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Abstract Multi radio, multi hop, self organizing and self configuring wireless technology

are the characteristic features of wireless mesh networks (WMNs) to offer last mile access

to end users. The emergence of stochastically varying network environments critically

affects routing in WMNs. Any routing policy meant for WMNs must be quickly adaptive

and evolve in a decentralized self organizing and self configuring manner. This paper

firstly proposes formulation of a soft computing i.e. fuzzy logic based hybrid performance

metric which includes per flow (throughput, delay and jitter) as well as per node (residual

energy of the node) parameters. This fuzzy logic based hybrid performance metric enu-

merates the integrated link cost (ILC) which is used as distance measure between two

adjacent nodes. The paper further proposes three routing algorithms based upon nature

inspired computing approaches namely firefly algorithm, Big Bang Big Crunch and Ant

Colony Optimization. The proposed routing approaches aim at finding the minimal ILC

path within a stipulated time constraint. The time constraint is governed by the mobility of

network nodes. Extensive simulations were conducted for various WMN topologies. The

results of the proposed approaches have been compared with two commonly used con-

ventional approaches and were found to be far more superior. It was also observed that the

self organizing capability of the proposed nature inspired routing approaches effectively

reduces the complexity and makes a network quite adaptive to the dynamic network

behavior found in WMNs.
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1 Introduction

Wireless mesh networks (WMNs) are dynamically self organizing, self configuring and

easily deployable evolutionary wireless networks where nodes are capable of automatically

creating and maintaining mesh connectivity between them. This kind of networking is very

suitable for applications such as broadband home, community, neighborhood and enter-

prise networking etc. The data packets hop from one node to another until these reach the

terminal node based upon multi hop transmissions. A detailed overview of WMNs dis-

cussing the challenges and open research issues of each layer, security, mobility man-

agement, cross layer design etc. is presented by Akyildiz et al. [1].

Nodes in WMNs are categorized in two classes: (1) Wireless Mesh Routers (WMRs);

having either fixed location or limited mobility and (2) wireless mesh clients (WMCs). The

architecture of WMNs can be classified as: (1) Infrastructure/Backbone WMN: In infras-

tructure type WMNs WMRs form an infrastructure mesh for WMCs. (2) Client WMNs:

client WMNs provide peer-to-peer networks and WMCs perform routing and self-con-

figuration functions too. (3) Hybrid WMNs: The most applicable WMN architecture-hybrid

mesh is the combination of infrastructure and client meshing. WMCs can access the

network through WMRs as well as directly meshing with other WMCs [1]. Popular

commercial applications, architectures and key research areas are discussed by Bruno et al.

[2].

WMNs are highly dynamic networks. This unpredictable dynamic network conditions

critically affect the performance of WMNs. It is required that routing policies must work in

a decentralized, self-organizing and self configuring way, while optimizing network re-

source utilization and fulfilling QoS requirements [3, 4]. The objective of routing policies

is to maximize probability of data delivery, minimize delay, maximize throughput,

minimize energy consumption, dynamically balancing the traffic load etc. It was shown by

Decouto et al. [5] that conventional shortest path routing metric is not an affordable

criterion to ascertain good paths. The performance metrics and routing issues in WMNs are

discussed in detail by Waharte et al. [6]. The performance parameters in a WMN can be

categorized as per flow (delay, packet loss ratio, delay jitter, hop count, throughput and

interference); per node (computation complexity and power efficiency); per link (link

quality, channel utilization, transmission rate, and congestion); inter flow (interference and

fairness) and network wide parameters (QoS, total throughput etc.). Commonly used

performance metrics are hop count, Expected Transmission Count (ETX), Expected

Transmission Time (ETT), energy consumption and availability of reliable paths. Routing

protocols can further be categorized based upon routing philosophy, network organization,

location awareness and mobility management [6].

Due to complexities and constraints in exact reasoning based routing in dynamic

wireless networks, nature inspired soft computing techniques have attracted significant

attention from the research community. A detailed description of various nature inspired

meta-heuristic algorithms including ACO, bee algorithm, bat algorithm, cuckoo search,

firefly algorithm, particle swarm optimization (PSO) etc. is presented by Yang [7]. A

genetic algorithm (GA) based dynamic shortest path routing approach was proposed by
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Yang et al. [8]. Soft computing techniques i.e. GA and Neural Networks approach was

applied to optimize quality of service (QoS) parameters for channel allocation in cellular

networks [9]. A hybrid combination of multi objective particle swarm optimization

(MOPSO) and GA is proposed by Benyamina et al. [10] to optimize the performance of

WMNs. An approach for routing in Mobile Ad hoc Networks (MANETS) based upon

swarm intelligence is proposed by Caro et al. [11]. This approach was inspired from Ant

Colony Optimization (ACO) algorithm [12, 13]. An insect society collective behavior

based routing for next generation networks was reported by Farooq et al. [14].

