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Abstract In recent years, wireless sensor networks (WSN) have become very attractive

for surveillance applications and particularly for target tracking. When a target has to be

located by a WSN, accuracy is an important constraint. Most of the studies made in the

WSNs problems deal with either coverage or tracking focus objectives. In this paper, we

propose a modification of a previously studied bi-objective sensor placement problem

taking into account both coverage and accuracy. The objectives are the minimization of the

number of deployed sensors and the minimization of the tracking constraints violations,

under the coverage constraints. The non sorting genetic algorithm and multi objective

particle swarm optimization have been implemented to solve the problem. A specific

heuristic (H3P) based on the mathematical decomposition of the problem has also been

proposed. The performances of these algorithms are checked with integer programming

results for small size instances, and they are compared on large size instances by multi-

objective metrics. Results have shown that implemented metaheuristics provide less op-

timal solutions than the H3P for the small size instances. The comparison between the

algorithms on large size instances set show that the H3P dominates the other implemented

methods.
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1 Introduction

With recent advances in miniaturization and communication technologies, wireless sensor

networks (WSNs) have become attractive for civilian and military applications, such as

health and environmental monitoring, or battlefield surveillance. One of the main interests

of WSNs for these applications is cheaper installation than wired networks: no commu-

nication or energetic infrastructures are needed to allow a WSN to work. In fact, a WSN is

composed of a large number of small communicating devices—or sensors such that each

sensor has the ability to collect, process and send data across the network. In a WSN, the

main aim is to cover an area to monitor interesting positions. For a large number of

applications, at least one sensor is required to cover a position. In previous work, we

proposed a new mathematical formulation taking into account both deployment cost and

tracking accuracy objectives [8]. The mathematical formulation is defined as a bi-objective

problem. The first objective is to minimize the number of deployed sensors to cover the

entire area. This objective allows us to minimize the deployment cost of the network while

maintaining the area coverage. The second objective is to focus on tracking applications,

minimizing the non-accuracy. In this paper, we propose a modification of the mathematical

model. We consider a binary representation of localization success to reduce the high

number of variables and a minimum acceptable accuracy to reduce the high number of

constraints. The aim is to offer a set of solutions representing the trade-off between these

objectives. In this paper we define an integer linear programming model for this problem

and we adapt the non sorting genetic algorithm (NSGA-II) [16] and multi-objective par-

ticle swarm optimization (MOPSO) [15] algorithms. We also propose a new specific

heuristic based on the mathematical decomposition of the problem, the clustering of de-

cision variables and the optimization of subproblems as Set Covering problems. The

performances of these algorithms are compared with optimal solutions obtained by the

integer linear model on small instances, and are compared each others on large instances.

Our contributions are as follows:

• the modification of our previous proposed bi-objective mathematical model, allowing

to reduce both variables and constraints numbers, taking into account a binary

definition of the localization success and a maximum localization radius.

• the development of a new heuristic, based on the mathematical decomposition of the

problem.

The remainder of this paper is organized as follows: Sect. 2 summarizes related work.

Section 3 introduces a mathematical formulation of the problem. Section 4 describes the

dedicated heuristic developed for this problem. Experimental results are detailed in Sect. 5.

Section 6 concludes the paper and presents some perspectives for future studies.

2 Related Work

2.1 Coverage Modeling

Coverage is often treated as a critical objective in WSNs. Several models have been

considered in the literature [19]. The simplest one is binary coverage. Let s ¼ ðx; yÞ be a

sensor and e ¼ ðxe; yeÞ be an event, as a target or intruder spawn, ðx; yÞ and ðxe; yeÞ
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representing respectively the position of s and the position of e. The boolean function

covbinðe; sÞ expresses the coverage of the event e by the sensor s:

covbinðe; sÞ ¼
1 if ðx� xeÞ2 þ ðy� yeÞ2�R2

0 otherwise

(

where R represents the sensing radius of the sensor s. In the continuous case, this coverage

problem can be solved optimally in a 2D space in polynomial time, but it was proven to be

NP-hard in 3D space [39]. The probabilistic model is a more realistic adaptation of the

binary model. It takes into consideration the degradation of the signal according to the

distance between the event and the sensor. Let covprobðe; sÞ be the function expressing the

coverage of the event e by the sensor s. Let Ra and Rb be both sensing radii, expressing the

certitude of detection and the maximal detection range respectively:

covprobðe; sÞ ¼
1 if ðx� xeÞ2 þ ðy� yeÞ2�R2

a

0 if ðx� xeÞ2 þ ðy� yeÞ2�R2
b

eð�ka
bÞ otherwise

8><
>:

with a ¼ ðx� xeÞ2 þ ðy� yeÞ2 � Ra. k and b are technical parameters. This model is used

in [23, 41]. The grid square coverage is a discretized adaptation of the binary model. The

area to cover is represented as a grid, each cell representing a potential position of an event.

