
An Analytical Discourse on Strong Edge Coloring
for Interference-free Channel Assignment
in Interconnection Networks

I. Annammal Arputhamary1 • M. Helda Mercy2

Published online: 25 May 2016
� Springer Science+Business Media New York 2016

Abstract A strong edge coloring of a graph G is a proper edge coloring in which no two

edges of the same color lie within distance 2 from each other. The minimum number of

colors required for strong edge coloring of a graph G is called strong chromatic index and

is denoted by v0sðGÞ. Channel assignment problems are closely related with strong edge

coloring problem where the colors represent frequencies. In wireless networks, assigning

channels or frequencies to the links between transceivers (vertices) to avoid interference

can be modelled as a strong edge coloring problem. In this paper, we determine the exact

values of strong chromatic indices of interconnection networks namely butterfly network,

Benes network, hypertree network and honeycomb network.

Keywords Chromatic index � Strong chromatic index � Induced matching � Butterfly
network � Benes network � Hypertree network � Honeycomb network

1 Introduction

Graph coloring is a well known and well examined area of graph theory that has numerous

applications. A proper edge-coloring of a graph G is an assignment of colors to the edges of

G such that no two adjacent edges share the same color. The chromatic index of G is the

littlest number of colors utilized in the proper-edge coloring of G. The distance between

two edges e and f, is the number of edges in a shortest path between an endpoint of e and an

endpoint of f. A strong edge coloring of a graph G is a proper edge coloring in which no

two edges of the same color lie within distance 2 from each other. The strong chromatic

index of G is the minimum number of colors required for strong edge coloring of G. Each

color class of a strong edge coloring of G is an induced matching M in G [4]. That is,
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strong edge coloring of G is a coloring of edges of G in which edges of the same color form

a matching M where no two edges of M are joined by an edge of G. Strong edge-colouring

has stimulating applications, specifically for channel assignment in mobile multi-hop radio

networks [15] and in cellular networks [8].

2 An Overview of the Paper

The concept of strong edge coloring was introduced by Erd}os and Nešetřil around 1985. The
problem of determining the strong chromatic index of a graph is proved to be NP–complete

[10]. A basic conjecture formulated by Erd}os and Nešetřil [3] states that v0sðGÞ� 5
4
D2 for

every graph G with maximum degree D. Also, it is conjectured by Faudree et al. [4] that

every bipartite graph of maximum degree D has a strong edge coloring withD2 colors. Togni

[19] obtained strong chromatic indices of d-dimensional grids and some toroidal grids. He

also gave approximate results on the strong chromatic index of generalized hypercubes. In

2011, Chand and Liu [2] determined some cubic graphs with strong chromatic index 6.

Strong chromatic index of planar graphs was studied by Hudak et al. [7]. The bound given

by Hudak for planar graphs was improved by Bensmail et al. in [1]. Strong edge coloring is

still in research on effective grounds in wireless networks.

Being one of the fields in wireless networks, channel assignment problems emerge in a

wide assortment of certifiable circumstances. The traditional channel assignment problem

is to assign a radio channel which is a nonnegative integer to every transmitter of a remote

system. The channels assigned to adjacent transmitters fulfil some partition constraints in

order to keep away from interference. The thought is to minimize the number of fre-

quencies and build up obstruction free communication in remote systems. In 1980, Hale [6]

planned such channel assignment problems in network engineering into a graph coloring

problem where the edges of a graph signify the communication channels, and two trans-

mitters are nearby if they are very close to one another. Moreover, interference levels

might be powerful to the point that even the distinctive frequencies utilized at ‘‘close’’

communication channels might meddle. Thus, in 1988, Roberts [16] presented a variation

of the classical channel assignment problem in which ‘‘close’’ communication channels

within distance 2 must get diverse frequencies. Persuaded by this issue, Griggs and Yeh [5]

made an interpretation of the issue into the problem of graph theory, where two trans-

mitters are ‘‘close’’ in the network if they are of distance 2 in the graph.