In this paper, we propose optimized shortest path routing strategies appropriate for

dynamic WMNs. We explored ACO, BB-BC and Firefly based optimization algorithms to

evaluate near shortest path under a given time constraint as dictated by the dynamics of

WMN. We first create a mesh network of all those nodes which are within a specified radio

range of at least one of the network nodes. We then periodically update and maintain the

network by including the new nodes entering the radio range of network and deleting those

nodes which have left the radio range of the network. After a network is established, all

network nodes compute the integrated link cost (ILC) for the adjacent nodes. This ILC

decides the path length that exists between a given source and destination (terminal) node

pair. On the given information by the ILC module for adjacent nodes, optimal paths/near

shortest paths are enumerated. In this paper we enumerate near shortest path using new

ACO, BB-BC and Firefly based shortest path evaluation algorithms. Based upon evaluated

near shortest paths, routing tables are updated periodically, thus taking care of dynamically

changing environment. This ensures that most of the times routing is near shortest path

based routing. The proposed algorithms were simulated in MATLAB environment and the

routing performance of these proposed algorithms is compared with Adhoc On-demand

Distance Vector (AODV) [15] and Dynamic Source Routing (DSR) [16] algorithms.

The remainder of the paper is organized as follows. Section 2 explains the formulation

of hybrid performance metric based upon fuzzy logic. Section 3 presents the description of

proposed soft computing based routing approaches. Node architecture for the proposed

system model and the proposed routing algorithm are presented in Sect. 4. Section 5

presents the detailed results and discusses the performance and applicability of the pro-

posed algorithms. Finally the conclusions are drawn in Sect. 6.

2 Performance Metric Formulation

Fuzzy logic has emerged as a simple yet powerful methodology to solve non-linear

functions of arbitrary complexities with vague, ambiguous or incomplete information

while extracting definite conclusions [17]. We choose fuzzy logic as a suitable candidate to

evaluate the integrated link cost (ILC) of WMNs based upon various input parameters. A

fuzzy link cost based approach to achieve quality of service (QoS) and quality of expe-

rience (QoE) in WMNs is proposed by Gomes et al. [18]. In wireless multimedia sensor

networks, fuzzy logic controller for traffic load parameter with priority based rate reduces

the delay and loss probability [19]. The proposed ILC measure in this paper consists of four

vital parameters of the network and nodes: throughput, end-to-end delay, jitter of the link

and the residual energy of the node. For a link between adjacent nodes high throughput,

low end-to-end delay and low jitter are the required conditions. A variety of applications in

‘always on’ dynamic multi-hop WMNs require optimal use of node energy. As WMRs deal

with more heavy traffic load, optimized use of energy at WMRs is more significant.
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Keeping in mind the constraints on residual energy of nodes in wireless sensor networks an

intra grid architecture [20] as well as new hierarchical clustering topology architectures

[21] are proposed to obtain a longer network lifetime. Thus considering the significance of

residual energy of a node we have included this parameter to optimize the performance of

WMNs. The node having less energy must be used accordingly for hoping or other routing

purposes. Based upon these four parameters the fuzzy logic evaluated ILC measure is used

as the distance between the two particular adjacent nodes.

A basic fuzzy system as shown in Fig. 1 consists of four major modules: Fuzzification

module, Inference engine, knowledge base module and Defuzzification module [22]. The

fuzzification module transforms the crisp input(s): throughput, delay, jitter of the link and

residual energy of the node into corresponding fuzzy values (linguistic variables). These

fuzzy values are then processed (rule composition, implication and aggregation) in fuzzy

domain by inference engine based upon the knowledge supplied by the domain ex-

pert(s) and produces fuzzy set as output. Defuzzification module transforms the processed

output of inference engine from fuzzy domain to crisp domain.

The knowledge base module contains the knowledge of the application domain and the

procedural knowledge. It consists of a data base and linguistic (fuzzy) control rule base or

production rules. The data base furnishes the necessary definitions which are used to define

linguistic control rules and fuzzy data manipulation in an fuzzy logic Controller. The rule

base characterizes the control goals and control policy of the domain expert by a set of

linguistic control rules.

Firstly the current measured values of these inputs are fuzzified at fuzzification module.

This module receives the crisp inputs. These input variables are then scale mapped that is

transferred from the range of values of input variables into corresponding universe of

discourse (membership values). The input crisp variables transformed to fuzzy variables.

The universe of discourse of fuzzy variables is divided into fuzzy subsets. The input

variable is mapped into these subsets with varying grade of membership that are limited to

an interval between 0 and 1, i.e., any value between 0 and 1 can express the membership

degree of a certain element of the fuzzy set based on the inference functions used. Usually,

the relevance degree of a value ‘v’ regarding a membership function is represented by l(v).
If A is a fuzzy set in a universe U, the membership of v in A is evaluated by the

membership function l(A) as following [23]:

Throughput 
Delay, Jitter, 
Residual Energy

ILC

Knowledge Base Module

Fuzzification 
Module Inference Engine Defuzzification 

Module

Knowledge about 
Fuzzification

Rule Base 
Generation

Knowledge about 
Defuzzification

Fig. 1 A basic fuzzy system with input and output parameters
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lA vð Þ:U ! 0; 1½ � ð1Þ

And fuzzy set A is represented as

A ¼ i; lAðiÞf g 8 2 A ð2Þ

There are largely three types of fuzzifiers: singleton fuzzifier, Gaussian fuzzifier, and

trapezoidal or triangular fuzzifier.

