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Abstract This paper motivates the use of Relative Spectra–Mel Frequency Cepstral

Coefficients (RASTA–MFCC) feature extracted from the newly designed Quadrilateral

filter bank structure and Gaussian Mixture Model–Universal Background Model (GMM–

UBM) for improved text independent speaker identification under noisy environment.

Unlike neural network model which requires retraining of entire database when a new

sample is added to it, GMM–UBM model does not require retraining of entire database

which leads to easier and faster processing. RASTA–MFCC is found to be more robust to

noisy environment compared with traditional MFCC method. MFCC is an efficient feature

for identifying the speaker as it has speaker specific information capturing ability. RASTA

processing of speech improves the performance of recognizer in the presence of convo-

lution and additive noise. This work combines the better of these two processes to yield

RASTA–MFCC feature which is robust to noise and also proposes a new Quadrilateral

filter bank structure which approximates the response of cochlear membrane of human ear

to effectively capture the feature vectors. The proposed Quadrilateral filter bank structure

with RASTA–MFCC feature and GMM–UBM modeling for speaker identification

demonstrates supremacy over triangular and Gaussian filter banks and offers a speaker

identification accuracy of 97.67 % for the MEPCO noisy speech database with 50

speakers.

Keywords Cepstral mean normalization (CMN) � Equivalent rectangular bandwidth
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1 Introduction

The prime motto of speech analysis is efficiently characterizing the information present in

the speech signal either to identify the speech or to identify the speaker. Since both speech

recognition and speaker identification involve pattern recognition, the speech analysis

techniques are almost similar for both. In speech signal analysis, the kind of information to

be retained in the form of feature vector depends on the application for which the speech

signal is analyzed. For example, speaker-dependent attributes are obviously fully relevant

for speaker identification, but those attributes are often superfluous for speech recognition.

In speaker identification N comparisons are required between the test pattern and the stored

N enrolled patterns. The speaker is identified among N speakers in the database based on

minimum absolute probability of error.

The speaker can be identified relevant to the text spoken or irrelevant to the text spoken.

The former task is called as text-dependent speaker identification and the later is called as

text-independent speaker identification. Text-dependent is the simplest of these two,

wherein a small set of specific words is used in enrollment phase and the words from same

set must be used by the speaker in the test phase in order for correct identification. Text-

independent speaker identification system imposes no boundary or limitation on the words

or phrases that can be used for identifying the speaker. Since the speaker is provided with

the freedom of using any utterance during testing irrespective of the utterance used during

enrollment, this mode of speaker identification is comparatively complex and challenging.

Efficient representation of speaker oriented information present in the speech signal is

of at most important to have better text independent speaker identification system. Thus the

speaker-dependent aspects of speech have to be represented economically with reduced

dimensionality. The selected features must have large inter-speaker variability and small

intra-speaker variability and must have robustness against mimicry. Different researchers

have investigated the usage of features such as MFCC, BFCC, Perceptual Linear Prediction

(PLP) coefficients [1], Linear Predictive Residual Cepstral Coefficients (LPRCC). Few

researchers have used delta (D) and delta–delta (D–D) coefficients of the features to

improve the identification accuracy. Most of the researchers agreed upon the supremacy of

MFCC features over other features in speaker identification and speech recognition. GMM

modeling with multivariate Gaussian distribution technique best configures the human

vocal tract, by which the identity of the individual speaker is best reflected. Performance of

GMM decays under noisy conditions [2]. Compared to GMM, the universal background

model based GMM reduces the dimensionality and computational complexity. The

Universal background model encompasses the overall characteristic of the population in a

single pool [3, 4]; at the same time it adapts the pool to the individual speaker.

Challenging factors in accurate speaker identification system are noise due to hostile

environment and channel distortions [5]. When speech recordings are done using micro-

phones with different sensitivities, the channel effects become prominent. Variations in

speech spectral component due to noise can be handled effectively by RASTA processing

[6]. This improves the performance of the identification system in the presence of con-

volution and additive noise [7]. Cepstral mean normalization minimizes the degradation in

perceived quality of speech by channel equalization [8].

