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Abstract In this paper we introduce Human-like Sensing or ‘‘5 senses computing’’ as a

natural futuristic extension of Internet-of-Things. We discuss how 3D optical vision,

thermal vision, acoustic profiling, olfaction and tactile sensing can help in remote

inspection and analytics solutions. We propose a robot mounted opto-thermal and acoustic

sensing system as a possible integrated system to gather such data. We present results of

field experiments conducted with the proposed system and show how such systems can

provide acceptable solutions for remote inspection and analytics.

Keywords IoT � Five senses � Analytics � Robotics � Opto-thermal � Acoustic

1 Introduction

Connected Sensor Systems (also called Internet-of-Things or IoT) are poised for a dis-

ruptive growth in near future. The ‘‘Sense-Analyze-Respond’’ paradigm of IoT system is

providing insight, deriving value and creating new ways to do business across multiple

verticals be it manufacturing, healthcare, transportation, energy etc.

A typical IoT system has three components—a sensor system to collect data about

physical events, a data transport system to send the collected sensor data to cloud and a
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learning and knowledge based analytics system to derive insights about the physical event

from the collected data. So far IoT systems have focused more on using specialized sensors

to collect more and more information about the physical events. However, if we look at

human beings as connected entities, we, since our birth continuously learn about our

surrounding through our five senses—the sensed data is converted into knowledge and

wisdom via complex learning systems of our brain. In the same analogy, if the human five

senses can be imparted on machines along with sophisticated machine learning techniques,

it would be possible to create smarter IoT systems than what is available today. This

concept of sensing five human senses on machines followed by advanced machine learning

based analytics to derive knowledge and insights is popularly known as ‘‘5 senses com-

puting’’.1 Here we try to present a glimpse of the ‘‘art of the possible’’ in the area of

sensing these five senses, which can either be stand-alone sensors or can be mounted on

robots—each of these have significant application in remote inspection and predictive

analytics, especially for manufacturing and shop-floor scenarios.

Sight Even though camera existed as a sensor for a long time, intelligent processing of

image and videos can take vision processing to a new level. This will include 3D vision,

vision based measurements, automatic object recognition and semantic understanding of

images and video content [1]. New research in this field is also enabling unobtrusive use of

camera to sense physical events like vibration, micro motion movements etc.

Hearing There will also be significant improvements in computers’ ability to hear and

understand sound. Source localization and analysis of sound captured unobtrusively from

microphones can provide insights into a lot of physical events spanning across verticals [2].

Touch Touch sensing and haptic feedback is poised to become core component of

human–computer interaction (HCI). Going beyond, our skin not only senses touch, but also

senses heat. Heat sensors in form of Infra-red camera and thermal cameras can provide a

lot of insight into a machine’s condition. This information, when coupled with 3D vision

information can be used for predictive analytics [3].

Smell Olfactory sensing in form of gas sensors and other similar sensors are slowly

becoming main-stream. These sensors, backed up by requisite analytics will be able to

check for molecular biomarkers in future [4].

Taste Taste sensors that can break down ingredients to their respective chemicals are

also being prototyped [5]. While they have more direct applications in food and beverage

industry, their application in other areas cannot be ruled out. Both olfactory and taste

sensing can be potentially used in future for composition analysis and quality check of

components and materials.

Fusion of the above five senses and the associated analytics is also termed as ‘‘cognitive

computing’’ [6]. In time, cognitive computing will be able to unobtrusively observe and

model complex interactions in complex systems—such a sensory-aware machine can be

used the model to predict the system condition and health leading towards predictive

maintenance and quality improvement.

In this paper, we first discuss the Current Application Areas in Sect. 2. Then in Sect. 3,

we present related work and in Sect. 4 we describe our contribution in 3D vision based

measurement and vibration sensing, acoustic source localization and thermal sensing and

discuss how it adds value in remote inspection and analytics space. In Sect. 5 we present

the results and discuss their outcome. Finally in Sect. 6 we summarize the work and

discuss about possible future work.