Figure 2 illustrates the commonly used triangular and trapezoidal membership func-

tions. The triangular and trapezoidal membership functions are specified as follows:

Triangle ðv: a; b; cÞ ¼

0 v� a
v� a

b� a
a� v\b

c� v
c� b

b� v\c

0 v� c

8
>>>>><

>>>>>:

ð3Þ

Trapezoid ðv: a; b; c; dÞ ¼

0 v\a
v� a

b� a
a� v\b

1 b� v\c

d � v
b� c

c� v\d

0 v[ d

8
>>>>>>>><

>>>>>>>>:

ð4Þ

Four linguistic input variables are Throughput, End-to-end Delay, jitter and residual energy

and integrated link cost is the linguistic output variable. Low, medium and high are the

linguistic values (fuzzy sets) for Throughput, jitter, Residual energy and ILC. For End-to-

end Delay less, medium and high are the linguistic values. Membership functions of inputs

as well as output: are shown in Fig. 3.

Integrated LinkCost ILCð Þ ¼ f Throughput; Delay; Jitter; Residual Energyð Þ ð5Þ

Integrated linkcost is a functionof throughput, delay, jitter of the linkand the residual energy

of the node. Firstly the current measured values of these inputs are fuzzified and then processed

by the inference engine where rule composition takes place. One such rule is given as:

If Throughput is High AND Delay is Less AND Jitter is Low AND Residual_Energy is

High then ILC is Low.

dcba

1.0

ca b

1.0

(a) (b)

Fig. 2 Triangular and trapezoidal membership functions
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(a) 

(b)

(c) 

1.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.0
Low Medium High

Medium

1.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.0
Less High

High

1.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.0
Low Medium

1.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.0
Low Medium High

(d) 

(e) 
1.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.0 Low HighMedium

Fig. 3 Membership functions
for the fuzzy set values.
a Throughput, b end to end delay,
c jitter, d residual energy,
e integrated link cost
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Here linguistic variables Throughput, Delay, Jitter and Residual_Energy are the inputs;

ILC is output; High, Medium, Less and Low are the linguistic values (fuzzy sets) in their

universe of discourse. The input and output parameters with their fuzzy sets are shown in

Table 1. In our proposed module 3 9 3 9 3 9 3 = 81 rules are formed.

These rules are then implicated by Mamdani implication process [24]. The output of

each implicated rule is a fuzzy set and all these fuzzy sets are then aggregated. The

resulting one aggregated fuzzy set is then defuzzified to present a single crisp output

(integrated link cost).

From Fig. 3e the defuzzified output value is calculated as:

ILC� ¼
R
li xð Þ:xd xð Þ
R
li xð Þd xð Þ ð6Þ

where li(x) is the membership of the output of ith rule (rule strength) and xi is the weight

associated with the ith rule (action taken).

3 Proposed Algorithms

3.1 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) is a population based meta-heuristic approach to solve

combinatorial optimization problems by offering ‘good enough’ solutions in appropriate

time [11, 13]. Social insect societies e.g., ant colonies are distributed systems that col-

lectively exhibit intelligent behavior. ACO is inspired by the food searching (foraging)

behavior of the real ants. Initially ants search for food randomly. After finding a food

source, ants return to their nest while depositing a chemical pheromone trail on the ground.

Other ants are guided to the food source by the quantity of pheromone deposited on various

paths.

The Simple ACO (S-ACO) algorithm for finding the shortest path between source and

terminal node in a network is as follows:

A completely connected, directed topology graph G (N, L) having N nodes and L links

between adjacent nodes with a positive weight (cost) dij is given. Neighborhood of an ant k

at node i is given as Ni
k while Lk is the length of ant k’s path. Minimizing the cumulative

length of the path (cost) is considered as objective function. Initially a constant amount of

pheromone sij between ith and jth node is assigned to all arcs of the graph. At a node i, the

probability of selecting node j as next node with pheromone trails sij by ant k is computed

as follows:

Table 1 Input and output parameter membership functions

Input parameters Output parameter

Throughput (T) End-to-end delay (D) Jitter (J) Residual energy (R_E) Link cost

High Less Low High Low

Medium Medium Medium Medium Medium

Low High High Low High
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pk
ij ¼

saij
P

l2Nk
i
sail

if j 2 Nk
i

0; if j 62 Nk
i

8
<

:
ð7Þ

where a is a constant. Previous node is not taken as next node to avoid loops. The ant k at

node i further checks its neighborhood and hops from node to node using this stochastic

decision criterion until the termination node is achieved. After reaching at terminal node,

the forward ant k is converted into a backward ant to retrace the travelled path. The aim of

this path retracing is to update the routing information at each node while eliminating the

loops. Adaptation to new routing information is regulated by a. While returning to the

source node, the ant k updates the pheromone value of arc (i, j) as

sij  sij þ Dsk ð8Þ

where Dsk is the increment in pheromone quantity. For shorter paths more pheromone is

deposited. The deposited pheromone trails at each arc evaporates similarly to normal

evaporation of real pheromone in nature. The objective of the pheromone diffusion process

is to avoid quick convergence to a sub optimal route. At arc (i, j) pheromone trails are

updated as

sij  1� qð Þsij; q 2 0; 1ð � ð9Þ

where q is an evaporation constant. The routing tables obtained are updated at regular

interval or at detection of a change in network configuration.

