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Abstract This paper presents a new construction algorithm of Quasi-cyclic low-density

parity-check (QC-LDPC) codes of medium to large block-length by combining QC-LDPC

codes of small block-length as their component codes, via Chinese remainder theorem.

Such component codes were constructed by permuting each column block sequentially to

attain the desire local girth. After combining all component codes to generate an expanded

parity-check matrix, the resulting girth is greater than or at least equal to the highest girth

of component codes. We investigate a lower bound for circulant permutation matrices in

the proposed method, which provides efficient and fast encoding for a desired girth, and

has very simple structure and more economical in terms of hardware implementation. As

already proven, a high girth parameter of the parity-check matrix ensures a good error

correcting performance. Thus, simulation results show that our proposed construction

method of the parity-check matrix significantly outperforms the other well-known existing

methods, has low error-floor, and can reduce encoding complexity for medium to large

block-length QC-LDPC codes.
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1 Introduction

A low-density parity-check (LDPC) code is a class of linear block codes which can be

categorized as a random or structured LDPC code, based on the construction method of a

parity-check matrix, H. Practically, LDPC codes were first proposed in 1962 [1], since then

it was ignored for almost three decades because of computation complexity at that time.

Then, Tanner [2] investigated a bipartite graph, which can ease the encoding and decoding

of LDPC codes. Later on in the late 1990s, many researchers focused on rediscovery of

LDPC codes [3–5] and found that a carefully designed LDPC code can give an error

performance close to the Shannon’s limit over an additive white Gaussian noise (AWGN)

channel. Currently, LDPC codes are considered as the most eligible channel codes for

various practical applications in the field of wireless communications.

Although LDPC codes with large block-length usually provide a good performance but

at the cost of huge memory requirement and computation complexity of the H matrix

construction. To overcome this problem, Quasi-cyclic LDPC (QC-LDPC) codes were

proposed by Fossorier [6], which is based on algebraic and geometric theories and com-

binatorial designs. However, the flexibility of code rate and code length is restricted by the

matrix construction theories [6–10]. Nevertheless, good QC-LDPC codes are well suited

for certain practical applications such as data storage systems, DVB-T2/S2, IEEE 802.16e,

IEEE 802.11n, and 10 Gb Ethernet, because they can be easily encoded using shift-reg-

isters, thus requiring less memory and less computational complexity [7]. These features

motivate us to take an intensive interest in the construction of large block-length QC-

LDPC codes with high girth for future applications in data storage and communication

systems. Note that the term ‘‘girth’’ implies the shortest cycle in a Tanner graph or in the

H matrix.

In addition, remarkable efforts have been carried out to find various QC-LDPC con-

structions with explicit algebraic and combinatorial designs. For example, Fan [11]

introduced an array code with no 4-cycle length that can be viewed as one of the properties

of QC-LDPC codes. Another approaches to design large girth structured QC-LDPC codes

based on CPM by deleting certain block-rows and block-columns of the H matrix were

proposed in [12–16]. Recently, QC-LDPC codes up to the girth 8 were proposed by

Sudarsan et al. [17], which based on complete protograph. Moreover, Eleftheriou et al. [13]

presented a modified array code (MAC) by applying a cyclic shift to a Fan’s array code so

as to reduce the number of 10s in a lower triangular H matrix, and its performance is

superior to the Fan’s array code. Additionally, Shu Lin et al. [9] had significant contri-

bution for algebraic QC-LDPC codes, which have shown good performance with low

error-floor and reduced-complexity.

A Chinese remainder theorem (CRT) based combining method was first introduced in

[18]. It gives a unique reconstruction of a large positive integer K from its remainder

modulo positive integers fL1; L2; . . .; Lsg, where K\lcm L1; L2; . . .; Lsð Þ and lcm(x) stands
for the least common multiplier of a vector x. In addition, CRT provides a simple

reconstruction formula for an integer K, if all moduli are co-prime to one another. In a class

of structured LDPC codes, a method based on CRT to extend the code length of the base

matrix of QC-LDPC codes was proposed in [19], which offer significant less time con-

sumption to construct the H matrix with high girth together with flexible code length and

code rate.

Generally, a researcher’s most challenging problem is to find out optimized memory

requirement for hardware deployment of QC-LDPC codes and to select meaningful lower
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bound on the circulant permutation matrices (CPMs). Recently, the necessary conditions

for QC-LDPC codes to have girth up to 12 was proposed in [20, 21]. In this paper, we

optimize the lower bound for our proposed QC-LDPC codes for various girths, which are

necessary conditions to obtain the desired girth of proposed QC-LDPC codes. The lower

bound obtained using a greedy computer based search algorithm for a given girth is more

realistic than that obtained from the recent work in [10]. Furthermore, our results can be

applied to any general class of regular QC-LDPC codes.