1 http://readwrite.com/2012/12/18/ibms-cognitive-computing-plans-giving-smartphones-5-senses.
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2 Current Application Areas

The current application areas focus mainly on optical vision systems. Industrial Machine

Vision has evolved as a major contributor in automating High end factory operations like

Quality Control, Packaging Inspection, Identification, Measurement, Counting and

Tracking in different industries. Machine Vision has added speed and efficiency to the

manual methods of Inspection. This has improved reliability and precision. The philoso-

phies of Track–Trace-Control Operations have drastically improved the factory efficiency

of assembly/manufacturing, Supply Chain and Local Warehouse Management.2, 3 Image

Capturing, Image Processing and Output generation are the standard roles being played by

Industrial Cameras and Machine Vision Instruments that is capturing the imagination of

the manufacturers. Common machine vision technology applications are used in sorting,

quality assurance, robotic guidance, material handling and optical gauging. Some specific

usages are Automated PCB Inspection, Sub-Assembly Inspection, Robotic Guidance,

Packaging Inspection and Sorting, Reading of Serial numbers, Molding Flash Detection

etc. The advantages offered by these technologies has led to semi-automation and full-

automation of production environments and manufacturing industries. The benefits include

faster processing speeds, automated decision making, high end finished goods, easy trans-

shipment of goods and items, elimination of waste and reduction of idle time. Smart and

easily configurable cameras have taken the role of Industrial Eyes which is being promoted

as replacement to human based inspection.

Earlier Machine Vision was limited to 2-dimensional images and videos only. The ease

of availability of 3D vision software tools and algorithms has opened the possibility of 3D

Image Processing and Object Identification. Optical three-dimensional (3-D) profilometry4

is an important application for 3D vision because of its simplicity, flexibility, high accu-

racy, and non-contact nature. Latest researches in imaging sensors and digital projection

technology further its progress in high-speed, real-time applications, enabling the recon-

struction of 3-D shapes of moving objects and dynamic scenes.

Online Real Time Vision sensors may be used to measure and inspect process quality.

This may also be used to check the dimensions of parts/components, compare them with

the drawing dimensions and take real-time decision on quality. Overcoming the limitations

of the Camera, Parts Inspection based on Image Processing can open a new area in the

Process of Inspection and Quality Control. Vision Sensors have advanced to the stage

where they are able to replicate the functions of Human Behavior or may be even achieve

functions which the human eye cannot detect. In next chapter we explore the technology of

sensing beyond optical vision.

3 Sensing Capability: Related Work

Machines and Robots are substituting humans in performing everyday tasks and are better

suited to completing routine and repetitive tasks than humans. In these situations, it

requires robots to be equipped with human-like sensory inputs as well as a robust decision

support system to achieve their desired utility. Most of the commercially deployable robots

2 http://www.industrialvision.co.uk/vision-systems.
3 http://www.microscan.com/en-us/Technology/MachineVisionSystems/machine-vision.aspx.
4 http://www.laserfocusworld.com/articles/print/volume-46/issue-1/features/optical-surface-profiling.html.
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are equipped with proprioceptive and exteroceptive sensors mainly for autonomous nav-

igation, obstacle avoidance and path planning. But robots having capability of human-like

sensing & cognition is a next horizon problem. 2D/3D machine vision is a quite explored

area but how to work in extremely smoky dark environments where visibility is partially or

completely occluded is a challenge. Acoustic imaging capability, thermal sensing to

localize and achieve surface temperature profiles and augment them with 3D visual

information is a state-of-the art limitation which eventually can resolve uncertainty

problems of unknown environmental mapping. Sound source detection is quite a resear-

ched area but applying it on robotics to make them working under various acoustic con-

ditions and noisy environments is a pertaining research area. E-Noses are effective inside

laboratory environments but put them altogether to build machine olfaction capability to

detect, differentiate and localize gases, fumes, steams, haze efficiently in real-time is miles

to go effort. Multi-sensing next generation robots to create a novel symbiotic autonomy in

which machines are aware of their perceptual, physical and reasoning limitations and

proactively act as human is a real necessity.

3.1 Machine Vision

As outlined in Sect. 2, the field of machine vision, or computer vision, has been growing at

a fast pace and has numerous applications in automation of manufacturing systems. The

imaging system can be composed of a camera (2D/3D) and capturing system. The cap-

turing and processing is entirely dependent on type of camera is used (2D or 3D). Camera

selection depends on the desired use cases and accuracy. We describe the 3D systems in

detail below.

Automatic remote monitoring of an enclosed space is of compelling research nowadays.

