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Abstract We have designed the Heterogeneity Inclusion and Mobility Adaptation through

Locator ID Separation (HIMALIS) network architecture to natively support sessions

transfer from one link to another independently of the network and transport layer protocols.

However, lack of a prompt path failure detection mechanism in HIMALIS cannot well

utilize multiple links to protect against path failures. In this paper, we propose a complete

path recovery mechanism that consists of path failure detection, lively path exploration, and

path recovery processes. In particular, the failure detection mechanism is based on moni-

toring of data sending and receiving instances in end hosts by employing two timers, probe

timer and keepalive timer. In case of path failure caused by gateway’s upstream link down,

the gateway provides the link failure notification to the host for expediting the detection

process. We also present an overview of implementation of the mechanism. The imple-

mented functions are verified by using both TCP and UDP applications and evaluated in a

21-node-scale network-emulation environment. The results show that the proposed mech-

anism provides fast failure detection, about 7 s which is much faster than the failure

detection carried out based on TCP retransmission timeout which may take 5 min in the

worst case, under both site- and host-multihoming configurations. The results also show that

the proposed mechanism takes only about 200 ms to detect gateway’s upstream link down.
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1 Introduction

Most of the personal communication devices are capable to get simultaneously connected

to different types of access networks through multiple interfaces, such as Ethernet, Wi-Fi,

3G and WiMAX. Host-multihoming over such heterogeneous access networks becomes

more common in the near future to enhance connectivity, increase communication band-

width, and improve resiliency against an access network failure. Similarly, for the purpose

of performance improvement, load balancing and failure resiliency, a site or access net-

work can also get connected to two or more upper-level transit networks through two or

more upstream links, which is called site-multihoming.

Failure resiliency is the most mission-critical requirement to enhance end-to-end con-

nectivity because user applications cannot resume their data communication in case the

transport-layer sessions get disconnected due to a link failure in the communication path.

There are some router-based approaches [1, 2] that perform a communication path repair

function based on local failure identification and packet rerouting techniques. However,

router-based solutions are not aware of user applications’ requirements and cannot utilize

the host’s multiple network interfaces for resiliency. Therefore, the multihomed hosts,

together with multihomed access networks, can incorporate both better failure resiliency

and higher bandwidth.

The traditional host-based solutions are subject to some limitations [3, 4]. For instance,

a host fails to retain an ongoing session affected by the link’s failure. This is because most

transport layer protocols treat the IP address as a host identifier, and applications running

on those protocols cannot resume data communication when the IP address become

unreachable or unusable due to the link failure. To utilize properly many communication

paths available between the communication hosts, ID/locator split-based network archi-

tectures, such as Shim6 [5], LISP [6], and HIMALIS [7], have been proposed. Shim6 and

LISP focus on addressing the issues of multihoming and routing scalability, respectively, in

the current Internet. In contrast, HIMALIS presents a common architectural framework for

better support of multihoming and mobility in heterogeneous edge networks that use

different network layer protocols, e.g. IPv4 and IPv6.

Although HIMALIS by design allows a multihomed host to transfer a session from one

link to another link when a failure occurs in its link, it lacked the capability to promptly

detect a communication path failure when failure occurs in a link (e.g. gateway’s upstream

links) or node (e.g. gateways) not directly attached to the host interface. Here, the com-

munication path includes all links and nodes lying along the path from the source host to

the destination host. The communication path fails when any link or node lying along the

path fails. With conventional approaches, such as using TCP timeout or application-

specific timeout, it may take a longer time to detect the path failure. Therefore, this paper,

which is an extended version of papers published in earlier conferences [8, 9], fills this gap

by proposing the path failure detection and session recovery mechanism. In the proposed

mechanism, newly added two timers controlled by monitoring packets sending and

receiving instances provide prompt path failure detection for both unidirectional (e.g.

UDP) and bidirectional (e.g. TCP) communication. The ongoing data stream is immedi-

ately switched to another lively path. The goal of this work is to provide a common

framework of communication path failure detection and recovery that can be applied over

various transport and network layer protocols. This paper also presents the implementation

overview of the mechanism in a prototype of multihomed HIMALIS networks. This

mechanism has been implemented as an extended module of the HIMALIS user space
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signaling software. The implemented functions are evaluated in a large-scale network

emulation testbed as well.