For large block-length codes, LDPC codes require a large computation time for

encoding the H matrix. For instance, the most popular LDPC code constructed from a

progressive-edge growth (PEG) algorithm normally has the computational complexity

scaled as OðmnÞ [22], where n is the number of symbol/variable nodes and m is the number

of check nodes. Recently, in [23], proposed QC-LDPC codes based on constraint selection

of shifting matrix, with reduced encoding complexity mainly an area reduction of 40–55 %

is stated.

This paper aims to reduce the complexity of encoding for regular QC-LDPC codes with

large block-length. To do so, we propose a novel algorithm to construct theHmatrix with a

large girth and then apply the CRT algorithm to expand the component QC-LDPC code

without reducing its local girth. To illustrate the contribution of this paper, we compare the

bit-error rate (BER) performance with the PEG based QC-LDPC codes and the other array

codes with CRT. We found that the proposed method outperforms the others in terms of

BER performance and computation complexity of the H matrix.

The rest of the paper is organized as follows. Section 2 summarizes the preliminaries of

QC-LDPC codes and CRT. Section 3 explains a method to generate the H matrix based on

our proposed algorithm to construct the component QC-LDPC codes combined with CRT.

Section 4 presents simulation details and results with an example. Some important prop-

erties of the proposed method are discussed in Sect. 5 followed by conclusion in Sect. 6.

2 Preliminaries

2.1 Quasi-Cyclic LDPC Codes

The H matrix of a ðj; kÞ QC-LDPC code with column weight j and row weight k, is called

regular if the H matrix has uniform column weight and row weight [6]. It is based on L� L

CPMs, defined as a mother matrix, MðHÞ, of size mL� nL, which can be uniquely con-

structed by shifting the order of an identity matrix, I, based on its corresponding CPM, as

given by

MðHÞ ¼

Ia11 Ia12 � � � Ia1n
Ia21 Ia22 � � � Ia2n
..
. ..

. . .
.

Iam1 Iam2 � � � Iamn

2
6664

3
7775; ð1Þ

where aij 2 0; 1. . .; L� 1;1f g and Iaij is defined as the I matrix of size L� L for 1� i�m

and 1� j� n, which is obtained by cyclically right shifting the rows of the I matrix by aij
times. The zero matrix of size L� L is represented when aij ¼ 1. The H matrix consists of

m block-rows indexed from 0 to m� 1, and n block-columns indexed from 0 to n� 1. It is

noted in ([6], Theorem 2.5) that the girth of an ultra-sparse QC-LDPC code, where j� 3

cannot be greater than 12.
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In addition, the matrix EðHÞ is called the exponent or shifting matrix and it can be

obtained by replacing each element Iaij in MðHÞ by aij as follows:

EðHÞ ¼

a11 a12 � � � a1n
a21 a22 � � � a2n

..

. ..
. . .

. ..
.

am1 am2 � � � amn

2
6664

3
7775: ð2Þ

By combining the exponent matrix EðHÞ and the CPM Iaij , it will give the H matrix. For

example, the MðHÞ matrix in (1) can be constructed using an exponent coupling procedure

according to

MðHÞ ¼ EðHÞ � Iaij ; ð3Þ

where � is a coupling operator.

A cycle of length 2l in the Tanner graph of MðHÞ is called a 2l-block cycle, which can

be represented by an exponent chain in the MðHÞ matrix according to

ðIai1 j1 ! Iai1 j2 ! Iai2 j2 ; . . .; Iail jl ! Iail j1 ! Iai1 j1 Þ ð4Þ

or in the EðHÞ matrix according to

ðai1j1 ! ai1j2 ! ai2j2 ; . . .;! ailjl ! ailj1 ! ai1j1Þ: ð5Þ

Due to the presence of short length cycle in the H matrix, the performance of LDPC

codes will degrade. It is very important to understand the structure of the H matrix. The

theorem mentioned below was first proposed by Fossorier in [6], which stated that in QC-

LDPC codes, the necessary and sufficient condition for the existence of length 2l-block

cycle is given by

X2l
k¼1

ðamk ;nk � amkþ1;nkÞ � 0 mod L; ð6Þ

where ik 6¼ ikþ1; jk 6¼ jkþ1, and ilþ1¼il.

