Hence, dealer cannot give incorrect shares. In order to add public verifiability

property to the scheme, we have modified Vadim’s identification protocol and leveraged it

the scheme. Only the participants who have submitted correct sub-share can satisfy a third

party that they have submitted the correct value. Verifiable versions, VMSS and PVMSS,

makes this scheme a good option to be used in sophisticated protocols that trustworthy of

parties are questionable. As a final advantage, to the best of our knowledge the presented

scheme has the least number of public values.

The paper is structured as follows: in the Sect. 2 we introduce lattice concepts that are

needed at the rest of this paper, presenting a scheme and assessing its security is next. Verifiable

versions constitutes main core of the Sect. 4. The final section is dedicated to conclusion.

2 Preliminaries

In this section we review some concepts and introduce some notations which are needed in

this paper. The notation 2r means choosing uniformly from a finite set. we will use the rot

function which is defined as follows,

rotjðAÞ ¼ ½ajþ1; ajþ2; . . .; an; a1; . . .; aj�
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Definition 1 Suppose b1; b2; . . .; bm are m linearly independent vectors in Rn ðm� nÞ. The
lattice that generated by these vectors is linear integer combination of them,

Lðb1; b2; . . .; bmÞ ¼
Xm

i¼1

zibijzi 2 Z

( )

The vectors b1; b2; . . .; bm are a basis for the lattice. Basis is not unique and it can be shown

that B0 is another basis for LðBÞ if and only if B0 ¼ BU where U is an appropriate

unimodular matrix.

Many problem such as shortest vector problem (SVP), closest vector problem (CVP) and

the other well-known problems [24] play an important role in lattice theory. Many version

of this problems are assessed. One of these versions is approximation version. In

approximation version we have a function f along with the principal problem, and the aim

is to find an answer which its norm is at most f times bigger than the exact answer. For

instances, in approximation problem SVPn2 our goal is to find a vector in lattice which has

norm at most n2 time bigger than the shortest vector in lattice.

One specific problem is SIS which concludes the core of our scheme you can see its

definition below.

Definition 2 [25] Suppose a matrix A 2 Zm�n
p is given, find two vector x; x0 2 Zn such

that Ax � Ax0ðmod pÞ, and k x k; k x0 k � 10n1:5.

SIS can be interpreted as finding a short solution for linear equation system

AX ¼ Yðmod pÞ. For n ¼ ½4m logm� and some integer p ¼ eHðm3Þ solving SIS can be

reduced to solving SIVPeOðn2Þ
[25]. Vadim presented an identification scheme based on SIS

problem [25]. This scheme is depicted in the following table. For more details interested

readers are referred to the original paper. In this protocol Prover wants to convince the

Verifier that he knows x 2 f0; 1gn where Awðmod pÞ is public.

Vadim’s Authentication Protocol

Prover Verifier

chooses ỹ ∈r {0, . . . , 5n − 1}n
y = Aỹ mod p

y−→
c ∈r {0, 1}

c←−
if c = 1 and ỹ + w̃ /∈ safe

z ←⊥
else

z ← ỹ + cω̃
z−→

if z 5n1.5 and Az mod p = cω + y
output YES

else
Output NO
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In secret sharing schemes two desirable goal are identifying fraudulent dealer and

participants.

Definition 3 [14] A verifiable secret sharing scheme consists of a secret sharing

scheme and a additional algorithm Verify such that participants can verify their shares:

9u 8M 2 C s:t: if 8i 2 M : VerifyðsiÞ ¼ 1 then the participants who belongs to M

recover u and u ¼ s (s is the secret) if dealer was honest.

Verifiability makes sure that participants recover same secret regardless of which

authorized subset of participants are executing recovering process.

Definition 4 [14] A public verifiable secret sharing is a secret sharing such that partic-

ipants can prove validity of their submitted sub-shares.

In public verifiable secret sharing scheme if a participant submits a wrong share, he/she

cannot proof that the submitted value is valid.