This problem can be regarded as a problem in strong edge coloring where two edges

within distance 2 from each other of a graph must get different colors (frequencies). In

strong edge coloring we reuse the colors of the edges which are from two distance apart. It

helps us to reduce the number of new frequencies and avoid frequency interference. It has

lot of applications in interconnection networks especially in telecommunications as there is

frequency interference problem. Due to the increased persuasion of strong edge coloring in

interconnection networks, we examine the strong chromatic indices of butterfly network,

Benes network, hypertree network and honeycomb network.

3 Strong Chromatic index of Butterfly Network

Butterfly graphs are characterized as the basic graph of FFT networks which can perform

the Fast Fourier Transforms productively. The butterfly network comprises of a series of

switch stages and interconnection designs, which permits n inputs to be associated with n
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outputs. The Benes network consists of back-to-back butterflies. As butterfly is known for

FFT, Benes is known for permutation routing [11]. The butterfly and Benes networks are

essential multistage interconnection networks, which have appealing topologies for com-

munication networks [11]. The most commonly utilized networks as part of the routing

literature and in parallel computers are butterflies. It is a bounded-degree derivative of the

hypercube which aims at overcoming few disadvantages of hypercube. It is non Hamil-

tonian. It is hierarchically recursive [11].

The n-dimensional butterfly network BF(n) has (n ? 1)2n vertices and n2n?1 edges. The

set V of nodes of an n-dimensional butterfly network correspond to pairs (x, j), where j is

the level or dimension of a node 0 B j B n and x is an n-bit binary number that denotes the

row of the node. The edge connecting nodes (x, j) and (x0, j0) is called a row edge if x = x0

and is called a cross edge if x and x0 are unequal. Denote the row edges between two

consecutive levels j and j - 1 by eji, 1 B j B n and 1 B i B 2n. Denote the cross edges

from level j to level j - 1 (left to right) by ei
j, 1 B i B 2n-1 and the cross edges from level

j - 1 to level j (right to left) by Ei
j-1, 1 B i B 2n-1. Figure 1 shows a BF(2)network.

3.1 Proposition

For BF(1), v0sðGÞ = |E(G)| = |V(G)|.

Proof BF(1)is a cycle C4. For strong edge coloring, all the four edges of C4 should be

assigned with distinct colors. This completes the proof.

3.2 Lemma

For BF(2), v0sðGÞ ¼ 8:

Proof We apply greedy algorithm to color all edges of BF(2). Let c(e)denote the colour

of the edge e 2 E.

We shall first assign colors to the row edges of BF(2).

Fig. 1 BF(2)
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The row edges between levels 1 and 0 can be assigned with the colors as follows.

cðe1iÞ ¼
c11; i � 1ðmodÞ2
c12; i � 0ðmodÞ2

�

The row edges between levels 2 and 1 can be assigned with the colors as follows.

cðe2iÞ ¼
c21; 1� i� 2

c22; 3� i� 4

(

Now we proceed to assign colors to the cross edges. The cross edges {ei
1, 1 B i B 2n-1}

connecting levels 1 and 0 are assigned with color a1 and the cross edges {ei
2, 1

B i B 2n-1} connecting levels 2 and 1 are assigned with color a2. The cross edges

{Ei
0, 1 B i B 2n-1} connecting levels 0 and 1 are assigned with color a3 and the cross

edges {Ei
1, 1 B i B 2n-1} connecting levels 1 and 2 are assigned with color a4. Totally 8

colors are used for both the row edges and cross edges. We can see that the above coloring

scheme gives a strong edge coloring. There are four cycles of length 4 in BF(2)of which

two cycles lie between the levels 1 and 0, the other two cycles lie between levels 2 and 1.

Each cycle C4 requires 4 colors for strong edge coloring. We note that the two cycles

between any two consecutive levels are disjoint and are at two distance apart. This enables

us to assign the same 4 colors for the two cycles C4 between the two consecutive levels.

But the colors assigned for the cycles between the levels 1 and 0 are distinct from the

colors assigned for the cycles between the levels 2 and 1. Thus the coloring scheme defined

above optimally colors BF(2)using 8 colors.

3.3 Theorem

The strong chromatic index of BF(n), n C 3 is 12.

Proof First we assign colors to the edges of BF(3) between levels 0 and 3. This process

includes two steps.

