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Abstract Wireless network devices are used for the Internet of Things in a variety of

applications, and although the IoT has many benefits, there are some security issues in this

area. Hacking tools that are widely used in wireless communication enable the attacker to

export the information stored in the device memory. Devices within the IoT should not

allow this information to be accessed without an authentication. In this paper, we propose

an efficient device authentication protocol without certification authority for the Internet of

Things. Compared to the existing Constrained Application Protocol, the proposed protocol

increases efficiency by minimizing the number of message exchanges. Since our protocol

is based on a keyed hash algorithm, the Certificate of Authority is not required. Experi-

mental results show that the proposed authentication protocol improves the security level

and reduces the resource consumption of devices.

Keywords Merkle Tree � Root Hash � MAC (Message Authentication Code) � IoT
(Internet of Things) security � Authentication

1 Introduction

The device density per network is increasing rapidly. Many wireless protocols are used to

create an IoT environment via protocols such as RFID, GPS, IEEE 802.11, Bluetooth, and

zigbee. This is also accomplished through a variety of IT technologies. The number of

devices used in 2009 is estimated to be approximately 900 million IoT, while in 2020 this

number is projected at approximately 250 million devices [1–3]. As IoT technology grows,

so does the possibility of information leakage, as most IoT devices are exposed to infor-

mation leak and hacking. Numerous suggestions have been proposed in this regard, such as
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a security protocol in the IoT environment, Datagram Transport Layer Security (DTLS); or

embedded Security Socket Layer (SSL), WolfSSL. DTLS is a protocol that provides

security through datagram protocol communication, and requires six message packet

exchanges. If a packet is lost, message packets must be transmitted from the beginning

again, which may result in poor device performance in the limited IoT environment [4, 5].

WolfSSL is an embedded protocol based on SSL/TLS. This lightweight library can be used

with resources of limited size and mobility; however, it is not easily applied in the case of

small devices with few resources because it is not lightweight enough [6].

IETF has been categorized by a device resource that configures the IoT environment and

is shown in Table 1. Currently, many IoT products have applied the IoT platforms. These

platforms can benefit both the developer and the company, and offer a platform that brings

many benefits, including:

– reduced development cycle of a project

– reduced development mistakes

– reduced cost

The platforms enable the developer to make new IoT devices easily and quickly. Platforms

can make various devices in the areas of consumer and smart home, smart infrastructure,

security and surveillance, healthcare, retail, industry, and transportation. The IoT device,

Network, Security, and Service constitute the IoT platform. In the IoT platform, the IoT

device collects various data and consists of a processor, wireless media, memory, and

special sensors that sense row data. The processors used in the IoT devices that are

included in Embedded Systems range from 8 to 32 bit. The M2M device generally uses the

8 bit microprocessor; however, the IoT device uses not only an 8 bit microprocessor but

also a 32 bit microprocessor. The microprocessor makes it possible for an IoT device to

connect to a variety of smart devices such as Smartphones and Tablets using wireless

communication.

To support communication, the IoT device utilizes wireless media such as Wi-Fi and

BLE. It is important for the IoT device to have a protocol stack software for each wireless

media. The software is held within the IoT device memory using either ROM or Flash.

Wireless media came into widespread use in IoT devices for its high-performance and

ample memory. The IoT software is divided into five parts within memory, as shown in

Fig. 1. Each SW must be included in the memory except the Security SW, as shown in

Table 2.

The IoT device requires sufficient memory to gather, send, and receive sensor data from

a smart device. IoT device platforms have been designed by four companies, ARM mbed,

ATMEL Arduino, Raspberry Pi, and Intel Edision, which all offer the required 32 bit high

microprocessor. ARM Mbed specifically has a 100 MHz and 32 bit Cortex-M processor.

NXP, Freescale, TI, STMicro, and Nordic are based on Mbed, and the Arduino offers

microprocessors ranging from 8 to 32 bit. The Raspberry Pi has an ARM1176JZF

700 MHz, 32 bit microprocessor. The Intel Edison has a 400 MHz and 32 bit Quark

processor, as shown in Table 3.

Table 1 Specification for each
class

RAM (KB) Flash (KB)

Class 0 �10 �100

Class 1 *10 *100

Class 2 *10 *250
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Also, ARM, ATMEL, Raspberry Pi, and INTEL have large memory such as RAM and

Flash, as shown in Table 4.