2.2 Chinese Remainder Theorem

Let I be a positive integer, L1; L2; . . .; Ls be s moduli, and r1; r2; . . .; rs be s remainders of I,

i.e.,

rb � I Lbj j; ð7Þ

where 0� rb � Lb for 1� b� s. If all the moduli Lb’s are co-prime and 0� I\
Qs

b¼1 Lb,

then I can be uniquely reconstructed from its s remainders via a simple CRT theorem

according to [19], i.e.,

I ¼
Xs

b¼1

rbAbLb Lj j; ð8Þ

where L ¼
Qs

b¼1 Lb, Lb ¼ L=Lb, and AbLb � 1 Lbj j.
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2.3 Generalized Combination of QC-LDPC Codes via CRT

Let Cb be a QC-LDPC codeword, where b ¼ 1; 2; . . .; s, whose Hb is an m� n array of

Lb � Lb CPMs and/or zero matrices. Let EðHbÞ ¼ ðaðbÞij Þ be the exponent matrix and

L ¼
Qs
b¼1

Lb. A QC-LDPC code C with the H matrix of size mL� nL can be constructed by

using the generalized combining method, which gives us the exponent matrix EðHÞ ¼ ðaijÞ
according to (2). In the case, where a

ðbÞ
ij 6¼ 1 in EðHÞ for all b ¼ 1; 2; . . .; s, we can obtain

aij according to

aij ¼
Xs

b¼1

abijAbLb Lj j: ð9Þ

Proposition 1 [24]. For b ¼ 1; 2; . . .; s, let gb denote the girth of Cb and g denote the

girth of C then

g�maxfg1; g2; . . .; gsg: ð10Þ

In the next section, we propose a novel method to obtain a large block-length H matrix,

that has the properties, such as high girth and less complex encoding, by constructing the

component QC-LDPC codes. Thereafter, these component codes will be combined with

CRT without reducing their local girth.

3 Proposed Method

This section introduces a novel method for constructing the H matrix that is suitable for

medium to large block-length, and has high girth and less complex in terms of

computation.

Assume that L1 and L2 are the prime numbers, which indicate the CPM size of the two

component matrices, �H1 and �H2 having girth g1 and g2, respectively. The procedure

explained here is for constructing the proposed H matrix of size jL� kL such that L ¼
L1 � L2 by using CRT as in (9) without losing its local girth. Later in this work, it can be

extended to combine the �H1; �H2; :::; �Hs component matrices having the CPM size of

L1; L2; . . .; Ls, respectively, to obtain theH matrix such that L ¼ L1 � L2 � � � � � Ls. Below

are the steps of the proposed method.

Table 1 A proposed generalized
component matrix

Block-row
index

Block-column index

�H1 1 2 � � � k – 1 k

1 0 1 � � � k – 2 k – 1

2 Z Z � � � Z Z

..

. ..
. ..

. . .
. ..

. ..
.

j – 1 Z Z Z Z Z

j Z Z Z Z Z
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Step 1 To construct a component �H1 j; kð Þ matrix, where j and k are the number of block-

rows and block-columns, respectively. The method for constructing this �H1 j; kð Þ matrix

is given in Table 1, where the indexed number 0 represents the I matrix of size L1 � L1,

and 1 denotes cyclically one right shifted order of the I matrix, and so on. The indexed

number Z is the designed cyclically right shifted order of the L1 � L1 CPM. It should be

noted that the size of �H1 matrix is jL1 � kL1.

Step 2 For each column-block (starting from the leftmost column to the right), replace

each Z from the 2nd to jth row using a number between 0 to L1 � 1. To do so, we find all

possible data patterns of each column-block. The maximum number of data patterns is

denoted as Pfc. For instance, if L1 ¼ 3, we will take the 2nd and the 3rd block-row from

Table 1. In this case, there will be 9 different data patterns available for the 1st column.

In general, the maximum number of possible data patterns in Pfc can be calculated

according to

Pfc ¼
p

1

� �j�1

; ð11Þ

where p is the size of the chosen CPM’s. We replace the remaining block-rows indexed

by Z as shown in Table 1 with the data pattern, through column by column succession

order and computing its local girth g by considering up to the correspondent column.

To find a local girth for each data pattern, we will assume that all sub-matrices other than

the existed numbered data patterns labeled as Z are zero matrices of size L1 � L1. If we

cannot find the local girth (i.e., no cycle), we will assume that the girth is infinite.