(1) Color all row edges

(2) Color all cross edges

Step (1)

• Between the levels 1 and 0, the row edges can be assigned with the colors as follows.

cðe1iÞ ¼ c11; 0� k� 2n � 2

2
; i ¼ 2k þ 1

c12; i ¼ 2k þ 2

(
.

• Between the levels 2 and 1, the row edges can be assigned with the colors as follows.

cðe2iÞ ¼ c21; 0� k� 2n � 4

4
; 4k þ 1� i� 4k þ 2

c22; 4k þ 3� i� 4k þ 4

(

• Between the levels 3 and 2, the row edges are assigned with the colors as follows.

cðe3iÞ ¼ c31; 0� k� 2n � 8

8
; 8k þ 1� i� 8k þ 4

c32; 8k þ 5� i� 4k þ 8

(

2084 I. Annammal Arputhamary, M. Helda Mercy

123



Step (2)

• The cross edges {ei
j, 1 B i B 2n-1, 1 B j B 3} from the level j to the level j - 1 are

assigned with the color aj.

• The cross edges {Ei
j-1, 1 B i B 2n-1, 1 B j B 3} from the level j - 1 to the level j are

assigned with the color aj?3.

The above coloring algorithm defines a strong edge coloring of BF(3).

For n[ 3, BF(n) consists of more than 3 levels. When j C 4, the row edges between the

levels 4 and 3 are at two distance apart from the row edges between the levels 1 and 0.

Therefore the colors assigned for the row edges between levels 1 and 0 can be reused for the

row edges between levels 4 and 3. Similarly the row edges between the levels 2 and 1 are at

two distance apart from the row edges between the levels 5 and 4 and so on. Applying this

idea to the row edges of BF(n), n[ 3, we have the following coloring algorithm.

For the row edges between the levels j and j - 1, j C 4, we discuss the following cases.

• When j � 1ðmod3Þ, cðejiÞ ¼ c11; 0� k� 2n � 2 j

2 j
; 2 jk þ 1� i� 2 jk þ 2j�1

c12; 2 jk þ 2j�1 þ 1� i� 2 jk þ 2 j

8<
:

• When j � 2ðmodÞ3, cðejiÞ ¼ c21; 0� k� 2n � 2 j

2 j
; 2 jk þ 1� i� 2 jk þ 2j�1

c22; 2 jk þ 2j�1 þ 1� i� 2 jk þ 2 j

8<
:

• When j � 3ðmodÞ3,cðejiÞ ¼ c31; 0� k� 2n � 2 j

2 j
; 2 jk þ 1� i� 2 jk þ 2j�1

c32; 2 jk þ 2j�1 þ 1� i� 2 jk þ 2 j

8<
:

Now we proceed to color cross edges of BF(n), n[ 3.

The cross edges between the levels j and j - 1, 4 B j B n can be colored as follows.

• The cross edges e
j
i ; 1� i� 2n�1; j � 1ðmodÞ3

� �
between the levels j and j - 1, are

assigned with the color a1.

• The cross edges e
j
i ; 1� i� 2n�1; j � 2ðmodÞ3

� �
between the levels j and j - 1, are

assigned with the color a2.

• The cross edges e
j
i ; 1� i� 2n�1; j � 3ðmodÞ3

� �
between the levels j and j - 1 are

assigned with the color a3.

• The cross edges E
j
i ; 1� i� 2n�1; j � 1ðmodÞ3

� �
between the levels j - 1 and j are

assigned with the color a4.

• The cross edges E
j
i ; 1� i� 2n�1; j � 2ðmodÞ3

� �
between the levels j - 1 and j are

assigned with the color a5.

• The cross edges E
j
i ; 1� i� 2n�1; j � 3ðmodÞ3

� �
between the levels j - 1 and j are

assigned with the color a6.

The above coloring algorithm gives a strong edge coloring of BF(n)using 12 colors.

Figure 2, illustrates the strong edge coloring of BF(3).