The critical square grid coverage problem consists of finding the minimal number of sensors

to cover all the cells. This problem has been proven NP-Complete [26]. In this study, we

focus on the critical square grid coverage. A large number of studies have been done on this

problematic [3, 19, 46]. In [4], the authors have defined a three dimensional sensor de-

ployment problem as a classical Set Covering Problem. This model has been extended to K-

coverage, ensuring each position is covered by at least K sensors [7, 18, 36, 43].

2.2 Set Covering Problem

The critical square grid coverage problem is a special case of a classical NP-Complete

problem. The Set Covering Problem (SCP) is a classical NP-Complete problem, one of the

21 NP-Complete problems proposed by [25]. Let S the set of sensors and T the set of

targets, each sensor of S covers one or more elements of T . The aim is to find the minimum

subset of S covering T (Fig. 1).

In addition to be a general case of the coverage problem, the SCP formulation can be

used to solve several subproblems in this paper. One of the main advantages is the large

number of studies dedicated to the optimization of the SCP. First, the mathematical model

has been proposed by [38]:

S

S

1 T

T

1

S2 T2

SN TM

... ...

Fig. 1 Set covering problem
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Minimize z ¼
X
i2S

ciXi ð1Þ

S:t: :X
i2S

ai;jXi� 1; 8j 2 T ð2Þ

Xi 2 f0; 1g; 8i 2 S ð3Þ

where Xi is the decision binary variable representing the activation of the sensor Si. The set

of constraints (2) ensures the coverage of all the targets T . To this problem have been

added properties to reduce the numbers of variables and constraints [9, 12, 17]. These prop-

erties have been used for the adaptation of several exact methods [5, 9]. The authors of [12]

have proven the linear solvers are more efficient than the other exact methods for the opti-

mization of this problem. A large number of approximation methods has been also developed

for this problem, as greedy algorithms [1, 14, 20], heuristics based on mathematical relaxations

[2, 10, 21, 31], GRASP [6, 35] and a large number of metaheuristics [11, 13, 37, 40]. The more

efficient method to optimize unicost instances of SCP is the MetaRaps proposed by [29].

2.3 Multi-objective Optimization for WSNs

In this section, we present someworks related to multi-objective optimization to solveWSNs

problems. In [22, 23], the authors have proposed two works relating to sensors activation

problem. First, they have treated a multi-objective problem considering the following two

objectives: (i) the maximization of the coverage rate, using a probabilistic coverage model

and (ii) theminimization of active sensors. The sensors are randomly deployed in the area. An

energy-efficient coverage control algorithm (ECCA) based on NSGA-II algorithm has also

been proposed to determine the subset of active sensors. The performances of ECCA have

been comparedwith several algorithms and protocols such as PEAS [44] andOGDC [45], and

the results show that ECCA provides better performances than other algorithms. The second

work added to this model an energy consumption objective. The authors focus on the

minimization of energy consumption considering the sensing radius of each sensor. The

model’s variables are based on the states (active or sleeping) and the sensing radius of sensors.

The authors used an improved NSGA-II outperforming OGDC in several instances. In [32],

the authors have developed the normal boundary intersection method (NBI) to solve a multi-

objective problem considering: (1) the minimization of the probability of detection error and

(2) the minimization of energy consumption. The decision variables are the thresholds of

energy detection which determine the minimal signal intensity received by a sensor to send

data to the user. TheNBImethodhas been compared toNSGA-II algorithm.Results show that

the NBI outperforms NSGA-II.

Table 1 Notations and their meaning

Notations Meaning

P The set of positions in the area

Rcov The sensing radius of sensors

Rmax
L The maximum localization radius

ai;j The binary relation giving the coverage of j 2 P by i 2 P
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Other works have been dedicated to the sensor deployment problem, where the decision

variables are the sensor positions. In [24], the authors used a multi-objective genetic

algorithm (MOGA) to maximize both a binary model coverage and the network lifetime.