Constructing a 3D map/perception model of an unknown indoor or outdoor environment

using a robotic platform is needed for such monitoring system. Available IMU sensors and

mobile robot kinematics allow 3D reconstruction to be finished in near real-time using a

very low cost robotic platform. In a recent work [7], Pradeep et al. has described a

methodology for markerless tracking and 3D reconstruction in scenes of smaller size using

RGB camera. It generates high quality 3D model reconstruction using a webcam. Pizzoli

et al. [8] proposed a solution by adapting a probabilistic approach in which depth map is

computed by combining Bayesian estimation and convex optimization techniques. All

these implementations are limited to a small scene reconstruction and not suitable for an

entire 3D environment creation. The 3D reconstruction of an environment from multiple

images or video captured by a single moving camera has been studied for several years and

is well known as Structure-from-Motion (SfM) and quite powerful SfM pipeline readily

available for 3D reconstructing as shown in [9, 10]. Recently, smart phones are used for

image acquisition due to its low cost and easy availability. So researchers used smart

phones sensors like accelerometer, magnetometer for data collection and 3D reconstruc-

tion, it reduces computation [11, 12] and few works such as [13, 14] have accomplished

this, but the output is noisy due to a fast and course reconstruction. A system capable of

dense 3D reconstruction of an unknown environment in real-time through a mobile robot

requires simultaneous localization and mapping (SLAM) [15].

Another interesting application area for 3D optical vision is Quality Control. Measure-

ment using computer vision is studied extensively in the last decade. Researchers has

measured straightness defect in hot rolling steel sheets [16] in real-time. The system is

designed for easy implementation in the actual plant but the result presented without any

bench marking. The system is specially designed only for flatness measurement of rolling
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sheets and not applicable directly for auto component measurement. 3D vision based mea-

surement system is proposed using a single moving camera [17] but that is limited to estimate

the robot calibration in offline. The trend of using camera for vision based measurement is

studied in [18]. Rövid proposed [19] a vision based measurement system for vehicle body

inspection where a rotating gray code pattern projection and a multi-camera based tracking

system is proposed for measurement of large surfaces. The main drawback of that system is

the complexity of the multiple cameras and projector based complex system.

3.2 Thermal Perception for Machines

Unobtrusive heat measurement and monitoring is well accepted in manufacturing, chemical,

automobile, construction industries. Conventional industrial thermal cameras are still not in

affordable range for everyday life usage. Conventional thermography for energy measure-

ment and non-invasive assessments relies on 2D thermal images, which have significant

limitations like lack of information on the shape and geometry or location of the object of

interest in the scene. So there is growing interest on representing the environment in 3D

which also integrates the temperature information. The combined information will help to

detect the object of interest and volumetric measurement precisely. FLIR5 lunched a low cost

and affordable thermal sensor [20] as smart-phone attachment which increases the possibility

of monitoring and verification of heated region using such hand held mobile low cost sensors.

Several studies are performed to explore the potential of 3D thermal mapping and

volumetric inspection. The studies are mostly focused on monitoring building power

consumption. ThermalMapper [21] is a well-known project which uses a terrestrial laser

scanner and thermal infrared camera on a wheel robot. The result from ThermalMapper is a

dense 3D point cloud which can be visualized in both RGB and thermal. Volumetric heat

measurement and analysis is not part of the presented system. There is significant cost and

mobility difference between the presented systems with our proposed system due to the

usage of a light weight (approximately 78 g) low cost FLIR attachment with smart-phone.

In a recent work [22], Vidas et al. represent a 3D thermal mapping to monitoring building

interiors using Microsoft Kinect [23] and a thermal camera. In computer vision and

robotics, the use of RGBD cameras like Microsoft Kinect facilitates the development of

techniques for highly-detailed and spatially-extended reconstructions [24, 25]. Such costly

and bulky coupled sensors are capable of reconstructing in real-time [26], but the use of

structured light pattern make the product usage limited within indoor environment and

short range measurements. The working environment along with cost, dimension and

weight are the main drawbacks for Kinect to be used as a light weight low cost system.

Though active depth sensors have many advantages, there are certain scenario where

passive RGB cameras are preferred due to its low power consumption, outdoor capable and

form factor. This has motivated many researchers to investigate methods for 3D recon-

struction using only passive cameras.

Industrial thermal cameras are capable of measuring the temperature accurately from a

specified distance and few costly cameras provide dimension of the heated regions in 2

dimensions. FLIR smart-phone thermal attachment is also providing information in 2

dimensional spaces. Volumetric measurements are limited due to 2 dimensions. The cost of

thermal cameras is another metric which restrict these products to be used only in industrial

segment. FLIR smart-phone thermal attachment brings the opportunity to be used as house

hold product for everyday life usage due to the cost reduction, increase mobility for small

5 http://www.flir.com.hk/flirone/.
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dimensions and weight and finally user friendly instead of expensive or bulky thermal

systems. Automatic Volumetric measurement requires the heat analysis on 3 dimensions,

so there are limitations in state of the art for an autonomous affordable system which is

capable of area or volumetric measurement of any heated regions.