Pseudo Code of the ACO based proposed routing algorithm for WMNs is as given in

Fig. 4.

begin 
/ Initialize WMN Parameters/ 

Define Source Node, Terminal Node, Number of ants, Number of Paths, Number of
Iterations, Number and location of the nodes 

/For Static WMNs nodes are fixed while for Client and Hybrid WMNs all nodes other/
/than Mesh Routers are having Random Locations/

while (t < MaxGeneration or Termination Criteria not met)
for i = 1 : n / all n Nodes / 

for j = 1 : n / all n Nodes /
if distance (i, j) <= R (radio range of a node)

connectivity_matrix(i, j) = 1  /routing table maintenance/
Integrated_Link_Cost (i, j )= f (Throughput, Delay, Jitter, Residual_Energy)
/Integrated Link Cost Evaluation using Fuzzy System/

end if
end for j

end for i
/ Build paths between source and terminal node / 
Randomly generate initial population of k paths
Compute the shortest path using S-ACO

Update the Pheromone Trails
end while 
Postprocess results and visualization; 
end 

Fig. 4 Pseudo Code of the ACO based routing algorithm applied in WMNs
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3.2 Big Bang Big Crunch (BB-BC)

The Big Bang theory is one of the most widely accepted theories of the evolution of this

universe [25]. It is believed that that universe began about twelve to fifteen billion years

ago in inflation similar to an explosion like situation. The nature of inflation was such that

for an incomprehensibly small fraction of a second, the universe was an infinitely dense

and infinitely hot fireball. A peculiar form of energy that we don’t know yet, suddenly

pushed out the fabric of space time in a process called ‘‘inflation’’, which lasted for only

one millionth of a second. Thereafter, the universe continued to expand but with slower

pace.

The BB-BC theory believes that energy discharged by the initial explosion i.e., kinetic

energy, is counterbalanced by the energy of bodies attraction known as gravitational pull.

If there is enough mass so that the later is bigger than the first when a critical density is

reached, the expansion will stop and the universe will start to contract, leading to an end

very similar to its beginning, named by the scientists as the big crunch (great implosion). In

the Big Bang phase, energy dissipation produces disorder and randomness as the main

feature of this phase. In the big crunch phase, randomly distributed particles are drawn into

an order. This theory of repeated big bang followed by big crunch phases forms the basis of

an optimization algorithm called the Big Bang-Big Crunch optimization algorithm [26,

27].

begin 
/ BB-BC Parameter Initialization/ 
Define Source Node, Terminal Node, Number of Paths, Number of Iterations,   
Number and location of the nodes 
/ End of BB-BC Parameter Initialization/

while (true)
for i = 1 : n / all n Nodes / 

for j = 1 : n / all n Nodes /
if distance (i, j) <= R (radio range of a node)

connectivity_matrix(i, j) = 1  /routing table maintenance/
Integrated_Link_Cost (i, j )= f (Throughput, Delay, Jitter, Residual_Energy)
/Integrated Link Cost Evaluation using Fuzzy System/

end if
end for j

end for i
/ Build paths between source and terminal node / 
while (t < MaxGeneration or Termination Criteria not met)

Randomly generate initial population of k paths     /Big Bang Phase/
Compute the ILC of all the candidate solutions
Sort the population from best to worst based on ILC  /No.1 path is the Optimal path/
Compute the center of mass xc /Big Crunch Phase/
Generate new candidate solutions around xc by adding or subtracting a normal   
random Number

end while
wait for stipulated time/ wait for an event

end while 
Postprocess results and visualization; 
end 

Fig. 5 Pseudo Code of BB-BC based algorithm for optimal path evaluation in WMNs

Routing in Wireless Mesh Networks: Three New Nature Inspired… 3165

123



3.2.1 BB-BC Optimization Algorithm

Initially a set of candidate solutions (population) is generated randomly in the search space.

The fitness as defined by the objective function, of each solution is calculated and ranked

accordingly. After the random Big Bang phase contraction is applied in big crunch phase to

compute the centre of mass as:

xC ¼
PN

i¼1
1
f i xi

PN
i¼1

1
f i

ð10Þ

where xc = position of the centre of mass; xi = position of ith candidate; fi = fitness

function value of candidate i; N = population size.

Alternatively best fit individual can also be considered as the centre of mass in place of

using Eq. (5). There after we generate new population around the centre of mass by adding

or subtracting a normal random number whose value decreases as the iterations elapse.

This can be formalized as:

xnew ¼ xC þ lr=k ð11Þ

where xC stands for center of mass, l is the upper limit of the parameter, r is a normal

random number and k is the iteration number in process. Thus new point xnew is upper and

lower bounded. Figure 5 lists the Pseudo Code of BB-BC based Algorithm for optimal

path evaluation in WMNs.