4 Strong Chromatic Index of Benes Network

In this section, we find the strong chromatic index of Benes network. Benes network

consists of back to back butterflies. An n-dimensional Benes network has 2n ? 1 levels,

each level with 2n nodes [11]. The middle level of the Benes network is shared by these
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butterflies [11]. An n-dimensional Benes network is denoted by B(n). For convenience, we

call the butterfly network lying between level n and level 2n of B(n) as left BF(n) and the

butterfly network lying between level n and level 0 of B(n)as right BF(n). An illustration is

given in Fig. 3.

We use the same notation for left BF(n) as given in Sect. 3. The edges of right BF(n)can

be labeled as follows. Denote the row edges in right BF(n) between level n - j ? 1 and

level n - j, 1 B j B n by e0(n-j?1)i, 1 B j B n and 1 B i B 2n. Denote the cross edges

from level n - j ? 1 to level n - j (left to right) by e0i
n-j?1, 1 B i B 2n-1 and the cross

edges from level n - j to level n - j ? 1 (right to left) by E0
i
n-j, 1 B i B 2n-1.

4.1 Proposition

The strong chromatic index of B(1) is 8.

Proof B(1)consists of two cycles C4. Each cycle requires 4 colors for strong edge col-

oring. Hence v0s (B(1)) = 8.

4.2 Lemma

The strong chromatic index of B(2) is 12.

Proof B(2) consists of two copies of BF(2). The coloring algorithm given in Lemma 3.2

can be used to color the edges of left BF(2) lying between the level 2 and level 4.

Fig. 2 BF(3)
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Let us consider right BF(2). The row edges between level 1 and level 0 are assigned

with the colors as follows.

cðe01iÞ ¼
c21; 1� i� 2

c22; 3� i� 4

(

Also the row edges between level 2 and level 1 are assigned with the colors as follows.

cðe02iÞ ¼
c31; i � 1 mod 2

c32; i � 0 mod 2

(

The cross edges between level 2 and level 1 are assigned with color a5 and the cross

edges between the level 1 and 0 are assigned with the color a6. The cross edges between

level 1 and level 2 are assigned with color a2 and the cross edges between level 0 and level

1 are assigned with color a1. This gives a strong edge coloring of B(2)using 12 colors.

4.3 Theorem

For n C 3, v0s (B(n)) = 12.

Proof We apply the coloring scheme given in Theorem 3.3, for left BF(n). Now the right

BF(n) can be colored as follows. We note that the right BF(n) lies between level n and

level 0. We color the edges of right BF(n) in two phases.

(1) color all the row edges.

(2) color all the cross edges.

Step (1) The row edges between the levels n - j ? 1 and n - j, 1 B j B n can be

colored as follows.

when j � 1ðmodÞ3; cðe0ðn�jþ1ÞiÞ

¼ c31; 0� k� 2n�1 � 2j�1

2j�1
; 2 jk þ 1� i� 2 jk þ 2j�1

c32; 2 jk þ 2j�1 þ 1� i� 2 jk þ 2 j

8<
:

Fig. 3 B(2)
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when j � 2ðmodÞ3; cðe0ðn�jþ1ÞiÞ

¼ c21; 0� k� 2n�1 � 2j�1

2j�1
; 2 jk þ 1� i� 2 jk þ 2j�1

c22; 2 jk þ 2j�1 þ 1� i� 2 jk þ 2 j

8<
:

When j � 3ðmodÞ3; cðe0ðn�jþ1ÞiÞ ¼
c11; 0� k� 2n�1 � 2j�1

2j�1
; 2 jk þ 1� i� 2 jk þ 2j�1

c12; 2 jk þ 2j�1 þ 1� i� 2 jk þ 2 j

8<
:

Step (2)

• The cross edges from the level n - j ? 1 to the level n - j, 1 B j B n can be colored

as follows.

• When j � 1ðmodÞ3, the cross edges {e0i
n-j?1:1 B i B 2n-1, 1 B j B n} between the

two consecutive levels n - j ? 1 and n - j, are assigned with the color a3.

• When j � 2ðmodÞ3, the cross edges {e0i
n-j?1:1 B i B 2n-1, 1 B j B n} between the

two consecutive levels n - j ? 1 and n – j are assigned with the color a2.

• When j � 3ðmodÞ3, the cross edges {e0i
n-j?1:1 B i B 2n-1, 1 B j B n} between the

two consecutive levels n - j ? 1 and n – j are assigned with the color a1.