The remainder of this paper is organized as follows. Section 2 briefly introduces a

multihomed HIMALIS network and summarizes the communication path recovery

mechanism. The proposed path failure detection mechanism is described in Sect. 3. Sec-

tion 4 presents an overview of the implementation. Section 5 presents the performance

evaluation results. Lastly, Sect. 6 concludes the paper.

2 Overview of HIMALIS Network Architecture

2.1 Multihomed HIMALIS Network

As illustrated in Fig. 1, a HIMALIS network consists of two or more edge or access networks

and a single transit network. In each edge network, the network administrator can choose an

optimal network layer protocol for better network management. Each edge network is con-

nected to the transit network with one or more HIMALIS gateways (HGs), which provide

network protocol or locator translation, to provide global connectivity to hosts residing in the

edge networks. In Fig. 1, an edge network on the left side forms site-multihoming, and two

edge networks on the right side support host-multihoming. In this example, the mobile host

(MH) connects to a site-multihomed edge network, and the correspondent host (CH) makes a

host multihomed connections through the two edge networks.

Each HG is assigned with a global locator (GLoc) to its every upstream interface and is

reachable at the GLocs from other HGs. The MH and CH have a unique host identifier

(HID) and hostname (e.g. ch#himalis.net for the CH). The hostname and HID are provided

to the host during the initial setup. Since the name registry deployed in the transit network

stores the records of hostname, HID and the associated GLocs, the set of HID and GLocs is

always discoverable by resolving the hostname from the name registry. In this example, the

MH obtains the CH’s HID, GLoc3 and GLoc4 by resolving the hostname ch#himalis.net.

2.2 Path Establishment and Management

In HIMALIS, hosts and HGs have a new layer, called identity layer, to provide locator-

independent functions, such as mobility, multihoming, and data security, by using a pair of the

source and destination HIDs. In particular for the communication path management, hosts

and HGs maintain sets of the source and destination HIDs and locators (it is also referred to as

HID-to-locator mapping) to enable packet-forwarding function in the identity layer. Note that

Fig. 1 Two types of multihoming configurations in HIMALIS network
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the identity layer based packet forwarding is also useful for locator translation while pro-

tecting the payload of each packet. From the above reason, when a host wants to communicate

with another host, the host establishes a session in the identity layer to provide those locator-

independent functions before starting communication in the transport layer.

Figure 2 illustrates an example of data communication from the MH to the CH. As

shown in Fig. 1, the MH has only a single interface to connect to the edge network, but

there are four distinct communication paths to the CH because both the MH and CH are

connected to the transit network with two GLocs. Since a pair of GLocs specifies a

communication path, the MH can change communication path anytime in the multihomed

HIMALIS network by updating either its own or CH’s HID-to-locator mapping. According

to the locator selection policy, such as [10], the MH selects a pair of GLocs to and

establishes an identity-layer session on the path.

2.3 Basic Failure Detection

As described above, HIMALIS supports to switch a session in the identity layer to other

communication paths by updating HID-to-locator mapping in hosts and HGs, but

HIMALIS currently does not support path failure detection in the identity layer. Although a

host can easily detect own link down event, it may take longer time to detect other cases

(e.g. a link failure in the transit network). Moreover, since a session migration among

communication paths becomes an essential requirement in multihomed networks, a com-

plete path recovery mechanism including failure detection and path recovery in the identity

layer is suitable in the HIMALIS network architecture. In the following section, we pro-

pose a prompt path failure detection mechanism to address this issue.

3 Path Failure Detection and Session Recovery Mechanism
in Multihomed HIMALIS Network

The proposed mechanism provides a complete host-side active communication path

recovery function that consisting of path failure detection, lively path exploration, and path

recovery processes. Since the mechanism is designed to operate from the identity layer of

Fig. 2 An example of path establishment and management process between MH and CH through HG 1 and
HG 3
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host protocol stack, communications with several transport-layer protocols (i.e. TCP and

UDP) as well as various network-layer protocols are supported. In this section, we describe

the operation of the proposed mechanism as below.

3.1 Path Failure Detection Process

The proposed path failure detection is simply based on monitoring of packet sending and

receiving instances by maintaining two timers: probe timer (PT) and keepalive timer (KT).