3.3 Firefly Algorithm (FA)

Firefly algorithm (FA) is a nature inspired evolutionary algorithm. It is inspired by the

flashing light characteristics of fireflies. Fireflies produce short and rhythmic flashes to

attract other fireflies, prey as well as a protective warning mechanism. The flashing light is

produced by a process of bioluminescence. The flashing characteristics of fireflies can

simply be described in three idealized rules [28–30]:

1. All the fireflies are unisex, so that attraction among them is unisexual.

2. Attractiveness is proportional to the brightness of the flash and the fireflies tend to

move towards the brighter one in case of two flashing fireflies. Brightness decreases as

their distance increases. It will move randomly, if no one is brighter than a particular

firefly.

3. The brightness of a firefly is affected or determined by the landscape of the objective

function.

In the case of continuous optimization problem e.g. optimization of routing path in

WMN, the task is to minimize cost function f(x) for x[ S (S-sample space). Cost function

ILC is integrated cost function in the case of WMNs. For firefly i, xi represents a solution

whereas f (xi) denotes its ILC.

Initially all fireflies are dislocated in the sample space S randomly or deterministically

following some strategy. Variation of light intensity and formulation of the attractiveness

are the critical issues to be considered. Simply, it is assumed that the attractiveness of a

firefly is determined by its brightness or light intensity which is related with the objective

function.

The brightness I of a firefly at x can be denoted as I(x) � f(x). The attractiveness b varies

with distance rij between ith and jth firefly. The attractiveness varies with the degree of
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absorption as light intensity decreases with distance. The light intensity, is a function of

distance r, described as

I rð Þ ¼ I0e�cr ð12Þ

where I0 is the actual light intensity and c is the light absorption coefficient.The attrac-

tiveness b of a firefly can be represented as

b ¼ b0exp �crmð Þ; m� 1ð Þ ð13Þ

where r is the distance between two fireflies and b0 is their attractiveness at r = 0 and c is a
fixed light absorption coefficient.The distance between any two fireflies i and j at xi and xj

respectively is computed by the Cartesian distance

rij ¼ Xi � Xj

�
�

�
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xd

k¼1
xi;k � xj;k

� �2

v
u
u
t ð14Þ

where xi,k is the kth component of spatial co-ordinate of xi and d is the number of di-

mensions.In two dimensional case distance is

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi � xj

� �2þ yi � yj

� �2
q

ð15Þ

The movement of lesser bright firefly i towards another brighter firefly j is evaluated as

xi ¼ xi þ b0e�cr
2
ij xj � xi

� �
þ a rand� 1

2

� �

ð16Þ

begin 
Define Source Node, Terminal Node, Number of Fireflies, Number of Paths, Number of
Iterations, Number and location of the nodes 
/ FA parameter initialization / 
Define Objective function f (x), x= (x1,…, xd)T; 
Generate initial population of fireflies xi (i = 1, 2,…n) 
Compute the light intensity Ii at xi determined by f (xi); 
Define light absorption coefficient γ; 
/End of FA parameter initialization / 

while (t < MaxGeneration or Termination Criteria not met)
for i = 1 : n / all n fireflies / 

for j = 1 : i / all n fireflies /
Evaluate the distance r between firefly i and firefly j;
if (Ij > Ii)

Move firefly i towards j in d-dimension;
end if 

Attractiveness varies with distance r via e[− γr]; 
Evaluate new solutions and update light intensity; 

end for j
end for i
Rank the fireflies and find the current best; 

end while 
Postprocess results and visualization; 
end

Fig. 6 Pseudo Code of the firefly algorithm
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here the second term is due to the attraction as shown in Eq. (8) while the third term is

randomization with a [ [0, 1] being the randomization parameter. ‘‘rand’’ is a random

number generator uniformly distributed in [0, 1]. Mostly b0 = 1 and a [ [0, 1]. Pseudo

Code of the firefly algorithm is shown in Fig. 6.

4 Node Architecture

Figure 7 shows the proposed node architecture for WMN nodes. At each node there may

be multiple inputs (Xi1 ;Xi2 ; . . .Xin arriving from n adjacent nodes) and multiple outputs

(Yo1 ; Yo2 ; . . .Yom
forwarded towards m adjacent nodes). The Node Processing Unit (NPU)

makes the decision of selecting the optimal links for corresponding communication within

the constraints imposed by the network dynamics and assigns time slots through a queuing

system for data packets to be routed. NPU provides this link state information to Parameter

Evaluation Module (PEM) to evaluate various link parameters e.g. throughput, delay, jitter

and residual energy of the node. Based upon this information a fuzzy logic based system

evaluates the ILCi for the corresponding ith link. The routing tables of all nodes are

updated periodically or on the occurrence of some event. This new information from the

routing table is used for routing purposes.