Similar work has been done in [28], where the authors have defined the multi-objective

Deployment and Power Assignment Problem (DPAP). The objectives are the maximization

of the grid coverage and the maximization of the network lifetime, adjusting the trans-

mission power levels of the sensors in the grid. The authors used a problem-specific multi-

objective evolutionary algorithm based on Decomposition (MOEA/D) to solve this prob-

lem, and compared it to NSGA-II. The results showed that MOEA/D outperformed NSGA-

II. A variation of this work has been proposed in [27], considering in particular a more

accurate energy model and a dense deployment in small area. The authors have also

proposed a MOEA/D hybridized with specific heuristic which outperforms the previous

MOEA/D and NSGA-II algorithms. The integration of realistic area modeling has been

treated in [30], where the authors have considered obstacles, various sensing radii and

unreachable places. They have also developed the multi-objective optimization approach

for sensor arrangement (MOASA), inspired by the SPEA-II algorithm to solve the fol-

lowing multi-objective problem considering the following objectives: (1) the maximization

of the binary coverage, (2) the minimization of the overlap and (3) the minimization of the

number of deployed sensors. The results showed the MOASA outperformed the SPEA-II

for the resolution of this problem. In [42], the authors have developed a specific MOGA

called forced-driven multi-objective genetic algorithm (FD-MOGA) to solve multi-ob-

jective 3D deployment problems where the objectives are the maximization of the binary

coverage, the maximization of differential detection levels, using a probabilistic coverage

model and the minimization of energy consumption. The FD-MOGA has outperformed a

classic MOGA during the tests. Other improvements are possible, such as the consideration

of user preferences. In [33], the authors used NSGA-II to optimize four objectives: (1) the

maximization of the coverage, as a binary model (with various geometric figures to rep-

resent the sensing area of a sensor), (2) the minimization of the number of deployed

sensors, (3) the maximization of the respect of the user preferences, based on the weighting

assigned to the different types of sensors and (4) the minimization of the distance between

the target and the sensors. In [7], the authors have adapted the K-coverage deployment

model to tracking applications, taking into account the size of the subset of positions

covered by the same subset of K sensors. The objectives are the minimization of the

number of deployed sensors and the maximization of the number of K-covered positions,

under accuracy constraints. NSGA-II has been implemented and two variations of this

algorithm have been developed for this problem.

None of these works considers the accuracy for tracking applications as an objective. In

this study we propose a modification of a previously proposed mathematical formulation

taking into account two contradictory objectives: the minimization of the number of de-

ployed sensors and the minimization of the localization conflicts sum, under total coverage

constraints.

3 Problem Formulation

The problem takes place in an area containing positions of interest. The first step is the

discretization of the area into a set of positions P. Each position has to be monitored and

could contain a sensor. The assumptions are as follows:

A Specific Heuristic Dedicated to a Coverage/Tracking… 2191

123



• Sensors use a low energy technology as WiFi or ZigBee communication technologies.

Using these technologies presents some advantages as the minimization of the impact

on users health. The second main advantage is the dual purpose of the network: if WiFi

can be used to localize targets, its main usage is the network connexion.

• Due to the used technology, it is not possible to determine the distance considering the

signal power level. So the classical localization methods as triangulation are not

applicable here. However, we consider it is possible to determine a maximum distance

Rcov, allowing to use the binary coverage model (see Sect. 2).

• The maximum localization radius Rmax
L represents the user inaccuracy tolerance,

expressing the maximum tolerated size of the research area in case of event detection.

This size should be defined considering the sensor network application: smaller is this

size, greater is the localization accuracy. The research area is defined as a disk with a

radius set to Rmax
L . In other words, an event detected by the network should be localized

in a disk with a radius less or equal to Rmax
L corresponding to the acceptable minimum

accuracy. Otherwise, a conflict has to be declared on the event position.

Notations and their meanings are as follows:

As in our previousworks, the aim of this study is to find the optimal deployment taking into

account the number of sensors and a tracking focus objective. The first objective is the

minimization of the number of sensors, which allow us to reduce the deployment, purchase

and maintenance costs. The second objective is to find the optimal configuration allowing us

to localize a target. In previous works, we considered the minimization of the localization

conflicts, which reduces the sizes of the search areas in the case of an event detection.