In the proposed work, the combined RASTA–MFCC feature for improving the per-

formance of the identification system under noisy environment is analyzed for different

filter bank structures. It is evident from the statistical result that the performance of
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RASTA–MFCC feature surpasses the conventional MFCC feature in unknown channel and

noisy environment.

The organization of the paper is as follows: Overall speaker identification system and

preprocessing are discussed in Sect. 2. The new RASTA–MFCC feature extraction process

is discussed in Sect. 3 with detailed explanation. Section 4 describes the design aspects of

the newly designed quadrilateral filter bank structure. In Sect. 5, modeling of features via

GMM–UBM techniques is dealt and the obtained results are analyzed. Finally, Sect. 6

concludes the proposed work.

2 Speaker Identification Systems

Speaker identification can be carried out in two stages as shown in Fig. 1. Pattern repre-

sentation of the speech samples followed by modeling of patterns/vectors is done in

enrollment/training stage. In the testing stage, the log likelihood ratio of the test speaker

model is one-to-one compared with all the stored models to find the minimum probability

of error.

For dimensionality reduction, the voiced and unvoiced regions are separated. Since the

entire speaker specific information is present in the voiced region [9], it is retained for

further processing. Removal of unvoiced and silence regions from speech samples are done

using energy based thresholding technique which reduces the computational requirements.

To make use of intermittent nature of the speech signal, the voiced regions of the speech is

segmented into frames and each frame is windowed to provide smooth tapering.

Even though speech signal is quasi-periodic, when it is processed in segmented frames

of 10–30 ms duration, the characteristics of speech resembles the characteristics of sta-

tionary and periodic signals, mainly at the occurrences of vowels. Biological production of

speech is merely a filtering operation in which voiced sound is produced by periodic source

exciting a vocal tract filter. Over the duration of a frame the speech is interpreted as the

stationary signal because of the tendency of the signal to gradually change its character-

istics between sounds. If framing is done with non-overlapping between frames then there

may be loss of information due to the transition between adjacent frames. Usually overlap

Identified Speaker

Training speech 

Pre-processing 

Feature Extraction

Modeling Comparison

Testing speech
I

Pre-processing 

Feature Extraction

Fig. 1 Speaker identification system
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size of more than 50 % of frame size yields better result [10]. Researches on speech and

speaker recognition unanimously agree that Hamming window best suits for speech pro-

cessing applications. The window length is kept same as the individual frame length. The

choice of window shape for producing desired smoothing [11] depends on its effect in

speech analysis. Windowing is done on each frame in order to taper the signal to zero at the

beginning and the end of the frame.

3 Noise Robust RASTA–MFCC

RASTA filtering is applied on the windowed speech signal to minimize the noise effects in

the speech signal, especially convolution and additive noise effects [12]. Filtering is fol-

lowed by the extraction of MFCC from the RASTA filtered signal in order to yield

RASTA–MFCC features. The steps followed in obtaining RASTA–MFCC feature is

depicted in Fig. 2.

RASTA processing improves the performance of a recognizer in noisy conditions.

RASTA processing compensates the effect of abrupt spectral change in speech signal by

means of filtering. Fast spectral changes in Consecutive frames are alleviated by low pass

filtering [13] through smoothing process. In general, bigger the auditory structures, more

the sensitivity to lower speech/sound frequencies. In the mammal family, humans have

relatively less sensitivity to lower frequency sounds. RASTA processing involves com-

putation of power spectrum of critical band, filtering the time trajectory of compressed

spectral component, static nonlinear transformation followed by multiplication with equal

loudness curves. Finally computes all-pole model of the spectrum.

Lower cutoff frequency of the filter determines the fastest spectral change whereas the

higher cutoff frequency determines the preserved spectral change. Computation of squared

magnitude of FFT follows RASTA filtering. Pre-emphasis emphasizes the energy of the

high frequency contents of the squared magnitude spectrum. The pre-emphasis that

equalizes the speech spectral tilt is given in Eq. (1) with the pre-emphasis factor a value

0.97.