• When j � 1ðmodÞ3, the cross edges {E0
i
n-j?1:1 B i B 2n-1, 1 B j B n} between the

two consecutive levels n - j to n - j ? 1, are assigned with the color a6.

• When j � 2ðmodÞ3, the cross edges {E0
i
n-j?1:1 B i B 2n-1, 1 B j B n} between the

two consecutive levels n - j to n - j ? 1, are assigned with the color a5.

• When j � 3ðmodÞ3, the cross edges {E0
i
n-j?1:1 B i B 2n-1, 1 B j B n} between the

two consecutive levels n - j to n - j ? 1, are assigned with the color a4.

The proposed coloring algorithm bequeaths an optimum strong edge coloring using 12

colors.

5 Strong Chromatic Index of Hypertree Network

The basic skeleton of hypertree is a parallel tree structure. The hypertree consolidates the

best features of the binary tree and the hypercube. The structure of binary tree has some

flaws. Message traffic density through single vertices turns out to be high and it results in

significant queuing delay at these vertices. One approach to reduce the blockage and lessen

the results of a failure of vertex or edge is to provide extra edges.

We denote an n-level hypertree by HT(n). It has 2n?1 – 1 vertices and 3(2n - 1) edges

[14]. The topmost vertex in the tree is called the root. Every vertex has two children

namely left child and right child. For convenience, we call the edge incident to left child by

left edge and right child by right edge respectively. The extra edges that connect two

vertices at the same level are called as hyper edges. The level of a vertex is defined to be

the distance from the root vertex to that vertex. For any edge e = xy of HT(n), let x be child

of y. The level of e is defined to be the level of y. Denote the left edge at any level k by

leki ; 1� i� 2k ; i � 1ðmod 2Þ ; 1� k� n, right edge at any level k by

reki ; 1� i� 2k ; i � 0ðmod 2Þ; 1� k� n and hyper edge at any level k by hei
k, 1 -

B i B 2 k-1, 1 B k B n. An illustration is given in Fig. 4.
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5.1 Proposition

(1) v0s(HT1) = 3.

(2) v0s(HT2) = 8.

Proof To prove (1), let us consider the hypertree HT(1). We find that the hypertree

HT(1)is a cycle C3. The three edges of C3 should be assigned with three distinct colors for

strong rainbow edge coloring. Thus v0s(HT1) = 3.

To prove (2), let us consider the hypertree HT(2). Left and right edges at level 1 can be

colored as c(le1
1) = c1 and c(re2

1) = c2. Similarly level 2 edges can be colored as

c(le1
2) = c3, c(re2

2) = c4, c(le3
2) = c5 and c(re4

2) = c6. Moreover, the hyper edges at level 1

are assigned with color c7 and the hyper edges at level 2 are assigned with color c8. This

gives an optimum strong edge coloring using 8 colors.

5.2 Theorem

For n C 3, the strong chromatic index of HT(n) is 12.

Proof We color the edges of HT(n)in two phases.

(1) color the left and right edges

(2) color the hyper edges

Step (1) Left and right edges at level k, 1 B k B 3 can be colored as stated below

• Left and right edges at level 1 can be colored as follows.

cðle11Þ ¼ c1; c re12
� �

¼ c2:

• Left and right edges at level 2 can be colored as follows. c(le1
2) = c3, c(re2

2) = c4,

c(le3
2) = c5, c(re4

2) = c6.

• Left and right edges at level 3 can be colored as follows.

c(lei
3) = c7 for 1� i� 2k�1; i � 1ðmod2Þ and c(rei

3) = c8 for 1� i� 2k�1; i �
0ðmod2Þ
c(lei

3) = c9 for 2k�1 þ 1� i� 2k; i � 1ðmod2Þ and c(rei
3) = c10 for

2k�1 þ 1� i� 2k; i � 0ðmod2Þ.
For n[ 3, the left and right edges at level k C 4 can be colored as follows.