3.3 Machine Audition

Machine audition is of great importance when machine vision and visual odometry cannot

work effectively because of the poor lighting condition or the target is not within the field

of view. Acoustic source detection, localization and profiling can be an important part of

unobtrusive sensing. In general the sound that a machine listens to consists of not a single

sound source but multiple sound sources and finally should process all of these data to

extract the pertinent information. Biologically inspired sound localization systems can be

built by making use of an array of microphones, which are connected to a processor. In

addition, such a system of microphones can be made to extract any particular sound from

multiple sources produced simultaneously by several sources. Although the spatial reso-

lution is relatively low compared with that of vision, audition has several unique prop-

erties—(a) vision occlusion never happens in audition (b) it works well equally in darkness

(c) it is omnidirectional and (d) it has high time resolution and low computation overhead.

Because of these unique properties mentioned, a 3D audio sensing system can be of great

utility. Acoustic 3D imaging using the audio sensing can be another application. The

techniques for acoustic based imaging of objects is well established and takes precedence

in situations where optic based systems fail due to strong attenuation of EM waves e.g.

underwater SONAR and imaging in dispersive medium e.g. smoke haze environment.

3.4 Tactile Sensing and Machine Olfaction

Once a region-of-interest has been identified in 3D space using techniques outlined the

above sections, a moving machine with all these sensors (e.g. a robot or a drone) can be

navigated to go in proximity of the region. The optical, thermal, audio, and smell sensors

would get better resolution data as the robot moves nearer. However, at a touching distance

from the region, a new sensor in form of tactile sensing can come in play to deduce further

details just like a human being does by moving closer and touching by hand. Newly

reported opto-tactile sensors can be used for object shape, size and surface assessment and

can enhance 3D object model in mobile robots.

Smell sensing can be applied to Gas localization and gas distribution mapping. Such

systems can comprise of an on-board array of gas sensors in a mobile robot equipped with

electronic noses. According to state of the art, statistical methods to build 3D-DepthMap

using three e-noses mounted at different heights in a mobile robot is becoming possible.

The gas distribution model (GDM) can be improved with wind measurement obtained by

ultrasonic anemometer.

4 Proposed Integrated Sensing System

As part of the fusion of multi-sensor information [27, 28], we propose to augment 3D

robotic vision using odometry data and ultrasonic/laser range finder readings together with

gas sensing and develop a probabilistic framework for simultaneous localization and
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mapping [29]. Schematic representation of a multi sensor robotic platform is depicted in

Fig. 1.

In our system, we present an end to end framework capable of generating 3D recon-

struction of an environment based on the image/video captured through a remote platform

mounted on a two wheel based robot. This work is a core part of our system presented in

[27]. Our experimental results show that our technique is efficient and robust to a variety of

indoor and outdoor environment scenarios with different scale and size. In our work,

Firebird VI robot [30] (refer Fig. 2) is used whose all operations are controlled through

Robot Operating System (ROS) [31]. The framework is capable to work on any robotic

platform that supports ROS and Firebird VI is chosen due to its low cost and ready

availability.

In the system an off-the-shelf webcam is used as 2D image capture device. The camera

is calibrated and mounted on a servo on the robot as shown in Fig. 2. The servo allows the

camera to pan and tilt which, in turn helps to capture the surrounding environment.

Odometer and IMU sensor data is also captured simultaneously with the images in a time

synchronized way. The captured information is pushed back to a backend server from

where user is controlling the robot. Odometry and IMU sensor data are used for robot

localization along with camera pose estimation [13]. Multi-view geometry [32] is used for

creating a 3D map [11] of the environment. The details of the entire process are explained

in [33].

Additionally for thermal imaging, we present a cost effective 3D thermal mapping

system capable of area or volumetric measurement of heat in a continuous and non-

Perception Sensors – Robotic Platform 

Camera / Kinect Infra-red Array Microphone Array
Ultrasonic  

/ IR ranging 

3D  
Reconstruction 

Thermal 
Profiling 

Beam  
Formation 

Obstacle 
Detection

Sensor Fusion 

Analytics and Decision for Measurement, Anomaly Detection, 
Predictive Analytics 

3D  
Model 

3D acoustic 
image contour, 

DoA 

Navigation

Fused information 

Thermal 
Contour 

Fig. 1 Proposed robotic platform with multi-sensory perception
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invasive way. Initial work with handheld smart-phone based system is presented in [34].

