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Abstract In a cognitive radio system, efficient wideband spectrum estimation is a basic

component of dynamic spectrum access. The systems high sampling rate is the main

challenge in the frontend. In this paper, wideband power spectrum sensing is studied based

on sub-Nyquist sampling instead of signal recovery. Compared to other spectrum sensing

methods based on sub-Nyquist sampling, the proposed scheme is suitable for both sparse

and nonsparse signals. A low complexity, adaptive resolution frequency averaging scheme

is proposed to exploit the cross-power spectrum between the outputs of different channels.

Spectrum reconstruction presents only a simple least square without any sparse constraint.

The normalized mean square error is computed to demonstrate estimation performance.

Keywords Sub-Nyquist sampling � Cognitive radio � Power spectrum estimation �
Wideband sensing

1 Introduction

Alongside booming growth in wireless communication applications, the efficient utiliza-

tion of spectrum has become a critical consideration for researchers and developers. The

cognitive radio (CR) [1] was first proposed for effective spectrum resource usage. This

technology allows unlicensed users to access wireless channels when primary users are in

an inactive state. Spectrum sensing is an essential functionality to avoid access interference

[2, 3]. In a CR system, the wideband frequency spectrum is generally sparse, as not all of

the subbands are occupied at the same time; active subbands can be detected by
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compressive sensing [4], known as sub-Nyquist sampling. The method, based on the sub-

Nyquist rate, reduces computational burden and memory requirements. The Nyquist rates

of wideband signals in a CR system may exceed the specifications of high speed, high-rate

analog-to-digital converters (ADCs) [5], which are too power hungry for direct wideband

spectrum sensing. However, sub-Nyquist sampling can solve this problem.

Numerous researches refer to acquiring multi-band signal from a rate below the Nyquist

sampling rate. Compressive sensing theory is firstly put forward to sense wideband

spectrum in [6]. This method reconstructs the wideband spectrum in the first step, then

wavelet-based edge detection detects spectral opportunities across the wideband spectrum.

A two-step CS scheme was introduced in another study [7] for minimizing sampling rate,

where actual sparsity is estimated in the first time slot,then compressed measurements are

adjusted in the second slot. Another study explored an adaptive compressive spectrum

sensing algorithm for wideband CR [8], in which compressed measurements are adaptively

adjusted without any sparsity estimation efforts to improve the throughput. Yet another

study [9] developed a multi-rate asynchronous sub-Nyquist sampling (MASS) system to

perform wideband spectrum sensing, robust against lack-of-time synchronization and with

excellent performance in fading/shadowing scenarios. An efficient collaborative spectrum

sensing method with low sample rate was presented by other research [10], employing

adopting matching pursuit to detect spectrum holes in a cognitive network. All these

studies, however, focused on frequency spectrum estimation or reconstructing original

signals. Sparsity order estimation for cognitive radio was investigated in one previous

study [11], to provide a general methodology to quantify the minimum number of samples

required to estimate sparsity order for compressive spectrum sensing. These works based

on sub-Nyquist sampling require an assumption of sparsity in the frequency domain.

In a typical CR system, it is not necessary to recover the original signal but to detect

active subbands for dynamic spectrum access. Wideband power spectrum sensing from

sub-Nyquist samples no longer requires sparsity assumption. Related works are presented

in [12–16]. In [12], wideband power spectrum sensing was considered in the form of

inequalities, and only needed a few bits from the nodes in a sensor network. In another

work [13], a single-stage frequency-domain sensing technique based on sub-Nyquist

sampling was proposed to blindly detect the locations of active subbands. The approach in

[14, 15] reconstructed power spectrum of wide-sense stationary signals by exploiting the

cross-correlation between the outputs of different channels. A method for finite resolution

approximation of power spectrum estimation was proposed in another study [16]. The

schemes in [13, 14] based on multi-coset sampling is sensitive to timing jittering. It is

difficult to maintain accurate time intervals between channels. The method proposed in [9]

introduced an additional estimation error with the high sampling rate of ADCs. In other

studies [6–11], methods which used normal compressive sensing reconstruction algorithm

with ‘1=‘2 norm constraint were proposed, but these usually cause high complexity. In this

study, we focus on least square (LS) reconstruction without any sparse constraint. An

analog-to-information converter (AIC) [17] is employed with multi-channel parallel ar-

chitecture, providing a sampler for sparse multi-band signals according to the general

concept of random filtering [18]. The sampling framework is similar to the modulated

wideband converter (MWC) prototype described in a previous study [19], which is im-

plemented in a wideband receiver in practice.