Mbed and Arduino are used in various applications, such as in wearable devices with

low performance applications, while Raspberry Pi and Edison can be used in high speed

devices such as gateway with high applications. As mentioned above, the classes suggested

by IETF are simple and can be applied in a limited environment. This study targets devices

Fig. 1 IoT platform

Table 2 IoT software category
Category Required

Based SW Mandatory

Protocol stack SW Mandatory

Control the sensor and sensing Mandatory

Security SW Optional

Application Mandatory

Table 3 IoT device speed for
each processor

CPU (MHz)

Mbed *100

Arduino �80

Raspberry Pi *700

Edison *400

Table 4 IoT device memory
size for each platform

RAM Flash

Mbed *256 KB *2 MB

Arduino *64 KB *512 KB

Raspberry Pi *256 MB *1 GB

Edison *1 GB Dependent
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that have core roles; Table 5 presents three classes categorized by the size of their

resources.

This study is focused on the middleweight among the three classes and suggests a

sporadic authentication protocol using the Hash Tree if authentication among devices is

difficult, due to the absence of a central control server. The flash memory size required for

the suggested protocol is approximately 5000 KB and the testing device has stm32 cortex

m4, which is a middleweight resource.

This paper is configured as follows: Sect. 2 demonstrates the relevant studies, Sect. 3

demonstrates working principles of the suggested protocol, and the conclusion is presented

in Sect. 4.

2 Related Works

2.1 Merkle Tree

The Hash Tree first suggested by Merkle is configured, as shown in Fig. 2. Each attribute

was hashed to form a binary tree and the message is verified using a Root Hash.

P½i; j� ¼ f ðP½i; ðiþ j� 1Þ=2� k P½ðiþ jþ 1Þ=2; j�Þ ð1Þ

Equation (1) calculates P(1) and shows the process of assigning a space for mapping the

nodes with an attribute value or hash value, respectively. Equation (2) shows a compu-

tation that requires two child trees to derive the Root Hash.

Fig. 2 Merkle Hash Tree

Table 5 Specification for each
weight

RAM Flash

Lightweight �64 KB �512 KB

Middleweight *256 KB *2 MB

Heavyweight *1 GB *16 GB
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Pnparent ¼ f ðPnleft k Pnright Þ ð2Þ

This is called a Tree Authentication [7]. The most important attribute at this point is the

authentication of the Root Hash and the Merkle Tree proof that the correct Root Hash value

is with the authenticator. To apply this in an IoT environment, the central control server

must have all the Root Hash values of every user that causes issues with memory space and

verification. Even when configured this way, the system is still exposed to hacking and

information leaks [8, 9].

2.2 Specification of CoAP

The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for

use with constrained nodes and constrained (low-power, lossy) networks. The nodes often

have 8-bit microcontrollers with small amounts of ROM and RAM, while constrained

networks such as IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)

often have high packet error rates and a typical throughput of 10 s of KB/s. The protocol is

designed for machine-to-machine (M2M) applications such as smart energy, and building

automation CoAP provides a request/response interaction model between application

endpoints, supports built-in discovery of services and resources, and includes key concepts

of the Web such as URIs and Internet media types. CoAP is designed to easily interface

with HTTP or for integration with the Web while meeting specialized requirements such as

multicast support, very low overhead, and simplicity for constrained environments.

In this case, the sender and receiver share a secret key K, which they will use to

authenticate their transmissions. We describe the message authentication goal and various

methods of achieving it. Issues which are still being resolved will be explicitly noted in this

text, as shown in Table 6.

Let us examine some example message authentication codes and use the definition to

assess their strengths and weaknesses. We fix a PRF, as shown in Table 7.

Table 6 Definition authenticity of an encryption scheme

Let = (K, E,D) be an encryption scheme and let A be an adversary.