These two timers are mutually exclusive, that is, only one is running at a time. For a PT

(KT) timeout, the host sends a probe (keepalive) packet to the correspondent host to check

availability of the ongoing communication path. On receiving the probe (keepalive) packet,

the correspondent host immediately sends its response back. The proposed mechanism

performs path failure detection based on monitoring packets in the identity layer. The

detection mechanism works independently of the transport layer protocols (e.g. TCP and

UDP). For instance, even if the TCP function introduces a larger congestion window size

and longer delayed acknowledgement, the proposed detection mechanism just exchanges

probe packets to check availability of live communication paths.

The proposed detection mechanism consists of two exclusive detection states to support

active path failure detection in both the sender and receiver sides (Fig. 3). By supporting

failure detection in both sides, this mechanism works even if the correspondent host has

disabled the detection process (Fig. 3). For example, a data service provider (i.e. cloud) can

disable the detection function to mitigate the processing load. In other word, depending on

application requirements or user policy, the detection function can be activated or deac-

tivated. For the bidirectional communication model (e.g. TCP), ‘‘State of Data Sender’’ is

enough because the data receiver regularly sends response packets (e.g. ACK packets).

However, for a unidirectional communication model (e.g. UDP), this state cannot detect a

failure in the receiver side because of lack of regular response packets. To address this

issue, the proposed mechanism introduces ‘‘State of Data Receiver’’ to achieve path failure

detection in the receiver side as well.

When an identity layer session is established, or when the host receives a packet, the

host enters into Data Receiving state by starting the KT and stopping the PT. In Data

Receiving state, the host does not change the timers when receiving packets. When the host

sends a packet, it enters into Data Sending state by stopping the KT and starting the PT. In

Data Sending state, the host does not change the timers when sending data packets. When

Fig. 3 State machine diagram of the proposed path failure detection
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the host receives a data packet in Data Sending state, it transfers into Data Receiving state

by stopping the PT and starting the KT. In Data Receiving state, it does not change the

timers when receiving data packets.

In Data Receiving state when the KT hits KT timeout seconds (whose value is nego-

tiated during the communication initialization phase), the host sends a keepalive packet to

the peer host, restarts the KT, reduces KT timeout seconds to half of the previous KT

timeout value, and enters into Keepalive Sending state. On receiving the keepalive packet,

the peer host is supposed to respond the host immediately with a payload packet (if it has

application data to send). If the host receives a data packet, a probe packet or a keepalive

response packet in Keepalive Sending state, it returns to Data Receiving state and resets its

KT timeout to the normal KT timeout and waits until the KT expiration for sending a

keepalive packet again. In case the host does not receive any response again in Keepalive

Sending state, it will repeatedly send keepalive packets and reduce KT timeout value until

the number of outstanding keepalive packets reaches a preset maximum value. This pro-

cess helps to detect a path failure when the host is receiving datagrams (i.e. UDP packets)

from the peer host. Similarly, detecting a path failure for enabling prompt session recovery,

closing unused identity sessions is also important to reduce management overheads. When

both hosts have no application data to send or receive, and are exchanging only keepalive

packets, either may issue a special type of keepalive (i.e. keepalive-close) packet to close

the identity layer session.

In Data Sending state when the PT hits PT timeout seconds (whose value is negotiated

during the communication initialization phase), the host sends a probe packet, restarts the

PT, reduces PT timeout value to half of the previous PT timeout value, and enters into

Probe Sending state. On receiving the probe packet, the peer host is supposed to respond

the host immediately with a probe response packet. If the host receives a probe response

packet, it knows that the communication path is still active, stops the PT, and resets PT

timeout value to the original value. It then resumes sending application data packets and

starts the PT. However, in case the host does not receive a response to its probe packet

within the reduced PT timeout, it sends another probe packet and further reduces PT

timeout to half of the previous PT timeout. In case the host does not receive any response

again in Probe Sending state, it repeatedly sends probe packets and reduces the PT timeout

value until the number of outstanding probe packets reaches a preset maximum value. If no

response received from the peer host, it stops the PT and enters into the lively path

exploration process.

Let Pmax and CPmax denote the maximum values (in millisecond) of PT timeout and

outstanding probe packet counter, respectively. When the host is in the sender state, a path

failure detection time (Td) is given by

Td ¼ Pmax þ
Pmax

2

� �
þ Pmax

22

� �
þ � � � þ Pmax

2CPmax�1

� �
\2Pmax ð1Þ

CPmax also affects the detection accuracy since the host sends UDP-based probe packets.