4.1 The Proposed Routing Algorithm and Validation

The proposed routing algorithm for establishing the near shortest path for a given source-

terminal pair is as follows:

4.1.1 Algorithm

WMN initialization phase:

1. Create a WMN by adding the nodes falling within the radio range of mesh network.

Jitter
Delay

Output Towards 
Adjacent Nodes

Throughput

Node Energy

Input From 
Adjacent 

Nodes

Parameter Evaluation 
Module (PEM)

Routing Table (Cost) 
Updation Unit

Fuzzy Logic Based Integrated 
Cost Function Evaluation 

Unit (81 Rules)

Node Processing Unit (NPU)

Fig. 7 Node architecture of a WMN node
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2. Generate equal traffic from one node to its all adjacent nodes. Assuming equal

throughput, network delays, jitter and full residual energy at each node. For each node

compute shortest path to all other nodes of the network.

3. Create the routing tables and allow network traffic to flow.

WMN operational phase:

1. Maintain the network by adding incoming nodes and deleting the outgoing nodes.

2. Compute the ILC based distance, between the adjacent nodes.

3. For a given source terminal pair, evaluate the near shortest/shortest path using any of

the nature inspired algorithms (ACO/BB-BC/FA).

4. Update the routing tables

5. Wait for stipulated time governed by the network dynamics.

6. Go to step 1.

4.1.2 Model Performance

In order to investigate and optimize the performance of routing algorithm of WMNs

simulations were performed for various static and dynamic scenarios in MATLAB. We

considered 9, 16, 25, 64 and 100 node networks for infrastructure WMN. These networks

were placed within a 500 m 9 500 m, 1000 m 9 1000 m, 2000 m 9 2000 m area. For

client and hybrid WMNs. 10, 20, 30, 50 and 100 node networks were considered with an

area of 500 m 9 500 m, 1000 m 9 1000 m, 2000 m 9 2000 m. We varied transmission

range of the nodes from 250 meters to 500 meters. In all the network models node number

Table 2 Architectural details of WMNs

Infrastructure WMN Client WMN Hybrid
WMN

No. of
nodes

Area
(m 9 m)

Radio range of a
node (m)

No. of
nodes

Area
(m 9 m)

Radio range of a
node (m)

No. of mesh
routers

9 500 9 500 200 10 500 9 500 250 2

16 500 9 500 200 20 500 9 500 250 4

25 500 9 500 200 30 1000 9 1000 350 6

64 1000 9 1000 200 50 1000 9 1000 350 9

100 2000 9 2000 200 100 2000 9 2000 500 20

In the case of hybrid WMN the number of nodes, coverage area and radio ranges are same as that of client
WMN

Table 3 Simulation parameters
Physical layer protocol PHY 802.11g

Traffic model of sources Constant bit rate (CBR)

Mobility model Random waypoint

Propagation model Two-ray ground reflection

Antenna Omni directional

Routing protocol Dynamic routing

Radio propagation range 200, 250, 350 and 500 m

Simulation trials 20
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1 acts as source and transmits data packets to the last node which is the terminal node (e.g.

10th node is the terminal node in a 10 node WMN). The data transmission is made possible

through multiple hops via various adjacent nodes. In this type of wireless communication

multiple routes/paths are available. Decision as regard to which path or route is to be used

Table 4 Results for client WMNs (20 trials for each set were conducted)

No. of nodes Available computing time (s) ILC computed by various approaches

ACO BB-BC Firefly algorithm Best (shortest) path

10 0.01 1.6795 1.2788 1.2788 0.9012

0.02 1.6795 1.2788 1.1199

0.05 1.6795 1.2788 1.1199

0.07 1.1199 0.9012 0.9012

0.10 1.1199 0.9012 0.9012

20 0.01 1.8354 1.8354 1.5938 0.6890

0.02 1.8354 1.8354 1.4426

0.05 1.8354 1.8354 1.0385

0.07 1.6119 1.0385 0.6890

0.10 1.4426 0.6890 0.6890

30 0.01 4.0730 3.1848 2.8694 1.4966

0.02 4.0730 2.7409 2.3926

0.05 2.9875 2.1035 1.7653

0.07 2.0996 1.6771 1.6771

0.10 2.0996 1.4966 1.4966

50 0.05 4.0108 2.8545 2.2047 1.0273

0.07 4.0108 1.9273 1.2182

0.10 1.9086 1.2182 1.0273

0.20 1.7014 1.0273 1.0273

0.50 1.2182 1.0273 1.0273

100 0.05 7.1200 5.0715 4.8389 2.8048

0.07 5.0715 4.3075 3.8739

0.10 4.1214 4.0414 2.8048

0.20 3.8739 2.9002 2.8048

0.50 3.0464 2.8048 2.8048

Table 5 Results of DSR and AODV approaches for client WMNs

10 Nodes 20 Nodes 30 Nodes 50 Nodes 100 Nodes

ILC computed (time)

DSR 0.9012
(0.182503 s)

0.6890
(0.215966 s)

1.4966
(0.304508 s)

1.0273
(0.565027 s)

2.8048
(0.699492 s)

AODV 4.5957
(0.316839 s)

7.2174
(0.345390 s)

5.0057
(0.345619 s)

6.8888
(0.651287 s)

11.4412
(0.813981 s)

Best path 0.9012 0.6890 1.4966 1.0273 2.8048
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for any type of traffic, depends upon the current value of the ILC measure (distance) of the

link connecting two adjacent nodes.