3 Multi Secret Sharing Scheme

We use the lattice conceptions to introduce a threshold MSS scheme whose security is

based on SIS problem. In presented scheme participants can recover any secret in any stage

without compromising security of other secrets. Lets walk into the details of the scheme.

3.1 Share Distribution

Dealer shares r secrets S1; S2; . . .; Sr 2 Zm
q among s participants P1; . . .;Ps in such a way

that every t ðt� sÞ participant can recover the secrets in an unordered manner. Dealer

computes the private shares and public values as follows:

1. He/She chooses di 2r f0; 1gn; 1� i� s and a random matrix Am�n 2 Zm�n
q where

n ¼ ½4m logm�.
2. Chooses Q1ðxÞ; . . .;QnðxÞ 2r Zq½x� of degree s� 1 such that di ¼ ½Q1ðiÞ; . . .; QnðiÞ�
3. Sends di to the ith participant, 1� i� s, as their private share.

4. Publishes the values Si þ ArotiðQð0ÞÞ (QðxÞ :¼ ½Q1ðxÞ; . . .;QnðxÞ�) for 1� i� r and

Qð�1Þ; . . .;Qð�sþ tÞ.
Sharing process is very simple and this facts makes the scheme applicable and efficient.

3.2 Secret Reconstruction

Now, we explain recovering secret process. Assume t participants, P1;P2; . . .;Pt, collab-

orate to recover Sj, hence they compute and submit related sub-shares. The sub-share of Pi

corresponding to the secret Sj is:

ArotjðdiÞ ¼ ArotjðQðiÞÞ

Sj can be recovered using these sub-shares and the public values. In the first step they

compute ArotjðQð0ÞÞ by interpolation:
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ArotjðQð0ÞÞ ¼
Xt

i¼1

ðt!=iÞðs� tÞ!
ð1� iÞ � � � ð�1Þðt � iÞ!ðiþ s� tÞ!=i!Arot

jðdiÞ
 

þ
X�sþt

i¼�1

t!ð�1Þ � � � ði� 1Þðiþ 1Þ � � � ð�sþ tÞ
ð1� iÞ � � � ðt � iÞð�1� iÞ � � � ð�1Þðþ1Þ � � � ð�sþ t � iÞArot

jQðiÞ
!

¼ A
Xt

i¼1

ðt!=iÞðs� tÞ!
ð1� iÞ � � � ð�1Þðt � iÞ!ðiþ s� tÞ!=i! rot

jQðiÞ
 

þ
X�sþt

i¼�1

t!ð�1Þ � � � ði� 1Þðiþ 1Þ � � � ð�sþ tÞ
ð1� iÞ � � � ðt � iÞð�1� iÞ � � � ð�1Þðþ1Þ � � � ð�sþ t � iÞ rot

jQðiÞ
!

Consequently, Sj can be extracted easily with a minus operation;

Sj ¼ Sj þ ArotjðQð0ÞÞ
� �

� ArotjðQð0ÞÞ

As you can see, every subset of authorized participants can recover every secret in each

stage without any constraint on the order of secret recovering. Clearly, all of this operation

can be done in a efficient way which is one of the most desirable feature in any crypto-

graphic protocol.

3.3 Security

In this section we will prove that the presented scheme is secure in term of constructing any

subset of secrets does not cause constructing any other unrecovered secrets. We show that

this scheme inherits its robustness from SIS problem.

Notice that If we look at recovering stages separately, it can be considered as a perfect

secret sharing which means deficiency of any sub-share causes disability to recovering the

secret similar to Shamir’s scheme [1]. Therefore, we can conclude that this scheme is

secure if we can show that computing the sub-shares corresponding to unrecovered secret

from the revealed sub-shares is computationally impossible. We can rewrite this problem

in mathematical terminology as follows:

Problem 3.3 Suppose a matrix A 2 Zm�n
q and d 2 f0; 1gn are chosen uniformly. Given

fArotiðdÞji 2 Ig where cardðIÞm\n, the aim is computing ArotjðdÞ such that j 62 I.