These parameters are assumed to be determined based on the requirements of user

applications. An example of the failure detection process is shown in Fig. 4. Let us assume

that the communication from MH to CH illustrated in Fig. 1 and Pmax = 4000 and

CPmax = 3. Initially, PT is set to Pmax value and deactivated. Once a data packet is sent, PT

is activated and started with Pmax value. On receiving any packets, PT is deactivated. When

PT timeout occurs, PT is restarted with half of the previous timeout value, and a probe

packet is sent. The timeout value to set PT after C-th continuous timeout is given by floor
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(Pmax/2C). Finally, when continuous CPmax-times PT timeout occurs, the detection module

identifies the ongoing communication data stream as being on a faulty path. In the

detection process, it takes around 7 s to detect path failure, and two probe packets are sent

to the CH.

Let Kmax and CKmax denote the maximum values (in millisecond) of KT timeout and

outstanding keepalive packet counter, respectively. When the host is in the receiver state, a

path failure detection time is as shown below.

Td ¼ Kmax þ
Kmax

2

� �
þ Kmax

22

� �
þ � � � þ Kmax

2CKmax�1

� �
\2Kmax ð2Þ

We do not provide additional explanation of these parameters because the overall detection

process is quite similar to the detection using the probe packets.

3.2 Lively Path Expolaration Process

Once a path failure has been successfully detected, this module sends probe packets to the

peer host through various candidate communication paths, to find one or more lively paths.

For each probe packet, PT is restarted with Pmax and decremented to detect its timeout. On

receiving the probe packet, the peer host sends a response back to the sender, immediately.

If the host fails to receive a response from all candidate paths, the host closes the ID

session regardless of the transport-layer protocol used.

In the network configuration shown in Fig. 1, there are at least three candidate paths

after detecting a path failure in the MH. Since it may not be feasible to make exhaustive

path exploration, a simple source and destination addresses selection algorithm [10] is used

Fig. 4 Path failure detection and lively path exploration, where Pmax = 4000 ms, and CPmax = 3
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in this module. Based on the selection algorithm, once a probe response is received, the

path exploration module stops the rest of path exploration process immediately. As

illustrated in Fig. 4, each probe packet and the corresponding response packet carry a pair

of source and destination GLocs to indicate HGs to pass through. Those probe messages

are protected by including their HMAC (i.e. keyed-hash message authentication code)

calculated with the session key negotiated during the session initialization phase. In the

case of Fig. 4, after the path failure detection process, the MH sends to the CH a probe

packet carrying a pair of GLoc2 and GLoc3. On receiving the probe packet in HG2, HG2

checks the destination GLoc in the packet and transfers it to the HG assigned by GLoc3,

and then the probe packet is delivered to the CH through CH’s HG according to the

destination HID. On receiving the probe packet in the CH, the CH sends a probe response

packet back to the MH through the same HGs when the probe packet comes in.

The proposed failure detection mechanism supports the initiation of path failure

detection from both the sender and receiver sides. However, an undesirable session dis-

connection can be happened due to execution of the lively path exploration and recovery

processes simultaneously from both sides. To avoid this situation, when the ID session

initiator (i.e. MH) enters into the path exploration process, the initiator drops any probe

packets received from the ID session responder (i.e. CH).

3.3 Path Recovery Process

As soon as a lively path is found, the host transfers the ongoing data communication to the

lively path. The path recovery process mainly consists of four sub-processes: switching

HGs, packet redirection, location updates for the peer host and location updates for the

host’s own name registry as depicted in Fig. 5.

In the case that source GLocs in both previous and new paths are different, both

switching HGs and packet redirection processes are carried out to reduce packet loss and

receive new communication requests. In the switching HGs process, the host sends the peer

host registration request to the new HG to send and receive data packets through the new

HG. In the packet redirection process, the host sends the handover indication request to the

old HG to redirect incoming data packets to the new HG.

In our previous experiments [11], the above two processes were helpful to reduce data

packet loss during handover process. Note that they are skipped when the source GLoc

does not change on the new path. To maintain the communication path properly, the host

sends a handover notification message to the CH. Upon receiving this message, if nec-

essary, the CH sends a peer host registration message to the corresponding HG to send and

receive data packets through the HG. Once the HG updates its packet redirection table, the

target communication path is recovered.