ŝ nð Þ ¼ s nð Þ � as n� 1ð Þ ð1Þ

s(n) is the nth instant of the speech signal, s(n - 1) is the n - 1th instant of the speech

signal, ŝ nð Þ is the nth instant of the pre-emphasized signal.

Human auditory perception is a nonlinear process. Mel scale mapping from linear

frequency resembles human auditory pattern. As shown in Fig. 3 Mel scale mapping is

Windowed Signal
RASTA

Processing
FFT

Mel Scale Filterbank 

(Triangular/Gaussian/Quadrilateral)RASTA-MFCC

Pre Emphasis

DCTCMN

Fig. 2 RASTA–MFCC feature extraction process
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approximately linear for frequencies up to 1 kHz and logarithmic afterwards. The relation

between Hertz and Mel scale [14] is given as follows.

mel fð Þ ¼ 2595 log10 1 þ fHz

700

� �� �
ð2Þ

Conventionally, the critical band triangular shaped filters are residing on the Nyquist

range. The transforms of the filters are made symmetrical about the Nyquist frequency. As

shown in Fig. 4, the Mel axis filter bank is constructed with 40 non uniform filters. In order

to have smooth transition between adjacent critical bands and to preserve the correlation

among them Gaussian filter bank is also developed with 40 non uniform filters as shown in

Fig. 5.

After Mel scale warping, Mel spectral coefficients are obtained, for which discrete

cosine transform is taken in order to yield the Rasta Mel frequency Cepstral coefficients.

MFCC extraction is similar to cepstrum calculation except the Mel scale frequency axis.

By applying DCT reduced data set representation is obtained. Equation (3) gives RASTA–

MFCC coefficients.

c lð Þ ¼
ffiffiffi
2

p

M

XM
m¼1

X0 mð Þ cos
lp
M

m� 1

2

� �� �
ð3Þ

where X0(m) are the Mel spectral coefficients, M is the number of filters.

To help in minimizing the effect of channel in speech recording noise spectral sub-

traction [15] and Cepstral Mean Normalization (CMN) methods can be used. Since the

former method has the problem of estimating the noise [16], the later method is preferred

to mitigate the effect of variable communication environment. In CMN, the average value

of the RASTA–MFCC coefficients over the whole length of the speech is subtracted from

each frame as follows.
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Fig. 3 Relation between Mel and linear frequency
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ci ¼ ci �
1

N

XN
k¼1

cik ð4Þ

where, cik is the ith feature element in the kth frame. The resultant feature after Cepstral

mean normalization, a post processing step, yields the noise robust RASTA–MFCC

Feature.
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Fig. 4 Triangular filter bank structure
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Fig. 5 Gaussian filter bank structure
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4 Quadrilateral Filter Bank Structure

In the triangular shaped or Gaussian shaped Mel filter bank design, the speaker dependent

information around the lower frequency range of each filter bin of the filter bank is not

given much importance to encompass as much energy as possible. Hence, a new filter bank

with quadrilateral shaped filter bins is designed in which the lower frequency of the current

filter bin is the first intermediate frequency of the previous filter bin. The First and the last

filter bin’s center frequency are determined from Moore and Grasberg’s ERB (Equivalent

Rectangular Bandwidth) expression as given by [17].