The rest of this paper is organized as follows. In the second section, an analog signal

sub-Nyquist sampling model is described, and the frequency spectrum relationship be-

tween samples and the original signal is established. In the third section, we describe the

power spectrum relationship between samples and the original signal, which exploits the
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cross-power spectrum between the outputs of different channels. The process changes to

solve overdetermined equations with a rank condition for reliable estimation. An adaptive

resolution frequency averaging (ARFA) scheme is proposed with low complexity in the

fourth section. A multiband signal is used for simulation and normalized mean square error

(NMSE) is applied to measure the quality of estimation performance. The final section

provides a summary and conclusion.

2 Sampling Model

Based on Fig. 1, M branches are employed along with a wide-sense stationary complex-

valued analog input x tð Þ. Only considering branch i, x tð Þ is modulated with a pseudo

random signal pi tð Þ. The signal pi tð Þ is a periodic extension of distinct, finite-duration

random square waves that share a common period NT, yielded from the piecewise constant

function ci tð Þ. T is the sampling time interval on the Nyquist rate. The length of samples of

each branch is L. The average sampling rate is equal to the Nyquist rate multiplied by

M=N.
The relation can be expressed as follows:

piðtÞ ¼ ciðt0Þ t ¼ t0 þ lNT ; 0� t0\NT ; l ¼ 0; 1; . . .; L

ciðt0Þ ¼ ci½�n� nT � t0\ðnþ 1ÞT ; n ¼ 0; 1; . . .;N � 1

ci½�n� 2 f�1; 1g

8
>><

>>:

ð1Þ

The output of the i-th branch with N-fold down-sampling can be represented as

yi½k� ¼
1

NT

Z ðkþ1ÞNT

kNT

piðtÞxðtÞdt

¼ 1

T

XN�1

n¼0

ci½�n�
Z ðkNþnþ1ÞT

ðkNþnÞT
xðtÞdt

¼
X0

n¼1�N

ci½n�x½kN � n�

¼ si½kN�

ð2Þ

There is a key operation of ciðt0Þ ¼ ci½�n� in (1). The output of each branch can be

regarded as the N-fold down-sampling of si½n� ¼ ci½n� � x½n� from (2), where � represents

the linear convolution operator.

pM-1(t)

x(t)

p0(t)
y0[l]

pi(t)
yi[l]

yM-1[l]

dt

DFT

DFT

DFT

0[ ]Y k
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[ ]iY k

sM-1(t)
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s0(t)
ADC

ADC
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dt
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Fig. 1 Multi-channel parallel
AIC sub-Nyquist sampling
framework
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The output is equal to the N-fold down-sampling from s0i½n�. s0i½n� ¼ c0i½n�~x½n�, where ~
is the circular convolution operator. c0i ¼ ½ci; 01�ðL�1ÞN � (where 0 is zero matrix,

ci ¼ ½ci½0�; ci½1�; . . .; ci½N � 1� �). The length of c0i½n� is identical to x½n�. Then following is

then obtained

yi½l� ¼ s0i½ðlþ 1ÞN � 1�

¼ 1

LN

XLN�1

k¼0

S0i½k�ej
2p
LNk½ðlþ1ÞN�1� l ¼ 0; 1; . . .; L� 1

ð3Þ

where S0i½k� is the LN-points discrete Fourier transform (DFT) of s0i½n�. In the frequency

domain, with the circular convolution theorem:

S0i½k� ¼ C0
i½k�X½k� ð4Þ

where C0
i½k� is LN-points DFT of c0i½n�, and X½k� is the LN-points DFT of x½n�. We then can

have the L-points DFT of yi½l�:

Yi½k� ¼
1

LN

XL�1

l¼0

yi½l�e�j2p
L
lk

¼ 1

LN

XL�1

l¼0

XLN�1

m¼0

X½m�C0
i½m�ej

2p
LN
m½ðlþ1ÞN�1�

" #

e�j2p
L
lk

¼ 1

N

X

m

X½m�C0
i½m�ej

2p
LN
mðN�1Þ 1

L

XL�1

l¼0

ej
2p
L
ðm�kÞl

ð5Þ

It is obvious that

1

L

XL�1

l¼0

ej
2p
L
ðm�kÞl¼

1 m� k ¼ 0; L; 2L; . . .; ðN � 1ÞL

0 others

(

ð6Þ

From (5–6), we can have

Yi½k� ¼
1

N

XN�1

n¼0

X½nLþ k�C0
i½nLþ k�ej2pLNðnLþkÞðN�1Þ

¼ 1

N

XN�1

n¼0

X½nLþ k�C00
i ½nLþ k�

ð7Þ

where C00
i ½nLþ k� ¼ C0

i½nLþ k�ej2pLNðnLþkÞðN�1Þ. From (7), the multi-branch output can be

written in matrix form as follows:

y½k� ¼ 1

N
C00½k�x½k� k ¼ 0; 1; . . .; L� 1 ð8Þ

where the relation is
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y½k� ¼ ½Y0½k�; Y1½k�; . . .; YM�1½k��T

x½k� ¼ ½X½k�;X½Lþ k�; . . .;X½LðN � 1Þ þ k�T

C00½k� ¼

C00
0 ½k� C00

0 ½Lþ k� � � � C00
0 ½LðN � 1Þ þ k�

C00
1 ½k� C00

1 ½Lþ k� � � � C00
1 ½LðN � 1Þ þ k�

..

. ..
. ..

. ..
.

C00
M�1½k� C00

M�1½Lþ k� � � � C00
M�1½LðN � 1Þ þ k�

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð9Þ

From (8), we finally obtain

y½0�
y½1�
..
.

y½L� 1�

2

6
6
6
4

3

7
7
7
5
¼ 1

N

C00½0� 0
C00½1�
. .
.

0 C00½L� 1�

2

6
6
6
4

3

7
7
7
5

x½0�
x½1�
..
.

x½L� 1�

2

6
6
6
4

3

7
7
7
5

ð10Þ

The frequency spectrum of x½n� is expressed as:

x ¼ vecf½x½0�T ; x½1�T ; . . .; x½L� 1�T �g ð11Þ

where vec{.} stacks all columns of a matrix into a vector. We cannot directly obtain x½k�
from (8) because C00½k� is not a full column rank matrix (where M\N).

3 Wideband Power Spectrum Estimation

In a CR system, spectrum sensing detects the active subbands rather than recovering the original

signal. In this section, we estimate the power spectrum of wide-sense stationary analog input to

detect the active bands. The signal exhibiting cyclostationary has an auto-correlation function

Rxðt; sÞ ¼ EfxðtÞx�ðt þ sÞ, which is periodic in the time domain with a period T0

Rxðt þ T0; sÞ ¼ Rxðt; sÞ ð12Þ

The power spectrum of x[n] is given as

Px½k� ¼ X½k�X�½k� ð13Þ

where � denotes conjugation. The cross-power spectrum of yi[k] and yj[k] can be written as

Pyi;j ½k� ¼ Yi½k�Y�
j ½k� ð14Þ

The cross-power spectrum of c0i½n� and c0j½n� can be computed offline as

Pci;j ½k� ¼ C0
i½k�C0

j
�½k� ð15Þ

It is obvious that C0
i½k�C0

j
�½k� ¼ C00

i ½k�C00
j
�½k�, then a relation similar to (8) is drawn

py½k� ¼
1

N2
PC½k�px½k� k ¼ 1; 2; . . .; L ð16Þ

where the relation is
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py½k� ¼ ½Py0;0 ½k�;Py0;1 ½k�. . .;Pyi;j ½k�; . . .�
T

px½k� ¼ ½Px½k�;Px½Lþ k�; . . .;Px½LðN � 1Þ þ k��T

PC½k� ¼

Pc0;0 ½k� Pc0;0 ½Lþ k� � � � Pc0;0 ½LðN � 1Þ þ k��

Pc0;1 ½k� Pc0;1 ½Lþ k� � � � Pc0;1 ½LðN � 1Þ þ k��

..

. ..
. ..

. ..
.