• When k � 0ðmod4Þ, c(leik) = c1 for 1 B i B 2 k-1, i � 1ðmod2Þ and c(rei
k) = c2 for

1 B i B 2 k-1, i � 0ðmod2Þ. Similarly c(lei
k) = c3 for 2k�1 þ 1� i� 2k; i � 1ðmod2Þ

and c(rei
k) = c4 for 2

k�1 þ 1� i� 2k; i � 0ðmod2Þ.

Fig. 4 HT(2)
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• When k � 1ðmod4Þ, c(leik) = c5 for 1 B i B 2 k-1, i � 1ðmod2Þ and c(rei
k) = c6 for

1 B i B 2 k-1, i � 0ðmod2Þ. Also c(lei
k) = c7 for 2k�1 þ 1� i� 2k; i � 1ðmod2Þ and

c(rei
k) = c8 for 2

k�1 þ 1� i� 2k; i � 0ðmod2Þ.
• When k � 2ðmod4Þ, c(leik) = c3 for 1 B i B 2 k-1, i � 1ðmod2Þ and c(rei

k) = c4 for

1 B i B 2 k-1, i � 0ðmod2Þ. Moreover c(lei
k) = c1 for 2

k�1 þ 1� i� 2k; i � 1ðmod2Þ
and c(rei

k) = c2 for 2
k�1 þ 1� i� 2k; i � 0ðmod2Þ.

• When k � 3ðmod4Þ, c(leik) = c7 for 1 B i B 2 k-1, i � 1ðmod2Þ and c(rei
k) = c8 for

1 B i B 2 k-1, i � 0ðmod2Þ. Furthermore c(lei
k) = c5 for 2k�1 þ 1� i� 2k; i �

1ðmod2Þ and c(rei
k) = c6 for 2

k�1 þ 1� i� 2k; i � 0ðmod2Þ.
Step (2) Hyper edges at level k can be colored as follows.

If k � 1ðmod2Þ, c(heik) = c11 for 1 B i B 2 k-1 and if k � 0ðmod2Þ, c(heik) = c12 for

1 B i B 2 k-1.

The above coloring algorithm gives a strong edge coloring of HT(n)using 12 colors.

Figure 5 illustrates the strong edge coloring of HT(3).

6 Strong Chromatic Index of Honeycomb Network

Honeycomb network HC(n)can be constructed from hexagons in different ways. The most

straightforward approach to characterize them is to consider the segment of the hexagonal

tessellation which is inscribed in a given convex polygon [18]. This network is convenient

to model the base stations of wireless networks. Honeycomb networks are mostly used in

computer graphics [9] and cellular phone base stations [13]. Honeycomb networks are

better as far as degree, diameter, aggregate number of connections, cost and the bisection

width than mesh connected planar graphs. Stojmenovic [18] has examined the topological

characteristics of honeycomb networks and routing in honeycomb networks.

The number of vertices and edges of HC(n) are 6n2 and 9n2 - 3n respectively [12]. The

diameter is 4n - 1.We use the level numbering scheme proposed by the Sharieh et al. [17]

for the honeycomb networks. Each row edge in HC(n)is identified by ei,j, where i repre-

sents the row number in which the edge exists, j represents the position of the edge in the

row. Denote the vertical edge along column by Vp,q, where p represents the column number

in which the edge exists, q represents the position of the edge in the column. A strip in

HC(n) is a series of hexagons aligned in a line between the rows Ri and Ri?1,

1 B i B 2n – 1 such that any two consecutive hexagons will have a vertical edge in

Fig. 5 Strong edge coloring of HT(3)
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common. The strip between the rows Ri and Ri?1, 1 B i B 2n - 1 can be denoted by

Si,i?1. Figure 6 shows a HC(2) network.

To find the strong chromatic index of HC(n), we apply the concept of antipodal edges.

Two edges are antipodal in Gif the distance between them is diameter of G. We find that

each hexagon HC(1)is a cycle C6 and opposite edges in C6 are antipodal edges. In addition,

the distance between two antipodal edges is two. Hence antipodal edges receive the same

color. This technique will be useful in proving the following results.

6.1 Proposition

The strong chromatic index of HC(1) = 3.