Figure 2 shows an example of a sensor deployment with Rcov ¼ 3. The area is repre-

sented by a 11� 6 (length by width) grid. The three dark positions represent the deployed

sensors to cover and monitor the entire grid. Each disk represents the set of covered

positions by a sensor.

Figure 3 shows the apparition of a target in the area. The target is represented by the square

position. The target is detected by the first and second sensors, placed in positions (3,2) and (4,6)

respectively. The target position belongs to the both sensor 1 and sensor 2 coverage disks.

Figure 4 represents the estimation of the target position by the sensors network. In the

case of a binary modeling of the coverage, the only information to localize the target is the

subset of sensors detecting it. In the example the target position is in conflict with 9 other

positions. In our previous works [8], we proposed to minimize the number of these

conflicts.

Fig. 2 An example of an area coverage
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In this study, we consider a binary representation of the localization: at each position

j 2 P is associated a binary variable representing the correct localization of an event

appearing on position j. The aim is to minimize the number of positions impeding the

correct localization of an event. We also add a minimum acceptable accuracy value Rmax
L .

Let j be a position of the grid. We define Dj the disk centered on j. The radius of Dj is equal

to Rmax
L . If an event appears on position j, Dj represents the corresponding acceptable

localization area.

Figure 5 represents the previous example, with the minimum acceptable accuracy radius

Rmax
L . In this figure, the value of Rmax

L is set to 1 and the hatched disk represents Dð4;4Þ. In

this example, the localization fails since there are some positions in conflict with the

position ð4; 4Þ, which are not belonging to the disk Dð4;4Þ.

Figure 6 shows a correct localization of the target on the position ð4; 4Þ. Two sensors

have been added to the solution, and all the positions belonging to the same detection

subset than the position ð4; 4Þ belong to the disk Dð4;4Þ.

For each position i 2 P, we assign a binary decision variable Xi corresponding to the

existence of a deployed sensor on the position i. The integer linear model for the coverage

problem is as follows:

Fig. 3 Detection of a target in the area

Fig. 4 Estimation of the target position
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Minimize z1 ¼
X
i2P

Xi ð4Þ

S:t :X
i2P

ai;jXi� 1; 8j 2 P ð5Þ

where Eq. (4) minimizes the number of deployed sensors. The set of equations (5) rep-

resents the coverage constraints. The second objective to be added in this study is the

minimization of the non-accuracy. We aim to obtain a trade-off between deployment cost

and quality of tracking. Let two positions j and k in P which are covered by the same set of

sensors. If the distance between the two positions is greater than the maximum localization

radius Rmax
L , then a conflict has to be declared on the positions j and k. Let C the set of

possible conflicts:

C � P2; 8ðj; kÞ 2 C; j 6¼ k;

Rmax
L \distanceðj; kÞ� 2 � Rcov

The set C contains all couples of positions ðj; kÞ, provided the euclidian distance between j

and k is greater than Rmax
L and less or equal to 2 � Rcov (i.e. the positions which can be

Fig. 5 Incorrect localization considering Rmax
L ¼ 1

Fig. 6 Correct localization considering Rmax
L ¼ 1
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detected by the same sensor). In other words, it is acceptable that two positions are detected

by the same detection subset only if the position k belongs to the disk Dj (i.e. j belongs to

Dk).

Let Yj be the binary variable associated to the position j. The variable Yj is equal to 1

only if there is another position k such that the positions j and k are detected by the same

sensors and k does not belong to Dj.

Yj ¼
1 if 9k 2 P; k 62 Dj; as 8i 2 P; ai;jXi ¼ ai;kXi

0 otherwise

�

In fact, if the two positions j and k are covered by a same subset of sensors (i.e.P
i2P jai;j � ai;kjXi ¼ 0), therefore Yj and Yk will be equal to 1.