Step 3 The data pattern that yields the largest local girth with minimum indexed value in

all possible data patterns will be selected for the 1st column. Then, we proceed the same

procedure as explained in Step 2 in a column by column manner until all block-columns

are filled with the chosen number of data patterns. Table 2 shows an example of the

component matrix �H1 after obtaining all Z’s for L1 ¼ 29 and g1 ¼ 8: This process

ensures the minimum size of CPM’s in the QC-LDPC codes, which will be useful for

constructing a good H matrix with high girth and low memory requirement for hardware

implementation. Table 3 illustrates the minimum lower bound of the CPM size for

various block lengths of the component matrix based on extensive simulation search for

regular (3, k) LDPC codes. The obtained CPM size will be the optimized lower bound

for constructing the QC-LDPC parity-check matrix with high girth and variable code

rates.

Step 4 The other component matrix �H2 can be obtained by choosing a suitable size of a

prime number L2 based on Table 4, such that it maintains the optimum lower bound for

the desired girth g2. For instance, we choose a lower bound of the CPM size from

Table 3, i.e., L2 � 7 for g ¼ 6. The construction procedure for �H2 is similar to that for

Table 2 A designed �H1 index
matrix

Block-row index Block-column index

�H1 1 2 3 4 5 6 7

1 0 1 2 3 4 5 6

2 0 3 8 0 0 10 24

3 0 0 13 1 8 0 15
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�H1. Table 4 shows an example of the component matrix �H2 after obtaining all Z’s for

L2 ¼ 7 and g2 ¼ 6.

Step 5 Finally, we construct the exponent matrix EðHÞ by combining all the component

matrices via CRT and replacing each entry aij of EðHÞ with Iaij so as to obtain the H

matrix of size mL� nL with girth g, which still satisfies the condition in (10), i.e.,

g�maxfg1; g2g as shown in Table 5.

It should be pointed out that with carefully selecting the CPM size and block length, we

can construct any large block-length H matrix up to the girth of 12 for QC-LDPC codes.

4 Simulation and Results

To compare the BER performance of the proposed method with some existing methods, we

consider the H matrix of size M � N, where M is the number of parity bits, N is the code

length with code rate R, and R is equal to 1�M=N. To evaluate its performance, we

simulate the system based on an additive white Gaussian noise (AWGN) channel, where a

binary input sequence ak 2 0; 1f g of length N �M bits is encoded by an LDPC encoder

and is mapped to an N-bit coded sequence bk 2 	1f g. Hence, the received sequence is

given by yk ¼ bk þ nk, where nk is AWGN with zero mean and variance r2. At the

receiver, the received sequence yk is decoded by LDPC decoder based on a message

passing algorithm [1] with 10 iterations. The signal-to-noise ratio (SNR) is defined as

SNR ¼ 10 log10 1=2Rr2ð Þ in decibel (dB). Each BER point is computed based on a min-

imum number of 10,000 data packets.

Example 1 In this example, we study the proposed method based on the component

matrices combined with CRT to construct a large block-length H matrix. The obtained

matrix has a uniform degree of 3 for each symbol node. By using our proposed algorithm,

we construct a code C1 for girth g1 ¼ 8, whose exponent matrix �H1 is of size 3� 7 as

shown in Table 2. To expand �H1, we first select s ¼ 2. For g1 ¼ 8 and assume that g2 ¼ 6,

Table 3 gives L1 � 29 and L2 � 7, respectively. Then, we choose L1 ¼ 29 and L2 ¼ 7 so as

to maintain the lower bound on CPMs. After combining, the CPM size of EðHÞ matrix will

be L ¼ L1 � L2 ¼ 203. Similarly, we construct the 3� 7 exponent matrix, �H2, using our

Table 3 Estimation of minimum
CPM size L with corresponding
girth

k (Block-length) g ¼ 6 g ¼ 8 g ¼ 10 g ¼ 12

5 7 17 83 223

7 7 29 239 709

9 11 47 499 1399

11 11 61 743 3271

Table 4 A designed �H2 index
matrix

Block-row index Block-column index

�H2 1 2 3 4 5 6 7

1 0 1 2 3 4 5 6

2 0 4 1 1 5 2 1

3 0 2 4 2 2 1 3
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proposed algorithm for g1 ¼ 6 as shown in Table 4. Then, we obtain EðHÞ by combining
�H1 and �H2 via CRT as given in Table 5. Finally, we replace each entities aij of EðHÞ with
Iaij . The obtained H matrix will provide the QC-LDPC code with girth g1 ¼ 8.

Figure 1 illustrates the BER performance of the proposed (609, 1421) QC-LDPC code,

which is compared with some well-known existing LDPC codes, where FAN-CRT is the

code from the shortened array code based on CRT [17], IMAC QC-LDPC is the code from

Singhaudom et al. [14], and QC-LDPC-PEG is the PEG based QC-LDPC code as

described in [7]. Clearly, the proposed algorithm performs better than other algorithms,

especially when the SNR is high.