We will show that SIS problem can be reduced to the above problem. It means if there

exists an adversary which solves the above problem, it is possible to build an adversary

which solves the SIS problem.

Theorem 1 Assume that there exists an adversary adv1 such that solves the Problem 3.3,

then there exists an algorithm adv2 such that given fArotiðdÞji 2 Ig, where cardðIÞm\n,

computes d.

Proof The adversary adv2 invokes adv1 and feeds it with fArotiðdÞji 2 Ig and gets

ArotjðdÞ afterwards adv2 feeds fArotiðdÞji 2 Ig [ ArotjðdÞ to adv1 and builds another one.

Repeating this procedure provides a system of linear equations which its solution is d. Then

by solving this system of linear equations d can be extracted. h

Theorem 2 Given fArotiðdÞji 2 Ig where cardðIÞm\n and d 2r f0; 1gn, whit a high

probability there exists d0 2 f0; 1gn such that
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fArotiðdÞji 2 Ig ¼ fArotiðd0Þji 2 Ig

Proof For simplicity assume that I ¼ 1; 2; . . .; k. Without loss of generality we can

assume that Ad; . . .;ArotkðdÞ
� �

2 Zkm
q is distributed uniformly in Zkm

q . Therefore, the

probability of collision is at least 1� 2km log q=2n. Therefor, with a high probability there is

a d0 such that fArotiðdÞji 2 Ig ¼ fArotiðd0Þji 2 Ig holds. h

Theorem 3 If there exists an algorithm adv1 that solves the Problem 3.3, then we can

solve SIS problem with high probability.

Proof Suppose we have an algorithm adv1 that solves the Problem 3.3. According to

Theorem 1 there is an algorithm adv2 such that if we feed fArotiðdÞji 2 Ig to adv2 the

output would be d. In addition, in Theorem 2 we have proven that with a high probability

there exist another d0 2 f0; 1gn such that fArotiðdÞji 2 Ig ¼ fArotiðd0Þji 2 Ig, hence out-

put of adv2 on fArotiðdÞji 2 Ig with probability 1=2 1� 2km log q=2n
� �

would be d0 where

fArotiðdÞji 2 Ig ¼ fArotiðd0Þji 2 Ig, so Aðd � d0Þ ¼ 0. In other words we have found a

small vector d � d0 2 f�1; 0; 1gn which satisfies the equation Ax ¼ 0. This means the SIS

problem is solved. h

In proving the security we stated a problem which solving it is equivalence to breaking

our scheme. Then we demonstrate that solving this problem leads to a solution to SIS

problem. Hence, we can conclude that the presented scheme is robust until SIS is

intractable. In addition, we know that lattice is one of the approaches in post quantum

cryptography. These facts conclude that the presented scheme resists possible quantum

attacks.

4 Verifiable Versions of the Scheme

This section deals with introducing verifiable version of presented scheme. One of the must

important issues in secret sharing scheme is verifiability [13]. Participants or dealer cannot

always be trusted because the participants can submit wrong sub-share to discover the

other participants shares and the dealer may share wrong shares among the participants in

such way that different set of authorized participants recover different values. Thus a

scheme should be resistant against deceiver participants and dealer.

4.1 Robustness Against Fraudulent Dealer

Here, we introduce verifiable version of the scheme that satisfying the Definition 3. In fact

it is a manner to identify fraudulent dealer. Suppose the shares are distributed by the dealer.