af 2
ci
þ bfci þ c ¼ 1

2
fhighi � flowi

� �
ð5Þ

ERBi ¼ 24:7 0:00437fci þ 1ð Þ ð6Þ

For the remaining filter bins the center frequency is found using Eq. (7),

fci ¼ flowi
þ i� 1ð Þ fhighi � flowi

N þ 2

� �
ð7Þ

The lower and upper frequency of each filter bin is found using the following Eqs. (8)

and (9),

700 þ fcið Þ2¼ 700 þ flowi
þ 2ERBið Þ 700 þ flowi

ð Þ ð8Þ

fhighi ¼ flowi
þ 2ERBi ð9Þ

The two intermediate frequencies fint1 and fint2 are found using the Eqs. (10) and (11),

fint1 ¼ 0:25 � fhighi þ flowi

� �
ð10Þ

fint2 ¼ 0:75 � fhighi þ flowi

� �
ð11Þ

where, a = 6.23 9 10-6; b = 93.39 9 10-3; c = 28.52, fci is the ith center frequency of

the filter bin, fhighi is the upper frequency range of the ith filter bin, flowi
is the lower

frequency range of the ith filter bin, fint1 is the first intermediate frequency of the ith filter

bin, fint2 is the second intermediate frequency of the ith filter bin, i = 1, 2… N, N is the

total number of filter bins in the filter bank.

The amplitude of the four vertices in each quadrilateral bin is [0, 0.7, 1, and 0]. The

value 0.7 is found to be optimum to height of the second vertices after a series of test for

the values in between the range [0.5, 1.0]. The designed Quadrilateral filter bank structure

is placed in Mel frequency scaling in order to closely approximate the human cochlear

membrane and the resultant filter bank structure is shown in Fig. 6.

5 Modeling and Result Analysis

The objective of GMM–UBM modeling is estimating the test model parameters that match

with the distribution of the training feature vector. UBM model is trained by computing kp

which is constituted by mean vector, variance vector and weight vector. Background model

first takes the common characteristics of the population then adjust it to the individual. The
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Log Likelihood Ratio (LLR) score is the tool to identify the speaker under test. The test

speaker is compared with the enrolled speakers in terms of their likelihood and the one

match with maximum LLR score is declared as the identified speaker. In GMM–UBM, the

background model is taken into consideration. Speaker model is represented using back-

ground model and adapted model. The density function is calculated for GMM–UBM with

256 mixtures.

Pr i=xt; kð Þ ¼ wipi xtð ÞPM
j¼1 wjpj xtð Þ

ð12Þ

In Expectation Maximization algorithm, the values of the model parameters change for

every iteration. New coefficients are calculated using the Eqs. (13), (14) and (15) at every

iteration.

lnewi ¼ ami EðxÞi þ 1 � ami
� �

li ð13Þ

rnewi ¼ avi E x2
� �

i
þ 1 � avi
� �

r2
i þ li

� �
� lnewi ð14Þ

wnew
i ¼ awi ni

	
T þ 1 � anewi

� �
wi


 �
c ð15Þ

where a = n(i)/(n(i) ? r).

GMM distribution represents the best distribution of feature vectors for hypothesis H0.

The UBM is used for modeling the alternative hypothesis H1 in the likelihood ratio test.

For a given set of N background speaker models, the alternative hypothesis H1 is repre-

sented by Eq. (16),

p X
.
k0p

� 
¼ max p X=k1ð Þp X=k2ð Þ. . .p X=kNð Þð Þ ð16Þ

With UBM treated as prior model, a speaker specific model is derived by using max-

imum likelihood estimation. For a given T independent and identically distributed obser-

vations, X = {x1, x2, x3, x4 … xT}, the joint likelihood ratio is determined using Eq. (17).
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Fig. 6 Quadrilateral filter bank structure
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E LLR xð Þð Þ ¼ 1

T

XT
t¼1

log p xtjktarget
� �

� log p xtjkubmð Þ
� �

ð17Þ

MEPCO speech biometric database is used in the proposed speaker identification sys-

tem with 50 speakers and among them 10 speakers additionally perform the task of

imposters. The recording process for MEPCO speech biometric database was done using

Gold Wave version 5.58 software and Condenser microphone at 16 kHz sampling rate

mono mode recording with PCM coding. In order to accommodate this time varying nature

of speech, recording are done in different days. In order to test the robustness of the

proposed speaker identification system against real world noise, the recordings are done in

classroom environment having disturbances like other student’s speech, humming noise

from Air conditioner, ceiling fan noise and electricity generator noise. 6 speech samples

are recorded from each speaker and each recording spans 3 s duration.