FLIR thermal attachment with a smartphone is mounted on the Firebird VI robotic plat-

form and it is calibrated. So the webcam and the FLIR thermal attachment pair are

calibrated to produce a three dimensional environment with thermal annotation on the

surface areas. This system is thus capable of measuring the thermal area or volume at any

abnormally heated region. Three dimensional reconstructions are carried out using pre-

viously described method as in Sects. 3.1 and 3.2. Back projection is used for thermal

overlay on surfaces of the reconstructed environment.

For an automatic quality inspection system for manufacturing industry, we use our

proposed robotic platform with a Kinect mounted as three dimensional depth sensor. The

capture process is executed with a Kinect connected with an onboard computing unit and

the captured three dimensional data is stored in the form of point cloud. Kinect is kept at a

distance about 0.8 m for best performance along with controlled lighting. The component

objects are with different shapes and size with variety of measurable attributes, so the

implemented algorithms are customized according with the shape and geometry of the

objects. The object is segmented from the background by color and shape after proper

noise removal and clean-up. We are able to measure different geometrical properties of

objects and Point Cloud Library (PCL) is used intensively at the different steps of our

implementation.

We also added an audition system [35] on top of the Fire Bird VI based mobile robot

platform by using Time Delay of Arrival (TDOA) information. We used a four-micro-

phone array with 24-bit analog-to-digital converter (ADC) including acoustic echo can-

cellation and noise suppression producing 16 kHz; 24-bit pulse code modulation (PCM)

modulated audio. The system receives time series signals and processes TDOA between

adjacent microphones using cross-correlation, phase transformation and maximum likeli-

hood techniques. It has been observed that classical cross correlation method is easy to

implement but it is sensitive to noise and also performance degrades if reverberation time is

[150 ms. PHAT normalizes the cross power spectrum of the signals. It offers the

advantage by minimizing the spreading of the peak of the correlation function. It removes

all energy content from the cross spectrum and provide very sharp correlation peak.

Finally, for acoustic imaging, we use an acoustic array in our system [27] which

localizes acoustic sources and provides visualization augmentation for the existing

machine vision capability. The basic principle lies in electronic beam-steering and beam-

shaping where the beam is steered in both azimuthal and elevation directions. Using 2D

acoustic array, all ultrasonic waveforms are transmitted using proper phase-shifts at each

antenna element so that the combined beam is steered in both azimuth and elevation

Fig. 2 Firebird VI robotic
platform
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directions, covering the complete target. On the other hand ultrasonic receivers collect the

reflected wave across the two distinct dimensions. Reconstruction is carried out using

phase correction factors.

5 Results and Discussion

5.1 Optothermal Vision

3D environment creation implementation environment consisted of Firebird VI robot as

shown in Fig. 1 and a back-end system having Intel(R) Xeon(R) E5606 processor running

at 2.13 GHz along with a NVIDIA Tesla C2050 Graphic Card. One ZOTAC ZBOXHD-

ID11 is mounted on top of the robot. ROS hydro is installed inside Ubuntu 12.04 LTS in all

the systems. The entire capture task was run on the ZOTAC box mounted on the Firebird

VI. Image is captured with 640 9 480 resolution using the Logitech C920 webcam. The

3D model reconstruction is carried out on the backend system due to less processing power

of ZOTAC box.

In Fig. 3 we present result of the 3D reconstruction where the data is captured in a living

room. The three sides of the room are captured where different objects are placed. The

dimension of the room is about 13 9 11 feet. The user can guide the robot to go closer and

capture the frames to produce a more accurate and dense points in any required zone.

For opto-thermal mapping, we present a sample heat measurement to demonstrate the

usability of our solution. Figure 4 shows a sample 3D thermal point cloud of a mug having

hot water inside. The presence of water is not detectable through RGB image but corre-

sponding thermal image shows distinct temperature differences in hot regions. The testing is

performed using 11 images with two iterations. The 3D thermal cloud shows the structure of

the mug along with the hot region. The idea is to measure the volume of hot water present

inside. The mug is segmented by the knowledge of its cylindrical shape. The segmentation

finally is used to detect the dimension of the mug. Mostly heated region is extracted from the

temperature and the dimension is calculated from 3D structure. The volume of hot water

present is calculated as 63.7 cc by our method against actual volume of 68 cc.