In particular, when the path failure is caused by either the host’s interface down or the

HG’s upstream link down, the host sends a location update message to the host’s name

registry to delete the corresponding GLocs. After updating its GLocs in the name registry,

newly generated communication requests are delivered to the host properly.

3.4 Gateway-Assisted Prompt Failure Detection

When the HG’s upstream link (i.e. the link connected to the transit network) goes down,

the host would be unreachable at its GLoc from the peer host, but the HG is still reachable

from the host. In this case, if the HG helps the host to know its upstream link down, the
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host can quickly switch ongoing communications and does not need to send any probe and

keepalive packets for path failure detection. To support gateway-assisted prompt failure

detection, we have designed a GLoc unreachable notification mechanism. In this mecha-

nism, when the HG detects its upstream link down by using link-layer trigger, it config-

ures a GLoc unreachable notification message containing GLoc1 as the unreachable GLoc

and sends the message to all the hosts connected to the edge network. On receiving this

notice, each host transfers the session from the HG to another one if the edge network

consists of two or more HGs.

3.5 Session Closing Due to No Data Communication

From the security and resource management points of view, it is important to consider

about when to close an identity layer session. In the proposed mechanism, the session is

closed when there are no data packets exchanged for a specific time interval.

Fig. 5 Path recovery messages sequence
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4 Implementation of Path Recovery Mechanism

We have implemented the mechanism in available HIMALIS software in both hosts and

HGs and verify different functions of the proposed communication path recovery mech-

anism and to evaluate their performances. The latest HIMALIS software is based on

Ubuntu 12.04 LTS 64-bit with the Linux kernel version 3.2.40. The core processes in the

identity layer (i.e. header processing) are implemented in the kernel space, and other

control functions (i.e. signaling state machine shown in Fig. 3) are implemented in the user

space. Figure 6 depicts a schematic block diagram of the host signaling mechanism, which

is called idlhost. The state machine to handle host’s ID-based control functions, such as

mobility and path security management, are implemented in the signaling thread. When the

host starts data communication with another host, the Signaling Event Controller module in

the signaling thread launches SessionStateMgr to provide a path management

function. DeviceHandler detects host’s interface down.

To realize our path recovery mechanism, we have newly added PathRecoveryMgr in

SessionStateMgr, which consists of FailureDetectionStateMgr,

PollingHandler, and IdlAddr modules. FailureDetectionStateMgr module

controls the entire state transition of the path recovery mechanism. PollingHandler
module monitors data packet sending and receiving instances in the identity layer of host

protocol stack in every 100 ls by employing the HIMALIS-capable ioctl. The moni-

toring results are reported to FailureDetectionStateMgr. IdlAddr module gen-

erates a set of candidate paths with selection priority to FailureDetectionStateMgr
module. To handle new signaling packets, such as probe and keepalive packets and link

down notification messages, we have slightly modified the signaling thread. Moreover, it is

also useful to provide a command-based path switching API in the host-multihoming case

because users sometimes want to switch communication paths according to the available

Fig. 6 Schematic block diagram of host signaling software. The modified parts of host signaling software
are highlighted with a red frame border. (Color figure online)
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bandwidth or security level. Hence, we have also implemented an idlhandover command to

provide a command-based path switching function, where this command communicates

with the Signaling Event Controller utilizing an inter-process communication (IPC) method.

5 Experimental Evaluation

The following experiments evaluate the overall failure recovery time under both site- and

host-multihoming configurations. We have constructed a HIMALIS network environment

as shown in Fig. 7 to understand both actual failure detection time and communication

recovery delay. In each edge network, an authentication agent/registrant (AAR) and a local

name server (LNS) are deployed to provide network access control and name resolution,

respectively. In the transit network, a single domain name registry (DNR) and host name

registry (HNR) are deployed to provide the functions of name registries. Both MH’s and

CH’s ID-to-locator mappings are stored in the HNR, so that the MH sends a location

update message to HNR when the MH changes locators. The AAR, LNS, DNR, and HNR

are involved in the signaling plane functions in the HIMALIS network, and they do not

affect data plane functions. In the evaluation network of Fig. 7, each edge network has two