We consider the following experiment:

Experiment: Exp auth(A)

K = K $

Run K is AEK �, VFK � where VFK (C) is 1 if DK (C) 2 f0; 1g �
and 0 if DK (C) = ? (return value)

if A made a VFK query C such that

? The oracle returned 1, and

? A did not, prior to making verification query C,

make an encryption query that returned C,

then return 1 else return 0,

The authenticity advantage of A is defined as

Advð
Q

authðAÞÞ ¼ Pr½Expð
Q

authðAÞÞ ! 1�
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2.3 C.Message Authentication Code (MAC)

For many people, privacy is the goal most strongly associated with cryptography; but

message authentication is arguably even more important. Indeed you may or may not care

if some particular message you send remains private, but you almost certainly want to be

sure of the originator of each message that you act on. Message authentication is what buys

you that guarantee. Message authentication allows one party, the sender, to send a message

to another party, the receiver, in such a way that the receiver will almost certainly know if

the message is modified a route. Message authentication is also called data-origin

authentication, and is said to protect the integrity of a message, ensuring that each message

that is received and deemed acceptable is arriving in the same condition that it was sent out

with no bits inserted, missing, or modified. Here we will be looking at the shared-key

setting for message authentication (remember that message authentication in the public-

key setting is the problem addressed by digital signatures). The AES and SHA algorithm is

widely used in MAC or an authentication [6, 8, 9].

Authentication protocol in current IoT environments is shown in Fig. 3.

(1) Initial U (user or sensor node) tries to request authentication with the Cipher Suite

options, at which time the Cipher Suite as a set of encryptions of RSA, SHA, or AES

occasionally selects and uses an arbitrary encryption scheme.

(2) V (server or sensor node) notifies that it is ready to authenticate when a request is

received.

(3) U with a reply from V forms a message tag with a private key shared with random

seeds presented with N. U forms a MAC and transmits to V using the authentication,

private key, and message tag.

(4) V verifies the validity of the MAC and tests the validity of the authentication and

private key shared by U and V, then forms a MAC in the same process and

transmits.

(5) U verifies the validity of the MAC received from V and the authentication is

finalized if there is no problem [10].

As shown in the abovementioned processes, authentication through MAC is simple and has

relatively fewer hand-shakes; however, it requires devices with heavyweight resources in

forming MACs and validation verification [11].

Table 7 Definition authenticity
of an encryption scheme

F: K {0, 1} n ! {0, 1} n.

Our first scheme

MAC1: K {0, 1}� ! {0, 1}� algorithm MAC(M)

algorithm MAC1KðMÞ
if (jMj mod n 6 = 0 or jMj = 0) then return ?
Break M into n-bit blocks M = M1. . .Mm

for i  1 to m do YiFkðMi)

T  Y1 � � � � � Yn

return T
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3 Proposed Authentication Protocol

As discussed in the previous section, classes suggested by IETF are lightweight in this

paper, as shown in Table 5. The lightweight class is small enough to include the IoT

software in memory as shown in Table 2. The middleweight class in this paper is suit-

able for devices in applications, such as wearables for SmartHome and Healthcare

applications, because the middleweight class has enough memory to embed in ash mem-

ory. The middleweight class makes it possible for the device to contain the IoT software in

memory, as shown in Table 4. Although middleweight devices are low in price, the class

Fig. 3 Flow diagram of authentication phase
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exhibits high-performance and meets the requirements suggested by IETF. Here is a

purposed Keyed Hash algorithm, which is required from lightweight to middleweight

classes because the IoT device should support the 32 bit microprocessor and have a

memory size of at least 512 KB. The suggested protocol uses a sporadic authentication at

the time that an authentication is required in order to address specific issues. It is able to

authenticate between devices with limited recourses in the absence of central control.

(1) The Device (device that requires the authentication) transmits either a MAC address

or a Serial number to the Target Device (device that performs the authentication).

A MAC address and Serial number is encryption using AES as show in Fig. 4 in first

step.

(2) The Target Device uses the leftmost node value as a MAC or serial and reflects a

Hash value to the parent node through four encryption rounds (a set of encryptions

of RSA, SHA, or AES occasionally selects). The right node is a Time Stamp that is

used to form a Hash Tree. After the Hash Tree is formed, the Target Device sends

the Time Stamp on the rightmost node to the device via four encryption rounds. It

Fig. 4 Flow diagram of proposed protocol
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can be seen below that less calculations are required than for those shown in Fig. 3.