For 3D vision based measurement for quality control, we present a comparative mea-

surement result of different automobile component parts using Kinect. The experiments are

carried out with every single object several times to test the stability of the implemented

system. The presented results are the average of the repeated measurements and are pre-

sented in Table 1. We could reach the sub millimeter level accuracy. The tolerance of our

measurement method is seen to be about ±0.5 mm.

Fig. 3 3D reconstruction using robot locomotion
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5.2 Acoustic Sensing

We varied frequencies, ping durations, source distances and azimuths as given in Table 2

to know the effect of these parameters in finding DOA. From Table 2, the parameter

‘Pings-Pause’ of value ‘f0.006, 0.003 g’ indicates the time series signal generated with

pause duration 0.003 s (48 samples) followed by sinusoidal ping signal of duration 0.006 s

Fig. 4 Volumetric measurement: top to bottom shows captured RGB, thermal image, segmented 3D
thermal model, detected dimension of the heated region
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(96 samples). The accuracy of the localization techniques is dependent on the relative

bearing of the acoustic source and greatly improves for sources placed at an angle of 90�
wr.t. microphone array i.e. broadside as compared to others. The platform locomotion and

Table 1 Comparative result for auto component measurement

Objects Dimensions Ground truth
using vernier
(mm)

Measured
value using
Kinect (mm)

OD outer 67.992 68.54

ID inner 16.97 16.26

Length 109.78 110.39

Width 71.306 71.08

ID 50.661 50.76

ID1 10.439 10.15

OD1 30.056 29.47

ID 11.937 11.73

OD 32.009 32.17
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a prior 3D environmental modeling can now be leveraged to localize and track the source

efficiently. The stopping criteria of the mobile robot towards reaching the source is carried

out by using the range information (i.e. distance of microphones from the acoustic source)

obtained from 3D model structure generated from low cost optic camera.

The performance of each localization algorithm is evaluated by comparing the original

DOA and the estimated DOA for all ping durations at different frequencies and for dif-

ferent distances. It is evident from Fig. 5, that PHAT algorithm always outperforms CC

and ML.

For acoustic imaging, a fully populated 2D planar array (k/2 spacing) of ultrasonic

transducers has been designed in a 4 9 4 grid with electronic beam steering in both

azimuth and elevation. A target is acoustically reconstructed at a distance of 5.0 m from

the acoustic sensor array (ASA) using pulsed-CW 40 kHz signal. The simulation results of

the performance of such a system are represented Figs. 6 and 7 below. Performing

regression tests on various combinations of parameters like total number of array elements,

Fig. 5 Boxplots of DoA’s for CC, PHAT and ML. Signal Frequency 1 kHz, Distance 1 m, Samples 4800,
Pause 9800

Table 2 Different parameters of signals

Parameters Values

Frequency (Hz) 100, 300, 500, 1000, 3000, 5000

Pings-pause (s) {0.003, 0.003}, {0.006, 0.003}, {0.003, 0.006}, {0.03, 0.03}, {0.036, 0.03},
{0.03, 0.06}, {0.3, 0.3}, {0.6, 0.3}, {0.3, 0.6}, {3, 3} {6, 3}, {3, 6}

Distance (m) 1, 1.5, 2

Azimuths (�) 0, 30, 60, 90, 120, 150, 180

Microphone pairs and
spacing (m)

{1, 2}[ 0.149, {1, 3}[ 0.189, {1, 4}[ 0.226, {2, 3}[ 0.040, {2,
4}[ 0.077, {3, 4}[ 0.037

Algorithms CC, PHAT, ML
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frequencies of insonification etc. an optimal set of values of the parameters are arrived at.

Such an opto-acoustic 3D machine vision can provide a new dimension of sensing

mechanism when robots will be deployed in an uncertain environment which is visually

occluded due to smoke, fumes, dust and chemical vapor contents.

6 Conclusion

In this paper, we have first introduced the concept of human-like five senses computing and

have outlined how it can be applied for remote inspection and analytics. We have discussed

specific scenarios where 3D vision, audio and thermal sensing can be used for

Fig. 7 Acoustic shape of a surface. No of elements 16, Frequency of operation 40 kHz, Pulse duration
1 ms

Fig. 6 Sample beam pattern of the entire array
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measurement, quality control and predictive analytics use cases and have presented results

of some working prototypes. As seen from the results, the sensing part yields good out-

come. In future the collected data can be fed into artificial intelligence engines backed by

machine learning and that can indeed herald a new era of automation in remote inspection

and predictive analytics space.
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