HGs to form site-multihoming. The four Linux routers are installed to provide a single

routing path between each pair of HGs in the transit network. Edge Network 2 is IPv6

network, while the others are IPv4. Total 21 components are installed on physically distinct

21 nodes in the network emulation testbed, StarBED [12, 13]. Each node, Cisco UCS C200

Fig. 7 Experimental network topology
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M2, equips two 6-Core Intel Xeon X5670 processors, 48 GB RAM, and six 1000BASE-

TX Ethernet adapters, where two Ethernet ports are used for administrative tools, and the

rest four Ethernet ports are used to construct an ideal network topology. In this network,

the average round trip time (RTT) between 2-hop (4-hop) neighboring HGs is 283 ls

(706 ls). Although RTT may vary in the real network, such a short RTT helps to estimate

implementation overhead and internal processing time in physical network interfaces.

To measure both failure detection time and path recovery delay, we have developed two

applications: idecho and idprobe. The idecho program is a TCP echo application developed

for HIMALIS native socket API and transfers data packets between the MH and the CH.

Each application transfers a single packet carrying 256 Byte payload in every sending

interval. The data sending process of idecho takes 10 ms sleep at every sending interval.

The idprobe program is a UDP-based application developed with HIMALIS native socket

API and transfers data packets from the MH to the CH in every 10 ms. Each datagram is

provided with a unique packet ID to check packet loss.

In the experiment, we restrict our focus on the sender side path failure detection because

the detection process in the receiver side is quite similar to the sender side. Through the

entire experiments, Pmax and CPmax are set to 4000 and 3, respectively. The data receiver

side parameters (i.e. CKmax) are set to large enough values to avoid a case when the

receiver side detection process starts sooner than the sender side detection process. Fur-

thermore, TCP_RTO_MAX is set to 5*HZ (shorter than the default value of 120*HZ) to

improve the failure recovery response for TCP data transmission, where HZ is defined by

an architecture-specific parameter in Linux kernel. The related TCP_RETR2 is set to 60.

The value of TCP_RTO_MIN remains the default value (HZ/5). As a result, in the worst-

case scenario, the total maximum retransmission time becomes about 5 min (given by the

product of TCP_RTO_MAX and TCP_RETR2).

5.1 Failure Recovery in Site-Multihoming Case

In the experimental setup shown in Fig. 7, we have considered that MH connects to Edge

Network 1 and starts data communication with CH. According to the source and desti-

nation locator selection algorithm [10], the identity-layer session is initially established

through HG1-2, RT3, and HG3. With this condition, the following two cases are examined.

5.1.1 Case A-1: Path Failure Due to a Link Failure in Transit Network

Figure 8a, b show both packet-sending and receiving results using the TCP application

idecho and UDP application idprobe observed in the MH (using tcpdump command),

respectively. Received packets before and after injecting the failure are plotted in red and

blue colors, respectively. Dropped packets are plotted in gray. To demonstrate a link

failure in the transit network, iptables command is used from the MH to drop any data

stream passing through the link between RT3 and HG1-2.

In case of data transmission using idecho application, since the MH received

acknowledgement immediately for every packet sending, PT was activated and set to Pmax

as soon as the link failure was injected. So, the first PT timeout came after 4 s. At this

moment, the MH sent the first probe packet to the CH. Since MH received neither data

packets nor the probe response from the CH, MH detected a path failure when the third PT

timeout comes. As a result, it took 7 s to detect the path failure. After having detected the

failure, the lively path exploration process started. Then, the path recovery process started.

As a result, in this experiment, the communication path was recovered within 7.7 s;
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however, the total failure recovery time for TCP session resulted in 11.4 s. The additional

delay was caused by the fact that RTO value had reached the maximum value (5 s) during

the failure detection process. Note that the failure detection logic explained above is also

applicable in the CH because the CH becomes a data sender when sending an acknowl-

edgement packet to the MH.

In contrast, in case of data transmission using the UDP application idprobe, the MH did

not receive any data packets from the CH. As we can see at Fig. 8b, PT was always

activated unless the MH received keepalive packets. In this experiment, the total path

recovery delay was about 5.2 s.