We also compare the BER performance of different schemes as a function of the

number of iterations at SNR = 4 dB in Fig. 2. It is apparent that the proposed algorithm

converges faster than other algorithms. Furthermore, we also investigate the local girth of

each algorithm as given in Fig. 3. Clearly, the proposed algorithm offers the girth of 8

similar to other algorithms except IMAC QC-LDPC. Note that the proposed CRT-based

Hmatrix can have a higher girth by carefully choosing the value of CPMs and block-length

size as depicted in Table 3.

5 Properties of the Proposed Codes

The component QC-LDPC codes, which are constructed by using the proposed method

when combined with CRT to construct a large block-length H matrix, have good attributes,

such as large girth, less complexity, good storage, flexible code rates, and flexible code

Table 5 A combined exponent
matrix, EðHÞ via CRT

Block-row index Block-column index

EðHÞ 1 2 3 4 5 6 7

1 0 1 2 3 4 5 6

2 0 32 8 29 145 184 169

3 0 58 158 30 37 29 73

1 1.5 2 2.5 3 3.5 4
10
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Proposed QC-LDPC-CRT (609,1421) code

Fig. 1 Performance comparison of various QC-LDPC codes
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lengths. Details of some properties are discussed below. Furthermore, our proposed QC-

LDPC code has lower computational complexity and is much more practical as compared

to that obtained from the PEG algorithm.

5.1 Girth

It is one of the well-known parameters to determine the performance of decoding. In

iterative belief propagation decoding, the algorithm converges to the most optimal solu-

tion, if the H matrix is free of short-cycle length. Cycle lengths of 4 and 6 lead to

undesirable decoded data. When short-cycle lengths exist in the H matrix, the algorithm

breaks down very soon. Therefore, the H matrix with large girth should always be taken

into account. Our algorithm still satisfies (10), i.e., the girth g�maxfg1; g2g as shown in

Fig. 3.
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Fig. 2 BER performance as a function of the number of iterations for different H matrices at SNR = 4 dB
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5.2 Complexity

Let us analyze the computational complexity and the storage usage of the proposed

algorithm.

5.2.1 Computational Complexity

Computational complexity of the proposed algorithm primarily depends on the algorithm’s

exploration time to obtain the exponent matrix indices. Exploration time depends on a row

weight and a column weight of the desired exponent matrix. In the H matrix, the row and

column weights are small numbers irrespective of code length. So we can divide com-

putational complexity into two categories, the one for calculating the exponent matrix and

the other for applying the CRT algorithm for large size block-length LDPC codes. How-

ever, both categories depend on codeword length, but the combining algorithm does not

grow with the size of H matrix. From CRT formulas in Sect. 2.2, we can see that, each

CRT computation needs only ðs� 1Þ additions, 2ðs� 1Þ multiplications, and 1 modulo

operation. Some of the values like L; Lb, and Ab can be computed prior to initialize our

CRT based combining method, and L1; L2; . . .; Ls should be selected optimally. Hence, the

complexity of each CRT computation is negligible, if compared to the complexity of the

design of parity-check component codes.

5.2.2 Storage Usage

In the H matrix, the row and column indices of ‘1’ entries will be pre-defined and stored in

the shift registers for practical applications. Therefore, our proposed method has a sig-

nificant advantage of storing smaller index values, as shown in �H1 and �H2 in our example,

discussed in Sect. 3, which has a minimum number of CPM size with large girth. This may

reduce the storage requirement of a decoder of the proposed code. Furthermore, the scope

of this method can be expanded in hardware implementation as well [25].

6 Conclusion

In this paper, we propose a new method for constructing the H matrix of QC-LDPC codes

that aims for selecting the indices of the exponent matrix with a maximized local girth for

column weight 3, by sequentially assigning proper sub-matrix for each column of EðHÞ
matrix. A class of structured regular QC-LDPC codes has been constructed by using a CRT

algorithm. This method can also be generalized to any number of column weights. As

shown in simulation results, the proposed code outperforms the well-known algorithms in

certain cases. Any general case of large block-length LDPC codes with good performance

can be constructed using our proposed method. It fulfills almost all the parameters required

for good LDPC codes and suitable for practical applications in terms of cost efficiency.

Nevertheless, we found that the proposed algorithm might require higher computational

search than some existing algorithms. Consequently, one should trade-off between per-

formance and complexity when designing the QC-LDPC codes.
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