Proof In Fig. 7, e1 and e4, e2 and e5, e3 and e6 are antipodal edges. We find that d(ei, -

ei?3) = 2 = diam(HC(1))for 1 B i B 3. Thus c(e1) = c(e4) = c1, c(e2) = c(e5) = c2 and

c(e3) = c(e6) = c3. Hence HC(1) can be colored with 3 colors for strong edge coloring.

6.2 Theorem

For n C 2, v0s(HC(n)) = 6.

Proof To color the edges of HC(n), we consider each strip in HC(n)and the edges in it.

Each strip consists of a series of hexagons aligned in a line. Since each hexagon is a cycle

C6, opposite edges in C6 are antipodal edges. As the distance between a pair of antipodal

edges in each cycle C6 is two, both the edges receive the same color. We first find the

antipodal edges in each hexagon and this will be helpful in proving our result. To do this,

we consider the brick representation of HC(n). Figure 8 is a subgraph of HC(n).

Choose the strip consisting of maximum number of hexagons. The strip Si?1,i?2 consists

of maximum number of hexagons. The strip Si?1,i?2 is formed from rows Ri?1 and Ri?2

consisting of a series of hexagons aligned in a line. We first color the row edges in Ri?1.

The edges ei?1,1, ei?1,2, ei?1,3, ei?1,4 are assigned with the colors c1, c2, c3, c4 respec-

tively. We shall first examine the antipodal edges of each hexagon in Si?1,i?2. We find that

the edge ei?1,1 of Ri?1 and the edge ei?2,2 of Ri?2 are antipodal and thus c(ei?1,1) =

c(ei?2,2).Similarly the edges ei?1,2 and ei?2,1are antipodal and therefore c(ei?1,2) =

c(ei?2,1).By a similar argument the edges ei?1,3 and ei?2,4 are antipodal. Also the edges

ei?1,4 and ei?2,3 are antipodal. As a result c(ei?1,3) = c(ei?2,4) and c(ei?1,4) = c(ei?2,3). All

Fig. 6 HC(2)
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the row edges in Ri?1 and Ri?2 have been assigned with colors. Next we color the row

edges above Ri?1 of the strip Si?1,i?2. We find from the above figure that the row Ri lies

above Ri?1. Also the row Ri lies in the strip Si,i?1.

The strip Si,i?1 consists of a series of hexagons formed from rows Ri and Ri?1. In Si,i?1,

the edges ei,2 and ei?1,2 lie on the same hexagon and are antipodal. Therefore they receive

the same colors. Since ei?1,2 is already assigned with color c2, ei,2 also receives the color

c2. Also the edges ei,1 and ei?1,3 lie on the same hexagon and are antipodal. Hence they

receive the same colors.

Next we color the row edges below the strip Si?1,i?2. The strip adjacent and that which

lies below Si?1,i?2 is Si?2,i?3. The row that is common to Si?1,i?2 and Si?2,i?3 is Ri?2. The

row edges in Ri?2 has already been assigned with colors. Hence the antipodal edges in each

hexagon of the strip Si?2,i?3 receive the same colors.

After coloring all the row edges, we proceed to color the vertical edges. Now the

vertical edges Vp,q, p odd, are assigned with the color c5 and p even, are assigned with the

color c6. Thus the above coloring scheme is the strong edge coloring of Fig. 8. In order to

find the strong chromatic index of HC(n),we apply this idea repeatedly. This completes the

proof. An illustration is given in Fig. 9.

Fig. 7 HC(1)

Fig. 8 Subgraph of HC(n)
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7 Conclusion

In this paper, the exact values of strong chromatic indices of the interconnection networks,

namely butterfly network, Benes network, hypertree network and honeycomb network

have been obtained. The strong chromatic indices for butterfly network, Benes network and

hypertree network are 12 respectively. In the case of honeycomb network v0s(G) is found to

be 6. We also note that the coloring algorithms use the least possible number of colors. The

problem remains open for other interconnection networks such as cube connected cycles,

shuffle exchange, De Bruijin, star and pancake networks.
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4. Faudree, R. J., Schelp, R. H., Gyárfás, A., & Tuza, Z. (1990). The strong chromatic index of graphs. Ars
Combinatoria, 29B, 205–211.

5. Griggs, J. R., & Yeh, R. K. (1992). Labeling graphs with a condition at distance two. SIAM Journal on
Discrete Mathematics, 5, 586–595.