Pc0;0 ½k� Pc0;0 ½Lþ k� � � � Pci;j ½LðN � 1Þ þ k��

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð17Þ

PC½k� is a M2 � N deterministic matrix. From (16), we finally obtain

py½0�
py½1�
..
.

py½L� 1�

2

6
6
6
4

3

7
7
7
5
¼ 1

N2

PC½0� 0
PC½1�
. .
.

0 PC½L� 1�

2

6
6
6
4

3

7
7
7
5

px½0�
px½1�
..
.

px½L� 1�

2

6
6
6
4

3

7
7
7
5

ð18Þ

The power spectrum of x[n] is written as

px ¼ vecf½. . .; px½k�; . . .�g k ¼ 0; 1; . . .; L� 1 ð19Þ

While the compressive sampling matrix C is given as

CM�N ¼ cT0 ; c
T
1 ; . . .c

T
M�1

� �T ð20Þ

The rank of C is rC ¼ rankðCÞ (where rankðXÞ denotes the rank of matrix X). When

M � N, the value of rC is usually equal to M.

Proposition If M2 	N, PC½k� is a full column rank matrix.

Proof From (15), the element in PC½k� is given
Pci;j ½nLþ k� ¼ C0

i½nLþ k�C0
j
�½nLþ k�

¼
XN�1

m¼0

ci½m�e�j2p
LN
mðnLþkÞ

 !

�
XN�1

m¼0

cj½m�ej
2p
LN
mðnLþkÞ

 !

¼ cif
T
nLþkf

�
nLþkc

T
j

¼ ciFnLþkc
T
j

ð21Þ

where fnLþk ¼ ½1;WðnLþkÞ; . . .;W ðN�1ÞðnLþkÞ� is the Fourier transformation vector and W ¼
e�j2pLN is an exponential factor. FnLþk ¼ fTnLþkf

�
nLþk. From (17) and (20), we can have

pci;j ½k� ¼ CAi
FDcBj ð22Þ

where CAi
¼ UN 
 ci (
 denotes Kronecker product, UN is a unit matrix with size N),

cBj
¼ ½cj; cj; . . .; cj�T and FD ¼ diagðFk;FLþk; . . .;FðN�1ÞLþkÞ. diagðX1;X2; . . .;XgÞ denotes

a block diagonal matrix with principal diagonal blocks X1;X2; . . .;Xg. cBj
is a vector

containing N groups of cj. From (17) and (22), it is given

PC½k� ¼ CBFCA ð23Þ

where CA ¼ ½CA0
;CA1

; . . .CAM�1
�T , CB ¼ UN 
 CB0

, CB0
¼ ½cB0

; cB1
. . .cBM�1

�T and F ¼
UM 
 FT

D (UM is a unit matrix with size M).
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F is a block diagonal matrix with the M � N nonzero blocks. CA is a matrix with

M nonzero block diagonal matrix arranged in a column. While assuming rC¼M, each block

CAi
in CA is independent (which means that each block matrix CAi

cannot have a linear

expression with other blocks). CB is a block diagonal matrix with M blocks, each block is

equal to CB0
, and rankðCB0

Þ ¼ rankðCÞ ¼ M. Thus, the rank of PC½k� is given

rankðPC½k�Þ ¼ minfM2;Ng ð24Þ

where min {.} denotes the smaller element of the two numbers. From (24), PC½k� has full
column rank when

M2 	N ð25Þ

BecauseCM�N is a randommatrix, it is easy to design according to the requirements of (25). If

PC½k� is a full column rank matrix, (15) is solvable using LS. Denoting its pseudo inverse as

P
y
C½k�, bpx½k� is attained as the estimation of px½k� without any additional constraints.

1

N2
bpx½k� ¼ P

y
C½k�py½k� ð26Þ

h

4 Adaptive Resolution Frequency Averaging (ARFA) Method

The modulated signal in a communication system is wide-sense stationary. This underlying

stationary assumption allows us to use the frequency averaging method. This section

introduces three methods based on frequency averaging in effort to decrease the envelope

fluctuation.