5.1.2 Case A-2: Path Failure Due to HG’s Upstream Interface Down

The HG1-2’s upstream interface or link down event is injected by using ifconfig com-

mand from the MH. As shown in Fig. 9, in this experiment, it takes a bit longer time to

down HG1-2’s upstream link, but the MH could successfully received a upstream link

down notification message from HG1-2 within 200 ms. The MH then switches the

communication path to the next available HG1-1 by sending a signaling packet to

register the CH’s HID and GLoc in HG1-1. MH sends a location update request message

to CH and then can send the data packets before it receives the location update response
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message. As a result, the failure recovery time was about 400 ms in case of data

transmission using the TCP application idecho (about 340 ms in case of data transmis-

sion using the UDP application idprobe). As shown in Fig. 9b, the data communication

path can be recovered after setting packet-forwarding entry in the HG1-1 to use the

HG1-1 for the data transmission. In the current implementation, although HG1-1 mon-

itors it’s link state using a script program, a kernel-based monitoring by using a netlink

socket can provide faster detection [9].

5.2 Failure Recovery in Host-Multihoming Case

In contrast with the experiments in the site-multihoming scenario, consider that the MH

connects to both Edge Network 1 and 2 through eth0 and eth1, respectively, and starts data

communication with the CH using idecho or idprobe application. Data packets are initially

transferred through HG2-1, RT2, RT1, RT3, and HG3-1. In this condition, the following

two cases are examined.

5.2.1 Case B-1: Link Failure Occurs in Edge Network 2

Similar to Case A-1, we used iptables to drop any data packets passing through the link

between the MH and HG2-1 to demonstrate a link failure in Edge Network 2. After the MH
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detected the path failure event, the MH resumed the ongoing data stream through HG1-2,

RT3 and HG3-1 within 11.2 s for the idecho application and 7 s for the idprobe application

as shown in Fig. 10a, b, respectively. From the algorithmic point of view, there is only a

slight difference in the path failure detection in Case A-1 and Case B-1.

5.2.2 Case B-2: Path Failure Due to MH’s Link Down

Figure 11a, b show failure recovery time in case of MH’s link down. In this experiment,

ifdown command was used to down MH’s eth1. It took about 200 ms to detect its interface

down in the MH. In case of data transmission using idprobe, sending packets were dropped

based on the routing table in the MH. In this case, since tcpdump command failed to capture

such dropped packets, Fig. 11b does not include dropped packets. After detecting the

interface down event, MH took additional 200 ms to switch from HG2-1 to HG1-2 as the

active HG for the session. Then, HG2-1 redirected packets destined for MH to HG1-2.

Finally, it took about 620 ms for idecho (560 ms for idprobe) to recover communication path.

5.3 Communication Path Switching by External Command

For scheduled path failure due to network maintenance, the command-based path switching

function is useful. To verify the implemented function, similar to the host-multihoming
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scenario, MH was connected to both Edge Network 1 and 2 through eth0 and eth1, respec-

tively, and had started data communication with CH using idecho or idprobe application. In

this case, data packets were initially transferred through HG1-2, RT3, and HG3-1. The

experiment observed no packet loss during the session migration from eth1 to eth0, as shown

in Fig. 12a, b. Although data packets redirected from HG1-2 had incurred additional delay,

the MH received all packets sent from the CH for both idecho and idprobe applications.

From the above experiments and evaluation results, we can conclude that our proposed

path failure detection mechanism can detect a path failure at any point with given detection

time. In the above experiments, when the maximum probe timeout and the maximum probe

attempt times set to 4 s and 3 times, respectively, it resulted in completing the failure

detection within 7 s. This is faster than the failure detection carried out by the TCP

retransmission timeout that may take 5 min. The evaluation results also show that the

proposed mechanism takes only about 200 ms to detect gateway’s upstream link down.

6 Summary and Future Work

In this paper, we have proposed a path failure detection and session recovery mechanism

for a multihomed HIMALIS network. This mechanism provides a complete path failure

recovery, which consists of path failure detection, lively path exploration, and path

recovery processes. We have also presented the implementation overview of this
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mechanism, and each process was implemented in the latest HIMALIS software package.

Several experiments were conducted to evaluate overall failure recovery time and the

related processing delays in a testbed network environment. Those evaluation results

indicate that the proposed path recovery mechanism provides fast path failure recovery

under both site- and host-multihoming configurations. The entire mechanism is also ver-

ified to be feasible for both IPv4 and IPv6 network protocols. In future work, we will

construct a large-scale testbed to evaluate its scalability.
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