6. Hale, W. K. (1980). The frequency assignment: Theory and application. Proceedings of the IEEE, 68,
1497–1514.

7. Hudak, D., Luzar, B., Sotak, R., Skrekovski, R. (2013). Strong edge coloring of planar graphs. arXiv:
1303.4508v2[math.CO].

8. Janssen, J., & Narayanan, L. (2001). Approximation algorithms for channel assignment with constraints.
Theoretical Computer Science, 262(1–2), 649–667.

9. Lester, L. N., & Sandor, J. (1984). Computer graphics on hexagonal grid. Computer Graphics, 8,
401–409.

10. Mahdian, M. (2002). On the computational complexity of strong edge coloring. Discrete Applied
Mathematics, 118, 239–248.

11. Manuel, P., Abd-El-Barr, M. I., Rajasingh, I., & Rajan, B. (2008). An efficient representation of Benes
network and its applications. Journal of Discrete Algorithms, 6, 11–19.

12. Manuel, P., Rajan, B., Rajasingh, I., & Monica, C. (2008). On minimum metric dimension of honey-
comb networks. Journal of Discrete Algorithms, 6, 20–27.

Fig. 9 Strong edge coloring of
HC(2)

An Analytical Discourse on Strong Edge Coloring for… 2093

123

http://arxiv.org/abs/1303.4508v2%5bmath.CO%5d
http://arxiv.org/abs/1303.4508v2%5bmath.CO%5d


13. Nocetti, F. G., Stojmenovic, I., & Zhang, J. (2002). Addressing and routing in hexagonal networks with
applications for tracking mobile users and connection rerouting in cellular networks. IEEE Transactions
on Parallel and Distributed Systems, 13, 963–971.

14. Paul, D., Rajasingh, I., & Sundara Rajan, R. (2015). Acyclic edge-coloring of hypertree and shuffle
hypertree. International Journal of Pure and Applied Mathematics, 101(5), 623–629.

15. Ramanathan, S., & Lloyd, E. L. (1993). Scheduling algorithms for multi-hop radio networks. IEEE/
ACM Transactions on Networking, 2, 166–177.

16. Roberts, F. S. (2003). Workinggroupagenda, DIMACS/DIMATIA/Renyi working group on graph
colorings and their generalizations. http://dimacs.rutgers.edu/Workshops/GraphColor/main.html.

17. Sharieh, A., Qatawneh, M., Almobaideen, W., & Sleit, A. (2008). Hex-cell: Modeling, topological
properties and routing algorithm. European Journal of Scientific Research, 22(2), 457–468.

18. Stojmenovic, I. (1997). Honeycomb networks: Topological properties and communication algorithms.
IEEE Transactions on Parallel and Distributed Systems, 8, 1036–1042.

19. Togni, O. (2007). Strong chromatic index of product of graphs. Discrete mathematics and theoretical
computer science, 9, 47–56.

I. Annammal Arputhamary received the M.Sc., M.Phil. degree in
Mathematics from Stella Maris College, Chennai, India, in 2006.
Currently doing Ph.D. in Sathyabama University, Chennai, India. Her
research interest includes Coloring in Graph Theory.

M. Helda Mercy specialized in Networking (Graph Theory), heads the
Department of Information Technology, Panimalar Engineering Col-
lege, Chennai. She received the doctoral degree in mathematics from
University of Madras, Chennai in 2008. She guides various research
scholars with her expertise.

2094 I. Annammal Arputhamary, M. Helda Mercy

123

http://dimacs.rutgers.edu/Workshops/GraphColor/main.html

	An Analytical Discourse on Strong Edge Coloring for Interference-free Channel Assignment in Interconnection Networks
	Abstract
	Introduction
	An Overview of the Paper
	Strong Chromatic index of Butterfly Network
	Proposition
	Lemma
	Theorem

	Strong Chromatic Index of Benes Network
	Proposition
	Lemma
	Theorem

	Strong Chromatic Index of Hypertree Network
	Proposition
	Theorem

	Strong Chromatic Index of Honeycomb Network
	Proposition
	Theorem

	Conclusion
	References