The participants easily can verify their shares. First of all they submit Adi for i ¼ 1; 2; . . .; s

alongside the public values Qð�1Þ; . . .;Qð�sþ tÞ we obtain 2s� t points on the equation

AQðxÞ, in addition QðxÞ consists of n polynomials of degree s, so if the shares were

distributed correctly, using every s values from fQð�1Þ; . . .;Qð�sþ tÞ, Adi for i ¼
1; 2; . . .; sg and applying interpolation we should be able to compute the other s� t values,

otherwise the shares haven’t been distributed correctly. This method assure the participants

that they have been received the correct shares and any t participants in each stage recover

the same value.
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4.2 Robustness Against Fraudulent Participants

Sometimes, a fraudulent participant can submit a wrong sub-share amid the secret

recovering process. This would help him/her to attain the other participants share. Con-

sequently he/she can recover the secret by others’ sub-share and his/her correct sub-share.

Therefore we need a procedure which prevents participants to submit wrong sub-shares.

Therefore we introduce PVMSS version of our scheme in this section. In our scheme using

simple procedure any participants has to prove that he/she has submitted correct sub-share

corresponding to the target secret.

Suppose in share distribution dealer publishes Adi for i ¼ 1; 2; . . .; s alongside the public
values. Publishing these values is crucial for verifying process. Hence, the ith participant in

recovering the jth secret should be able to prove that he has submitted the correct sub-

share, say ArotjðdiÞ. We showed Vadim’s authentication scheme (2) and the following

chart is a modified version of it. In this procedure any participant can prove that he has

submitted the correct sub-share. Suppose he has submitted W as his sub-share. If he

delivers right value, he can convince verifier that W ¼ ArotjðdiÞ as follows,

Verifying submitted Sub-share

Participant Verifier

chooses ỹ ∈r {0, . . . , 5n − 1}n
y = Aỹ, y = Arotj(ỹ) mod p

y,y−−−→
c ∈r {0, 1}

c←−
if c = 1 and ỹ + di /∈ safe

z ←⊥
else

z ← ỹ + cdi
z−→

if z 5n1.5 and Az = cAdi + y mod p
Arotj(z) = cW + y ( mod p)(∗)

output YES
else

Output NO

Theorem 4 Participants can not convince the verifier while they have submitted wrong

sub-shares.

Here is the sketch of proof. We refrain to go trough the details.

Proof A simple comparison between Vadim’s scheme and the modified version shows

that cheating probability in this process is at most half of probability of success of each

adversary in Vadim scheme, because the relation ð�Þ satisfies iff W ¼ ArotjðdiÞðmod pÞ. In
addition, we can reduce this probability exponentially by repeating the process to make

sure that a submitted sub-share is correct with a high probability. h
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5 Conclusion

To overcome the four shortcomings, which are listed in the introduction section, we

present an MSS scheme based on SIS problem. First of all, it is a MSS scheme which

means we can share many secrets while one share is assign to each participants. Assigning

one share to participants makes managing participants’ share in terms of saving, sending,

etc. easy. Furthermore, in recovering stage, we have no constraint on recovering secrets

order and authorized participants can reconstruct any secret in any stage. Hence, the first

shortcoming is resolved.

Regarding the second and third shortcomings, we enforced our scheme with verifia-

bility, VMSS and PVMSS. The presented scheme is VMSS which means participants can

check validity of their shares and it prevents dealer to distribute wrong shares. Moreover,

pledging participants to submit correct sub-shares in each stage is another treasured

advantage of verifiability, say PVMSS, because they cannot submit a fake value to see

others sub-shares.

In order to tackle the fourth flaw, lattice conception SIS is leveraged. Using SIS as a

basic primitive has two benefits. First, unlike the previous schemes that are based on

numerical assumptions and need heavy mathematical operations, our scheme uses simple

operations and, consequently, has less running time. This feature makes it a better choice to

implement in facilities with limit resources. Second, its security is backed by the hardness

of SIS problem. We proved that breaking the presented scheme leads to solving SIS

problem. Adding this proof to the fact that lattice based cryptography is one of the

approach in post quantum cryptography concludes that the presented scheme is beyond the

boarder of possible quantum attacks.