The flow is as follows:

FðX; Y ; ZÞ ¼ðX ^ YÞ _ ð:X ^ ZÞ
GðX; Y ; ZÞ ¼ðX ^ ZÞ _ ð:X ^ ZÞ
HðX; Y ; ZÞ ¼X � Y � Z

IðX; Y ; ZÞ ¼Y � ðX ^ :ZÞ

F and G are functions (X, a logical product of Y) and (logical AND of NOT X and Z) to

logical sum operation, the H function shows the XOR operation for all arguments, and the I

function (X-OR and NOT Z) indicates the XOR operation in the Y operation.

(3) The Device from the Hash Tree is formed at the Device in the same way that the

Hash Tree is formed at the Target Device. The device and target device has the same

Hash Tree algorithm and four encryption rounds. Then two device has each TDH3

and DH3.

(4) The Root Hash is transmitted for authentication of its validity at the Device, the

Target Device authenticates, and the Hash shake is completed. (Device: D, Target

Device: TD, DH3: Root Hash)

In Table 8, the message transmission was encrypted by AES128 bit, (3) encrypts the

key information via DH3 AES. This has the advantage of double encryption (DH1-3:

Device Hash 1–3, TDH1-3: Target Device Hash 1–3 as shown in Fig. 2).

When the Root Hash for authentication is formed, DH1 and DH2, the left and right Hash

values, respectively, take up only 64 bits to form the Root Hash, enabling high security.

This security results from one of the tMac Address, Serial number, or Time Stamp being

snipped while the message is being transmitted. Figure 5 is a graphic of the formula shown

in Tables 8 and 9 and shows the differences apparent to the conventional Merkle Hash

Tree, This is used for authentication of attribute 1–2, consisting of a MAC address and

Serial number unique identification tag device, so that each forms a 128 bit empty bit

padding. Values used in padding are derived via a function of the time seed and argument.

In this way, the padding has 128 bits of Message generating a Hash value with the SHA128

algorithm, L1H1 is a Hash generated using the MAC address (LeftHash), and a Hash

produced using the Serial number is R1H2 (RightHash). The Hash values of both the

generated 128 bit top of the L1H1 64 bit, and R1H2 in the sub 64 bit Nomitori, the

padding without 128 bit after setting, is Hashing to again SHA128 algorithm. This is used

as the generated Hash value to authenticate as Keyed Hash.

We use the definition of the tagging algorithm to see that

Table 8 Message transport
sequence

(Device: D, Target Device: TD, DH3: Root Hash)

(1) D ! TD: Mac address or serial number

(2) TD ! D: Time Stamp

(3) D ! TD: DH3
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T1 ¼ FkðSDpandMEpÞ � FKðk SHA2Þ
T2 ¼ GkðTDleaf Þ � FKðSDpandMEpÞ � FKðk SHA2Þ

T3 ¼ GKðDH1 k DH2Þ � FKðk SHA2Þ

T1, T2, and T3 are computed for each sequence in Fig. 4. T1, SDp, and Mep are used in the

argument of the F function, and the last argument is Fig. 4. Padding values as described in

X are used. The Hash values derived as a function F are calculated again to transmit the

sequence SHA128. T2 is the leaf node of the Target Device as an argument of G functions,

that is, using the time stamp and SDp and Mep, and then transmits the double-encrypted

message with SHA128, as with T1. T3, the target device to authenticate the device seeking

transmission, indicates whether the sequences of each Keyed Hash match and SHA128 are

set to double encrypt by all processes in order to transmit a sequence of strengthened

security. The SHA128 encrypted sequence is set to the value obtained by decoding, even if

the sniffing is a Hash value, and the security is a difficult surface to analogize so that the

original data is strong.

Fig. 5 Root Hash procedure flow

Table 9 Create a Root Hash procedure

(1) DH3 (Root Hash) = DH1 k DH2
(2) TDH3 (Root Hash) = TDH1 k TDH2
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4 Performance Evaluation

There are three performance evaluations. First, the authentication delay time of each

platform is compared with the initial authentication and re-authentication. Second, the code

size of each platform is compared with the code size before compiling the codes. Last,

CoAP and the keyed hash are compared with the amount of power consumption required

using the Wi-Fi module in to authenticate through a significant number of cycles.