Since only voiced speech has useful speaker-specific information, the unvoiced and

silence regions of speech waves are removed using energy based thresholding technique.

Almost half the processing requirement is reduced after silence removal. Since the speech

signal is assured to be short time stationary, voiced speech is divided into overlapping

frames of length 256 samples with amount of overlapping 50 %. Compared to other

windows, Hamming window produces much less spectral leakage. Hence framing is fol-

lowed by hamming window process. Pre-emphasis is done with a Pre-emphasis factor of

0.97. In order to have speech features vigorous against noise, RASTA filtering is per-

formed on the windowed speech frames. To obtain RASTA–MFCC feature, 40 filters filter

bank is implemented for both triangular and Gaussian filter banks. The feature models are

obtained by having 256 mixtures in GMM–UBM models. Out of the 6 sessions of speech

recording for every speaker, first three sessions are used for training the speaker model, rest

three sessions are used for testing the identity of the speaker. For every speaker the ratio of

number of correctly identified session to the total number of sessions is calculated. This

ratio in percentage is treated as the identification accuracy of that particular speaker.

Similarly, the identification accuracy of all the 50 speakers is calculated. The average of all

these 50 identification accuracies is the identification accuracy of the proposed speaker

identification system.

Identification Accuracy ð%Þ ¼ Number of sessions correctly identified

Total number of sessions
� 100 ð18Þ

The proposed speaker identification system provides an efficient identification of

94.5 % for triangular filter bank design and 96 % for Gaussian filter bank design. The
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performance of RASTA–MFCC feature is compared with traditional MFCC feature in text

independent speaker identification system under noisy environment. It is found that the

RASTA–MFCC feature is more robust and provides an identification accuracy of 97.67 %

in the case of Quadrilateral filter bank with the speech database size of 50 speakers while

the MFCC method provides an accuracy of 88 %. GMM–UBM modeling is used for its

effective resistance towards imposter attack. A bar chart for the performance comparison

of different GMM modeling methods with different MFCC features is shown in Figs. 7, 8.

A comparison between the performances of various filter bank structures with RASTA–

MFCC features modeled using GMM–UBM is shown is Fig. 9.
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Table 1 Comparison of various speaker identification works

S.
No.

Speaker identification
works

Feature Database size Accuracy
(%)

1 Marco et al. [18] RASTA-PLP 24 speakers 80

2 Reynolds [19] (noise
robust)

MFCC 49 speakers telephone
speech

80.8

3 Revathi et al. [20] PLP 50 speakers from
TIMIT

91

4 Gomez [21] Multiple parametric self-
organizing maps

40 speakers from
CSLU

93

5 Triangular filter bank RASTA–MFCC 50 speakers 94.5

6 Gaussian filter bank RASTA–MFCC 50 speakers 96

7 Proposed quadrilateral
filter bank

RASTA–MFCC 50 speakers 97.67
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All the 10 imposter speakers have been correctly identified. Table 1 show that the

proposed Quadrilateral filter bank with RASTA–MFCC feature outperforms other speaker

identification techniques. The reason behind this is that the proposed filter bank encom-

passes more low frequency, high energy speaker specific information than high frequency

information for speaker modeling.

6 Conclusion

In this paper, text independent speaker identification under noisy environment is imple-

mented using RASTA–MFCC as feature vector and GMM–UBM as the modeling. A new

Quadrilateral filter bank structure is designed and its performance is found to be better than

conventional filter banks. Experimental results show that the RASTA–MFCC features with

Quadrilateral filter banks are more robust to noisy environment than triangular and

Gaussian filter banks. The UBM adaptation is faster than GMM training. The quality of

UBM is better than GMM when small training segments on the order of 2–5 s. Only the

detection time of UBM is longer than GMM. Speaker identification system may have

applications in banking over telephone, attendance systems, computer security, database

access systems, and forensics.
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