Definition The length of bpx½k� is LN. The length of bpx½k0� computed by frequency av-

eraging is L0N and Z ¼ L=L0, where L0 is the adaptive resolution factor. The spectrum

averaging of the original signal is expressed as

X½k0� ¼ 1

Z

Xðk0þ1ÞZ�1

k¼k0Z

X½k� k0 ¼ 0; 1; . . .; L0N � 1 ð27Þ

The reference power spectrum is written as

Px½k0� ¼ X½k0�X�½k0� ð28Þ

The resolution of px½k0� is 1=L0N.

The first of the three methods is the direct frequency averaging method (DFAM). After

obtaining the estimation results of power spectrum with (26), DFAM computes the average

value of the segments divided from the estimation. The number of segments is L0N. The
results are provided by

bpx½k0� ¼
1

Z

Xðk0þ1ÞZ�1

k¼k0Z

bpx½k� k0 ¼ 0; 1; . . .; L0N � 1 ð29Þ

The second method is the periodogram averaging method (PAM). The periodogram

method [20] is a basic power spectrum estimation method that decreases envelope
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fluctuation. PAM first divides the signal into L0N segments, then the power spectrum of

each segment is estimated by (26) in turn. The output is the average value of all segments,

expressed as follows:

bpx½k0� ¼
1

Z

XZ�1

j¼0

bpxj
½k0� k0 ¼ 0; 1; . . .; L0N � 1 ð30Þ

where j is segment index. In practice, it is difficult to reconstruct px½k� ðk ¼ 1; 2; . . .; LÞ
when the value of L is large. An adaptive resolution frequency averaging (ARFA) method

is proposed. ARFA first divides the frequency spectrum Y½k� into L0N segments, then the

average value of the frequency spectrum of all segments is computed. Equation (26)

provides the estimation results. The corresponding operation is given

c0i½n� ¼ ½ ci½n� ; 01�ðL0�1ÞN �

Yi½k0� ¼
1

Z

Xðk0þ1ÞZ�1

k¼k0Z

Yi½k�

Pyi;j ½k0� ¼ Yi½k0�Y�
j ½k0� k0 ¼ 0; 1; . . .; L0 � 1

ð31Þ

(7) is rewritten in averaging approximate form as
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Fig. 2 L ¼ 1000, N ¼ 256, Compression rate ¼ 0.25. a Original power spectrum estimation. b Reference
power spectrum, L0 ¼ 4
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Yi½k0� ¼
1

N

XN�1

n¼0

1

Z

XnLþðk0þ1ÞZ�1

k¼nLþk0Z

X½k�
 !

1

Z

Xðk0þ1ÞZ�1

k¼k0Z

C00
i ½k�

 !

¼ 1

N

XN�1

n¼0

X½nL0 þ k0�C0
i½nL0 þ k0�Þ

ð32Þ

where C0
i is the L0N-points DFT of c0i in (32). Equation (26) is reexpressed as

1

N2
bpx½k0� ¼ P

y
C½k0�pY ½k0� k0 ¼ 0; 1; . . .; L0 � 1 ð33Þ

There are only L0 group equations to be solved by (33) for ARFA, while DFAM and PAM

methods need to solve L group equations with (26). The frequency resolution of bpx½k0� is
1

L0N.

5 Simulation Results

This section provides some simulations that to demonstrate the performance of power

spectrum estimation with the ARFA method. The multi-band orthogonal frequency divi-

sion multiplexing (OFDM) signal is selected as the analog input, that investigated as a

candidate transmission technology for CR [21, 22]. The spectrum shape of each subband is

rectangular.
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Fig. 3 Power spectrum estimation with different frequency resolution, L ¼ 1000, N ¼ 256, a L0 ¼ 1,
b L0 ¼ 4
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Figure 2a is the estimation result computed by (26). The reference power spectrum in

Figure 2b was computed by (27–28). Figure 3 illustrates the estimation performance

versus frequency resolution. High frequency resolution estimation introduces envelope

fluctuation. Figure 3a demonstrates a special case of L ¼ 1, which is only needed to solve

one equation.

The number of total subcarriers is Nc (Nc ¼ 2048 in the following test), which indicates

signal bandwidth. The number of active subbands is Nb. Figure 4 shows a test result with

noise-free input. The number of active bands is Nb ¼ 4, L ¼ 1000, and each subband

employs 40 subcarriers. In Fig. 4a, c, M ¼ 16, N ¼ 32. In Fig. 4b, d, M = 32, N ¼ 64.