The bi-objective mathematical model is as follows:

Minimize z1 ¼
1

jPj
X
i2P

Xi ð4Þ

Minimize z2 ¼
1

jPj
X
j2P

Yj ð6Þ

S:t :X
i2P

ai;jXi� 1; 8j 2 P ð5Þ

X
i2P
jai;j � ai;kjXi þ

1

2
ðYj þ YkÞ� 1; 8ðj; kÞ 2 C ð7Þ

Xi 2 f0; 1g; 8i 2 P ð8Þ

Yj 2 f0; 1g; 8j 2 P ð9Þ

The first objective z1 (4) minimizes the number of deployed sensors divided by the grid

size. The second objective z2 (6) minimizes the number of positions entraving the correct

localization of an event considering the minimum acceptable accuracy Rmax
L . The first set of

constraints (5) ensures the total grid coverage. The set of constraints (7) allows us to

determine if two positions j and k belong to the same detection subset or not. The re-

maining constraints (8) and (9) are binary decision variables constraints. Note that all

variables Yj could be set as a real variable to allow linear solvers to use different methods.

The main advantages compared to our previous proposed model [8] are following: (1)

the number of variables is reduced to 2 � jPj instead of a maximum value of jPj þ jPj�ðjPj�1Þ
2

and (2) the number of localization constraints is also reduced considering the minimum

acceptable accuracy Rmax
L .

4 Multi-objective Optimization

The two objective functions usually do not have the same optimal solution (they are

contradictory). The multi-objective optimization allows the optimization of different ob-

jectives simultaneously. For multi-objective problems, the Pareto dominance is usually
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used. Considering a bi-objective minimization problem, where f1 and f2 are the objective

functions, let u and v be two configurations. We have the following situations:

• u dominates v if ðf1ðuÞ\f1ðvÞÞ ^ ðf2ðuÞ\f2ðvÞÞ
• u is dominated by v if ðf1ðuÞ[ f1ðvÞÞ ^ ðf2ðuÞ[ f2ðvÞÞ
• u and v are not comparable if ðf1ðuÞ\f1ðvÞÞ ^ ðf2ðuÞ[ f2ðvÞÞ or

ðf1ðuÞ[ f1ðvÞÞ ^ ðf2ðuÞ\f2ðvÞÞ
The optimal Pareto front of a multi-objective problem is the set of the non-dominated

solutions. A configuration u belongs to the optimal Pareto front if no other existing con-

figuration dominates it. This approach allows to compare configurations considering a

various number of objectives.

In addition to the NSGA-II [16] and MOPSO [15] algorithms, we propose a dedicated

heuristic based on the mathematical decomposition of the problem into a set of SCP.

4.1 NSGA-II

NSGA-II [16] is a multi-objective genetic algorithm used to solve multi-objective prob-

lems. The basic process of this algorithm is as follows:

The first step is the initialization of the population by SizePop solutions inserted into P0.

At each iteration i, a selection for the reproduction is done among the configurations of

Pi�1, giving the mating pool Mi. New solutions are created by crossover and mutation

processes, giving the offspring Oi. A reparation operator is used to satisfy the coverage

constraints. Pi�1 and Oi are then pushed in Pi. NSGA-II sorts configurations in fronts, each

front contains non-dominated solutions selected according to Pareto dominance and

Crowing distance criteria.

4.2 MOPSO

MOPSO [15] is a multi-objective particle swarm algorithm. This algorithm is based on the

evolution of both velocities and positions to update the particles in the parameters space.

Let p a particle at the iteration t, the position and velocity update is done as follows:

vtþ1ðpÞ ¼ wvtðpÞ þ c1ðmtðpÞ � xtðpÞÞ
þ c2ðxtðqÞ � xtðpÞÞ

ð10Þ

xtþ1ðpÞ ¼ vtþ1ðpÞ þ xtðpÞ ð11Þ

where vt; xt; mt and q represent the velocity, the position, the best position is the memory

and the best close particle respectively. The parameter w represents the impact of the
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current velocity, allowing to diversify the space exploration. The parameters c1 and c2
represent the impact of the best position crossed by the particle and the impact of the

neighborhood respectively. The main algorithm can be seen in Algorithm 2.

To optimize binary problems, the authors of [34] have proposed several methods to

adapt the exploration space process of BCE and PSO algorithms. In this paper, we use the

first method proposed to adapt the MOPSO algorithm to our problem, the velocities rep-

resenting the probability to set the variable values to 1.