One important factor in efficiency of a MSS scheme is the number of public values. In

any MSS scheme releasing a number of public values is inevitable. In this paper, we tried

to give a scheme with minimum number of public values while it captures the afore-

mentioned properties. To the best of our knowledge, the presented scheme has the least

number of public values. To demonstrate this claim a comprehensive comparison between

our scheme and the other well-known MSS schemes is showed through the following table.

Table 1 Comparing to the other MSS schemes

Schemes Cheating dealer
(VMSS)

Cheating participant
(PVMSS)

Number of public
values

He and Dawson [11] No No m� n

He and Dawson [11] No No m� ðnþ 1Þ
Harn [7] No No m� ðn� tÞ
Chang et al. [12] No No m� n

Li et al. [26] No No m� ðn� t þ 1Þ
Dehkordi and Mashhadi
[27]

No Yes mþ 2n� t

Liu et al. [28] Yes Yes mþ 2n

Eslami and Rad [29] Yes No mþ n� t þ 1

Our scheme Yes No mþ n� t

(Verifiable version) Yes Yes mþ 2n� t

A Lightweight Public Verifiable Multi Secret Sharing Scheme... 1467

123



In the Table n, m and t denote the number of participants, secrets and threshold respectively

(Table 1).

All in one, we have introduced an efficient lightweight secret sharing scheme that

resolves the four mentioned shortcomings while it has least number of public values among

the MSS schemes and resists against quantum attacks.

Acknowledgments We would like to express our very great appreciation to Mohammad Ghanoonibagha
for his valuable and constructive suggestions during the planning and development of this research work.

References

1. Shamir, A. (1979). How to share a secret. Communications of the ACM, 22(11), 612–613.
2. Blakley, G. R. (1899). Safeguarding cryptographic keys. In International workshop on managing

requirements knowledge (pp. 313–313). IEEE Computer Society.
3. Yao, A. C. (1982). Protocols for secure computations. In 2013 IEEE 54th annual symposium on

foundations of computer science (pp. 160–164). IEEE.
4. Wang, Y., Wong, D. S, Wu, Q., Chow, S. S. M, Qin, B., & Liu, J. (2014). Practical distributed

signatures in the standard model. In Topics in cryptology—CT-RSA 2014 (pp. 307–326). Springer.
5. Shieh, S.-P., Lin, C.-T., Yang, W.-B., & Sun, H.-M. (2000). Digital multisignature schemes for

authenticating delegates in mobile code systems. IEEE Transactions on Vehicular Technology, 49(4),
1464–1473.

6. Schoenmakers, B. (1999). A simple publicly verifiable secret sharing scheme and its application to
electronic voting. In Advances in cryptologyCRYPTO99 (pp. 148–164). Springer.

7. Harn, L. (1995). Comment on ’’Multistage secret sharing based on one-way function’’. Electronics
Letters, 31(4), 262.

8. Harn, L. (1995). Efficient sharing (broadcasting) of multiple secrets. IEE Proceedings-Computers and
Digital Techniques, 142(3), 237–240.

9. Pedersen, T. P. (1991). Non-interactive and information-theoretic secure verifiable secret sharing. In
Advances in cryptologyCRYPTO91 (pp. 129–140). Springer.

10. Karlsson, A., Koashi, M., & Imoto, N. (1999). Quantum entanglement for secret sharing and secret
splitting. Physical Review A, 59(1), 162.

11. He, J., & Dawson, E. (1995). Multisecret-sharing scheme based on one-way function. Electronics
Letters, 31(2), 93–95.

12. Chang, T.-Y., Hwang, M.-S., & Yang, W.-P. (2005). A new multi-stage secret sharing scheme using
one-way function. ACM SIGOPS Operating Systems Review, 39(1), 48–55.

13. Chor, B., Goldwasser, S., Micali, S., & Awerbuch, B. (1985). Verifiable secret sharing and achieving
simultaneity in the presence of faults. In 2013 IEEE 54th annual symposium on foundations of computer
science (pp. 383–395). IEEE.

14. Stadler, M. (1996). Publicly verifiable secret sharing. In Advances in cryptology—EUROCRYPT’96 (pp.
190–199). Springer.

15. Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM Review, 41(2), 303–332.

16. El Bansarkhani, R., & Meziani, M. (2012). An efficient lattice-based secret sharing construction. In
IFIP International workshop on information security theory and practice (pp. 160–168). Springer.

17. Steinfeld, R., Wang, H., & Pieprzyk, J. (2004). Lattice-based threshold-changeability for standard
Shamir secret-sharing schemes. In Advances in cryptology-ASIACRYPT 2004 (pp. 170–186). Springer.

18. Micciancio, D., & Regev, O. (2009). Lattice-based cryptography. In Post-quantum cryptography (pp.
147–191). Springer.

19. Regev, O. (2006). Lattice-based cryptography. In Advances in cryptology-CRYPTO 2006 (pp. 131–141).
Springer.

20. Bernstein, D. J., Buchmann, J., & Dahmen, E. (2009). Post-quantum cryptography. Berlin: Springer
Science & Business Media.

21. Kawachi, A., Tanaka, K., & Xagawa, K. (2007). Multi-bit cryptosystems based on lattice problems. In
Public key cryptography-PKC 2007 (pp. 315–329). Springer.

22. Agrawal, S., Boneh, D., & Boyen, X. (2010). Efficient lattice (H) IBE in the standard model. In
Advances in cryptology-EUROCRYPT 2010 (pp. 553–572). Springer.

1468 M. Hadian Dehkordi, R. Ghasemi

123



23. Akavia, A., Goldwasser, S., & Vaikuntanathan, V. (2009). Simultaneous hardcore bits and cryptography
against memory attacks. In Theory of cryptography (pp. 474–495). Springer.

24. Micciancio, D., & Goldwasser, S. (2002). Complexity of lattice problems: A cryptographic perspective
(Vol. 671). Berlin: Springer.

25. Lyubashevsky, V. (2008). Lattice-based identification schemes secure under active attacks. In Public
key cryptography–PKC 2008 (pp. 162–179). Springer.

26. Li, H.-X., Cheng, C.-T., & Pang, L.-J. (2005). An improved multi-stage (t, n)-threshold secret sharing
scheme. In W. Fan., Z. Wu & J. Yang (Eds.), Proceedings of international conference on web-age
information management (pp. 267–274). Berlin: Springer.

27. Dehkordi, M. H., & Mashhadi, S. (2008). New efficient and practical verifiable multi-secret sharing
schemes. Information Sciences, 178(9), 2262–2274.

28. Liu, Y., Zhang, F., & Zhang, J. (2016). Attacks to some verifiable multi-secret sharing schemes and two
improved schemes. Information Sciences, 329, 524–539.

29. Eslami, Z., & Rad, S. K. (2012). A new verifiable multi-secret sharing scheme based on bilinear maps.
Wireless Personal Communications, 63(2), 459–467.

Masoud Hadian Dehkordi received his Ph.D. degree in Mathematics
from Loughborough University, UK, in 1998. He is currently a pro-
fessor of mathematics at the School of Mathematical Sciences in Iran
University of Science and Technology (IUST), Tehran, Iran. His
research interests include Number Theory, Cryptography and other
related topics.

Reza Ghasemi received his M.Sc. degree in Mathematics from Sharif
University of Science and Technology, Iran, in 2010. He is currently
Ph.D. student at the School of Mathematics in Iran University of
Science and Technology. His research interests include Cryptography
and Network Security.

A Lightweight Public Verifiable Multi Secret Sharing Scheme... 1469

123


	A Lightweight Public Verifiable Multi Secret Sharing Scheme Using Short Integer Solution
	Abstract
	Introduction
	Preliminaries
	Multi Secret Sharing Scheme
	Share Distribution
	Secret Reconstruction
	Security

	Verifiable Versions of the Scheme
	Robustness Against Fraudulent Dealer
	Robustness Against Fraudulent Participants

	Conclusion
	Acknowledgments
	References