The adaptive resolution factor is L0 ¼ 16 in Fig. 4c, d.

The PSBS method proposed in [15] introduces estimation error, as shown in Fig. 4a, b.

The estimation error increases when the value of N is smaller (Fig. 4a, b). However, this

modification barely affects estimation performance with the ARFA method in Fig. 4c, d.

NMSE is used to measure the quality between power spectrum estimation results and

the reference power spectrum. It is defined as

NMSE :¼ E
P̂x½i� � Pr½i�
�
�

�
�2

Pr½i�k k2

" #

ð34Þ

where Pr is the reference power spectrum, expressed as
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Fig. 4 Power spectrum estimation from compressive samples. a, c M ¼ 16, N ¼ 32. b, dM ¼ 32, N ¼ 64.
a, b PSBS method. c, d ARFA method

928 L. Pan et al.

123



0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22

10−1

Compression Rate

N
or

m
al

iz
ed

 M
S

E
SNR=2dB
SNR=5dB
SNR=8dB
SNR=11dB
SNR=14dB

Fig. 5 Estimation performance with different SNR in active band

0.12 0.14 0.16 0.18 0.2 0.22

10−2

10−1

Compression Rate

N
or

m
al

iz
ed

 M
S

E

L=256
L=512
L=1024
L=2048
L=4096

Fig. 6 The NMSE in the active band with different sensing time

Wideband Power Spectrum Sensing for Cognitive Radios Based on... 929

123



0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

Frequency

N
or

m
al

iz
ed

 P
ow

er
 S

pe
ct

ru
m

Estimation
Theory

Fig. 7 Power spectrum estimation for less sparse signal. Compression rate is 0.25

5 10 15 20 25 30

10−3

10−2

10−1

Adaptive Resolution Factor L’

N
or

m
al

iz
ed

 M
S

E

Inband,Nb=6

Inband,Nb=3

Outband,Nb=3

Outband,Nb=6

Outband

Inband

Fig. 8 The NMSE in the active band and the out band with different Nb

930 L. Pan et al.

123



Pr ¼ Px þ d2 In the active band

d2 Out of the active band

�

ð35Þ

where Px is the theoretical power spectrum of the input and d2 is the additive white

Gaussian noise power level.

The estimation performance of the active band is analyzed in the following experiments.

In Fig. 5, compression rate is M/N, where N = 128. The SNR is only calculated in active

bands. The number of active bands Nb is 4, and each band employs 40 subcarriers. In

Fig. 6, the NMSE in active bands with different sensing times (denoted with L) is illus-

trated, and SNR = 10 dB.

In Fig. 7, N = 128 and compression rate is 0.25. The original signal occupies six

subbands. The sparse level is 0.6. The ARFA method is also suitable for less sparse signals.

The compression rate can not be less than 0.6 in the spectrum sensing methods based on

signal recovery, and such methods are always sensitive to sparsity level. The results in

Figs. 5 and 6 also illustrate that the proposed method is not sensitive to sparsity level,

because the NMSE does not converge quickly as compression rate increases.

In Fig. 8, N = 128, and M = 32. The SNR in active bands is 10 dB. The number of

active bands Nb are 3 and 6 respectively, and each subband employs 32 subcarriers. The

effect of sparsity level on estimation performance in the active band is considerable, but

the higher sparsity level leads increases of NMSE out of the active band. The error is

mainly resulted from the power leakage from the active subbands. Lower value of L0

indicates lower frequency resolution and lower operation complexity; however, when L0 is
too small, estimation performance degradation results, mainly from the envelope

fluctuation.

6 Conclusion

In this study, sub-Nyquist sampling was employed for spectrum sensing in a cognitive

radio system, focusing primarily on power spectrum estimation of the wide-sense sta-

tionary analog signal. To account for practical implementation, an adaptive resolution

frequency averaging (ARFA) scheme was proposed with accepted complexity. The pro-

posed method consists of a set of LS problems with a rank condition for reliable esti-

mation. Compared to other spectrum sensing methods based on sub-Nyquist sampling, this

scheme is suitable for both sparse and nonsparse signals. The scheme is easily imple-

mented to detect active subbands with a threshold in CR systems.
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