4.1 Authentication Delay Time of Each Platform

Performance was compared to the code size of each of the platforms by measuring the

speed and the effectiveness of the Keyed Hash, as confirmed through verification. Figure 4

shows the time of the initial authentication and the time required to perform the re-

authentication. WolfSSL, CoAP, and MQTT exhibited a performance speed between

150,000 and 230,000 ms in Fig. 6. Further, the value stored in the certificate for re-

authentication when performing according to all three protocols was reduced to a width of

50,000 m, whereas the proposed algorithm is required because it uses the Keyed Hash one-

off and disposes of the authentication and re-authentication at the same time.

4.2 Code Size of Each Platform

Table 10 shows the code size tobeusedonly for authenticationoneachprotocol.This hasdecreased

to approximately 1/5 to 1/3 the size of the existing protocols code, making it lightweight.

4.3 Power Consumption

For calculating the power consumption of the keyed hash, we used Wireless 802.11n with

the wireless LAN module for the device and the target device as shown in Table 10. We

compute the TX and RX power consumption for only send and receive times, except when

executing the keyed hash algorithm.

Fig. 6 Authentication delay time of each platform
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Equations (3) and (4) are that Txp and Rxp are typical values and Message/BurstTx is

transmission time, N is number of messages.

TX power consumption can be given as,

PTotalTx ¼ Txp �Message

BurstTx
� N ð3Þ

Let us assume that there is Tp TX power and Message authentication data and N number of

messages.

The RX power consumption can be given as

PTotalRx ¼ Rxp � Message

ContinuousRx
� N ð4Þ

A key hash is needed with two times TX and RX, as shown in Fig. 3; however, CoAP has

three times TX and RX, as shown in Table 11. Here, we compare the Keyed Hash and

CoAP.

4.4 Quantative Analysis

The proposed keyed hash scheme protocol, even without the presence of a Certificate

Authority (CA), has the conspicuous advantage of being able to perform authentication.

This is a complex procedure where the performance and power consumption are more

efficient than the existing system; this occurs when you place a large specific gravity on the

role of the CA. This system also has the advantage of solving some of the security

problems, as shown in Fig. 7.

For example, if the server with the CA role is set to save all of the information about the

certificate and the server is hacked, you might have a significant leak of information. If the

protocol that provides this and subsequent authentication uses the quick discard method,

security is enhanced. Moreover, when using an encryption algorithm in duplicate for every

sequence operation, it is difficult to analogize the original data; by modifying the con-

ventional keyed hash method for use, it is possible to provide enhanced security against

hackers.

Table 10 Code size of each
platform

Platform Code size Units

WolfSSL 31,259 KB

CoAP 27,118 KB

MQTT 16,875 KB

Keyed Hash 4900 KB

Table 11 RX and TX power consumption using Wi-Fi

Power Description Typical Units

TX consumption Burst TX (150 Mbps) 439 mW

RX consumption Continuous RX (150 Mbps) 552 mW
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5 Conclusion

This paper suggests a new authentication protocol that enables authentication between

devices in the absence of a central control server based on a keyed hash. The commonly

used Hash-Tree authentication has been analyzed from various angles and applied, lending

the advantages of being able to authenticate with less resources, fewer hand-shakes, and

reduced information leaks in sporadic authentications. The proposed keyed hash

scheme protocol without the need for the presence of a Certificate Authority (CA), has the

advantage of being able to stand out an authentication. This is a complex process in which

the performance and power consumption are more efficient than the conventional method

in terms of the number of parts, and solves the security problems that occur when a

significant amount of the weight is assigned to the role of the left CA. If the server that

serves the CA and stores all of the information about the certificate is hacked, information

leakage may occur, as shown in Table 12.

In this protocol, the proposed method of using the waste immediately after authenti-

cation was added as additional security. In addition, it is difficult to infer the original

Fig. 7 Compare with power consumption

Table 12 Comparison of CoAP
and proposed protocol

CoAP Proposed

CA Need None

Security level Single encryption Double encryption

Power consumption 2.0691 1.3794

Code size 27,118 4900
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because of the use of a Data Encryption Algorithm in every action sequence with a double,

and because the existing keyed hash method is more secure from invaders. Further study is

needed so that this method can be applied in diverse environments such as BLE or zigbee,

which are continuously evolving. Another area of focus for future research will be the Key

generator and Key distribution for the security platform.
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