The proposed algorithms were implemented in MATLAB along with AODV and DSR

for different architectures of WMNs with varying number of nodes, iterations as well as

with different radio ranges and areas. The architectural and simulation details are provided

Table 6 Results for hybrid WMNs (20 trials for each set were conducted)

No. of nodes Time (s) ILC computed by various approaches

ACO BB-BC firefly algorithm Best (shortest) path

10 0.01 2.8900 2.3883 2.0286 1.5132

0.02 2.8900 2.0286 2.0286

0.05 2.5069 1.5132 1.5132

0.07 2.3883 1.5132 1.5132

0.10 2.0286 1.5132 1.5132

20 0.01 3.6309 2.1293 2.9493 1.2820

0.02 3.6309 2.1293 2.9040

0.05 3.6309 2.1293 2.8728

0.07 3.6309 2.0615 1.2820

0.10 2.1293 1.2820 1.2820

30 0.01 8.0225 3.6633 2.7894 1.7750

0.02 8.0225 2.2988 2.2988

0.05 3.0501 2.2712 2.2816

0.07 3.0501 2.2712 1.7750

0.10 3.0501 1.7750 1.7750

50 0.05 4.1577 1.6383 1.4140 0.8065

0.07 1.5003 1.0163 1.0388

0.1 1.5003 1.0163 1.0163

0.2 1.0388 0.9728 0.8065

0.5 1.0163 0.8065 0.8065

100 0.05 3.2777 1.9026 1.1591 0.3737

0.07 3.2777 1.7428 1.0935

0.10 1.9586 1.2723 0.9656

0.20 1.5467 1.0081 0.3737

0.50 1.1591 0.3737 0.3737

Table 7 Results of DSR and AODV approaches for hybrid WMNs

10 Nodes 20 Nodes 30 Nodes 50 Nodes 100 Nodes

ILC computed (time)

DSR 1.5132
(0.192452 s)

1.2820
(0.374894 s)

1.7750
(0.429841 s)

0.8065
(0.578741 s)

0.3737
(0.826354 s)

AODV 3.8845
(0.273566 s)

6.7321
(0.416487 s)

9.2437
(0.462628 s)

5.1672
(0.665804 s)

8.4266
(1.032847 s)

Best path 1.5132 1.2820 1.7750 0.8065 0.3737
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in Tables 2 and 3 respectively. The near shortest/shortest path is computed by these five

approaches for the same network architecture. The results for different WMN architectures

are placed in Tables 4, 5, 6, 7, 8 and 9 for the proposed as well as conventional routing

approaches. Each table presents the integrated link cost and processing time for a specific

source-terminal node pair for varying number of nodes.

Table 8 Results of static (Infrastructure) WMNs (20 trials for each set is conducted)

No. of nodes Time (s) ILC computed by various approaches

ACO BB-BC Firefly algorithm Best (shortest) path

9 0.01 0.8540 0.8540 0.8540 0.6096

0.02 0.8540 0.8540 0.6096

0.05 0.8540 0.6096 0.6096

0.07 0.8540 0.6096 0.6096

0.10 0.6096 0.6096 0.6096

16 0.01 1.4276 2.4161 1.4276 1.1173

0.02 1.4276 2.2876 1.1173

0.05 1.4276 2.0416 1.1173

0.07 1.1173 1.8928 1.1173

0.10 1.1173 1.1173 1.1173

25 0.01 3.5665 2.3078 1.9605 1.6059

0.02 3.5665 2.2657 1.6059

0.05 3.5665 2.2657 1.6059

0.07 3.5665 1.6059 1.6059

0.10 2.3078 1.6059 1.6059

64 0.05 4.5413 3.2500 2.7032 2.1229

0.07 3.8092 2.7148 2.4079

0.10 3.2500 2.6696 2.1229

0.20 2.9804 2.5114 2.1229

0.50 2.7032 2.1229 2.1229

100 0.05 4.6037 4.8838 3.5103 2.1848

0.07 3.9938 3.5103 2.5100

0.10 3.6749 3.5103 2.4688

0.20 3.2829 2.9948 2.1848

0.50 3.1368 2.1848 2.1848

Table 9 Results of DSR and AODV approaches for static (infrastructure) WMNs

9 Nodes 16 Nodes 25 Nodes 64 Nodes 100 Nodes

ILC computed (time)

DSR 0.6096
(0.165068 s)

1.1173
(0.233253 s)

1.6059
(0.320307 s)

2.1229
(0.632285 s)

2.1848
(0.922432 s)

AODV 3.4533
(0.142666 s)

4.0194
(0.208404 s)

4.8066
(0.308989 s)

10.4955
(0.724616 s)

12.5149
(0.944927 s)

Best path 0.6096 1.1173 1.6059 2.1229 2.1848
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In an infrastructure WMN the nodes are placed uniformly in the specified area con-

structing a uniform mesh. In its routing tables only forward paths are considered to avoid

loops. In client and hybrid WMNs, all the nodes are placed randomly in the specified area.

This makes the adjacency matrix and hence, routing tables highly dynamic. Hybrid WMNs

use some fixed Mesh Routers and there are dedicated links among them. Radio range of

these Mesh Routers amongst them is assumed to be double the range of client nodes.

5 Results and Discussion

Client, hybrid and infrastructure type WMNs were simulated and the observations were

recorded for various network environments. For each of network configurations 20 trials

were conducted. The resulting observations are placed as Tables 4, 5, 6, 7, 8 and 9. Table 4

presents the results of the proposed routing approaches for 10, 20, 30, 50 and 100 node

client WMNs and Table 5 depicts the results of DSR and AODV algorithms. The results of

10, 20, 30, 50 and 100 node hybrid WMNs are presented in Table 6 for the proposed

routing approaches while the resulting observations for DSR and AODV are placed as

Table 7. Tables 8 and 9 summarize the results of 9, 16, 25, 64 and 100 node Infrastructure

(static) WMNs for the proposed and conventional routing approaches respectively.

Figure 8 presents specific network architectures of 10, 30, 50 and 100 node client

WMNs. It portrays the random behavior of nodes. Figure 9 showcases network
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architectures of 10, 30, 50 and 100 node hybrid WMNs. WMRs are positioned on specific

locations and having dedicated links amongst them. Figures 10 and 11 depict Time versus

ILC plots for 10, 30, 50 and 100 node Client and hybrid WMNs respectively. Figure 12

draws the Time versus ILC plot for 9, 25, 64 and 100 node Infrastructure WMNs. For

smaller network architectures the proposed algorithms updates the operational phase after

an interval of 0.01, 0.02, 0.05, 0.07 and 0.1 s of time constraint while the larger networks

are updated after every 0.05, 0.07, 0.1, 0.2 and 0.5 s of time constraint.

It was observed from all these results that proposed soft computing approaches namely

ACO, BB-BC and FA outperform AODV in terms of ILC and processing time. The

observations further ascertained that DSR outperforms ACO whereas BB-BC and FA

performs better than DSR. In larger networks ACO is unable to converge towards optimal

solutions in the given time frame whereas BB-BC and FA converge simply in the

stipulated time. FA on the other hand converges much easily and with lesser time followed

by BB-BC. As the number of nodes increase processing cost (time) increases accordingly.

It was also observed that these proposed meta-heuristic approaches improve their perfor-

mance with increasing processing time. However a WMN dynamics may allow only small

amount of time within which the near shortest path must be computed and routing tables

updated. Since, after this allowable time, nodes must have moved to new positions; new

shortest or near shortest paths need to be found again.
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6 Conclusion

This paper proposed three nature inspired routing algorithms for WMNs. The performance

of these algorithms was compared with the two existing algorithms namely AODV and

DSR. In order to compare the performance we defined a new performance measure namely

integrated link cost (ILC). The ILC is based upon the four most significant WMN features

namely throughput, delay, jitter and residual energy of the nodes. We applied fuzzy logic

to integrate the four network parameters to a single performance measure. Based on these

parameters the enumerated ILC was considered to be the distance between two adjacent

nodes. Based upon this effective performance metric, the performance of five routing

algorithms i.e. Firefly, BB-BC, ACO, DSR and AODV was enumerated between a specific

source-terminal node pair. The proposed ILC measure does not affect the scalability and is

quite suitable to the stochastic behavior of WMNs. All the five routing approaches were

applied to 10, 20, 30, 50 and 100 node client and hybrid WMNs while 9, 16, 25, 64 and 100

node network architecture was considered for infrastructure (static) WMNs with various

network topologies. The proposed soft computing based routing approaches were

simulated for 0.01, 0.02. 0.05, 0.1, 0.2 and 0.5 s allowable time interval (constraint) for the

same network topology. Effect of allowable computing time over ILC was recorded for the

proposed soft computing based routing algorithms.
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Fig. 10 Time versus ILC plot (a–d) for 10, 30, 50 and 100 node client WMN
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After the extensive simulations runs, we observed that Firefly optimization based

routing strategy gives the best routing performance followed by BB-BC, DSR, ACO and

lastly AODV. We further observed that Firefly, BB-BC and DSR based routing approaches

yield almost similar results in terms of ILC however BB-BC and DSR are taking more time

to select the optimized path compared to FA based approach. The ACO based routing

algorithm required more computing time and is slower in converging to the optimal so-

lution. Its performance is better than AODV only. For smaller networks, Firefly and BB-

BC based approaches converge to reasonably good solutions in the stipulated time frame.

ACO based approach was not able to converge to any reasonably good solution within

given time frame. Hence, we find that this approach does not meet rigid WMN routing

requirements adequately. Since, AODV and DSR performance does not meet WMN re-

quirements at all these do not provide required solution within given time frame we are of

opinion that these should be avoided for WMNs (Tables 4, 5, 6, 7, 8, 9). For large WMNs

Firefly based routing approach outperforms other routing strategies in terms of ILC and

computation time, making FA based approach most suitable followed by BB-BC based

approach of the 5 approaches evaluated in this paper.
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