4.3 Hybridization Process

The hybridization process aim to improve the current algorithms NSGA-II and MOSPO. At

each solution X is assigned two values kX1 and kX2 corresponding to the weights of the

objective functions. For each new solution, a problem specific operator is applied to ensure

the satisfaction of the coverage constraints. This operator is similar to the greedy algorithm

dedicated to the Set Covering problem [14]. The process is as follows: while there is at

least one coverage constraint unsatisfied, a variable is selected considering a greedy score

and is added to the current solution. Here we propose a new greedy score calculation,

considering both cost and localization objectives.

8i 2 P; scorei  kX1
X
j2P

ai;j þ kX2
X

ðj;kÞ2P2;j 6¼k
jai;j � ai;kj ð12Þ

Considering the two values kX1 and kX2 , the solution X will promote the first or second

objective.

The one-point crossover is also modified to take into account the k coefficients. First,

the couples of selected solutions are defined considering the k coefficients matching. Let

two selected solutions X and X0 and the two new solutions Y and Y 0 generated by the

crossover operator, the k values calculation is as follows:

kY1 ¼ akX1 þ ð1� aÞkX01
kY2 ¼ akX2 þ ð1� aÞkX02
kY
0

1 ¼ð1� aÞkX1 þ akX
0

1

kY
0

2 ¼ð1� aÞkX2 þ akX
0

2

where a is a real value between 0 and 1, considering the crossover point chose by the

operator.

The k coefficient are also used in MOPSO to guide the evolutionary process. The

selection of the best neighbor and the best position in the memory is done taking into
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account the weighted objective sum, considering k1 and k2 the weights of z1 and z2
respectively.

4.4 Heuristic H3P

Each conflict variable Yj is linked to several localization constraints. Each localization

constraint can be decomposed into two parts: the first part is the sum of deployment

variables allowing to avoid a conflict on the position j, and the second part is the decla-

ration of the conflict (see Eq. 13).X
i2P
jai;j � ai;kjXi þ

1

2
ðYj þ YkÞ� 1; 8k 2 P; k 62 Dj ð13Þ

To avoid a conflict on the position j, the left parts of the constraints have to be greater or

equal to one, allowing to fix the value of Yj to 0. Indeed, if Yj is equal to zero, the Yk

variable has not enough importance in the equation to satisfy the constraint due to the 1
2

weight. So both Yj and Yk variables can be removed from the constraint (see Eq. 14). In

that case, minimizing the number of deployed sensors to avoid a conflict on position j can

be formulated as a SCP called SCPj.X
i2P
jai;j � ai;kjXi� 1; 8k 2 P; k 62 Dj ð14Þ

Let Y ¼ fY ; ::; YNg be the conflict variables of the problem. If we affect a value to each

conflict variable contained in Y , then minimizing the number of deployed sensors to cover

each position and satisfy all conflicts considering the affectation is a SCP.

Minimize z1ðYÞ ¼
1

jPj
X
i2P

Xi ð15Þ

S:t: :X
i2P

ai;jXi� 1; 8j 2 P ð5Þ

8Yj 2 Y as Yj ¼ 0;X
i2P
jai;j � ai;kjXi� 1; 8k 2 P; k 62 Dj

ð16Þ

Xi 2 f0; 1g; 8i 2 P ð9Þ

The Eqs. (5, 9, 15, 16) define the subproblem SCPðYÞ, where the variables Yj as Yj ¼ 0 add

localization constraints (16). The heuristic (H3P) is decomposed into three phases. At each

iteration, the heuristic proceeds in a first phase to the clustering of the conflict variables Yj
considering a proximity metric. The second phase consists into the construction of a Pareto

front considering the clustering done in the first phase. The third and last phase consists to

disassembly of the last solution produced during the second phase. In the following sub-

sections, we describe the process of each phase.

The main process of the heuristic is described in Fig. 7. At each phase of the heuristic,

an archive operator is called to record non-dominated generated solutions. The process is

done iteratively until the execution time is reached.
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4.4.1 Phase 1: Clustering

The aim of this part is to cluster the conflict variables. Let K be the number of clusters, K is

determined randomly. Let C ¼ fC1; ::;CNg the set of K clusters, each cluster contains a

subset of Y . The conflict variables Yj are inserted into clusters considering a metric al-

lowing to compare them each others. This proximity metric is based on the occurrence

numbers of all deployment variables in the satisfaction of the subproblem SCPj. At each

variable Yj is associated an occurrence vector Vj as follows:

Vj ¼ V1
j ; :::;V

jPj
j

n o
ð17Þ

Vi
j ¼

X
k2P;k 6¼j

jai;j � ai;kj; 8i 2 P ð18Þ

where Vi
j is the number of constraints linked to Yj satisfied by the variable Xi. Let Yj and Yk

two conflict variables, the proximity metric MðYj; YkÞ is computed as an euclidian distance:

MðYj; YkÞ ¼
X
i2P
ðVi

j � Vi
kÞ

2

ð19Þ

where Vj and Vk are the occurrence vectors associated to the variables Yj and Yk respec-

tively. This metric is also used to compare a variable Yj to a cluster Ch:

MðYj;ChÞ ¼
X
i2P

Vi
j �

1

Ch

X
Yk2jChj

Vi
k

0
@

1
A

2

ð20Þ

Start

k

Phase 1: Clustering(k)

Phase 2: Construction(C)

Phase 3: Disassembly(X)

t > Tmax ?

End

yes

no

Fig. 7 H3P general process
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The clustering is done by the K-means algorithm considering the K parameter and the

proximity metric, to produce equally sized clusters. The clusters produced will be used in

the second phase to construct a Pareto front.

4.4.2 Phase 2: Construction of the Pareto Front

The aim of this phase is to construct a Pareto front considering the clusters produced by the

first phase. The construction is done by producing solutions, considering the coverage

problem firstly, and adding localization constraints to considerate at each iteration of the

phase. The main process of the second phase is described in Fig. 8. Let SCPðYÞ be the

current subproblem to optimize, this problem is initialized as the coverage problem (i.e.

8Yj 2 Y ; Yj ¼ 1). In other words, no constraints as Eq. (11) are added to the subproblem. A

solution X is generated, considering only the coverage constraints. The solution X is

initialized as the solution Xstart; Xstart being the extreme solution belonging to the archive

promoting the first objective. The optimization process is done by an extern optimization

method dedicated to the unicost SCP (here we use the MetaRaps method [29]). At each

creation or modification of the current solution X, an operator is called to update the

archive containing the non-dominated solutions.

While the second objective value of the solution X is different to zero (i.e. there are

positions annoying the localization), a cluster Ch 2 C is chose considering the minimum

greedy score GHSðCh;XÞ. This score is computed by the classical greedy algorithm [14],

determining the number of variables to add to X to satisfy all the constraints linked to the

variables Yj belonging to Ch. All conflict variables Yj belonging to Ch are added to the

current subproblem (i.e. all Yj are set to zero), and the solution X is optimized considering

the new current subproblem.

Initialization of Y as ∀Yj , Yj = 1

X ← Xstart

z2(X) = 0 ?

Ch = argminCj∈C(GHS(Cj , X))

C = C − {Ch}

∀Yj ∈ Ch, Yj = 0

X ← optimize(SCP (Y ))

updateArchive(X)

X
yes

no

Fig. 8 H3P construction phase
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4.4.3 Phase 3: Disassembly the Last Solution

The aim of this phase is to build another Pareto front considering the last solution X

generated by the second phase. The objective is to remove variables of the solution while

all coverage constraints are satisfied. A variable Xi can be removed from the current

solution X only if it satisfies the following condition:

removablei ¼ 8j 2 P; ai;jXi 6¼
X
k2P

ak;jXk

 !
ð21Þ

So a variable Xi can be removed only if it does not affect the coverage constraints.

At each variable Xi is attributed an utility score utili corresponding to the number of

localization constraints necessitating the variable Xi to be satisfied (see Eq. 22).

utili ¼ jfYj 2 Y; Yj ¼ 0; 9k 62 Dj as

jai;j � ai;kjXi ¼
X
h2P
jah;j � ah;kjXhgj ð22Þ

The variable with the minimum utility score is removed form the current solution (see Fig.

9).

5 Computational Experiments

5.1 Experimental Conditions

The algorithms have been implemented in C?? language and have been run on a Linux

computer with a Core-I5 CPU. The three methods have been compared to the exact

solutions for small size instances.

∃Xi, removablei = true ?

Xi = argminXj∈X(utilj)

Xi = 0

updateArchive(X)

End

yes

no

Fig. 9 H3P disassembly phase
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Let Z be the area to monitor, the set of positions P is defined by the discretization of Z.

The positions spread is defined by the user: it can be homogeneous (a grid) or heteroge-

neous (with high density in interesting subareas and lower density in less interesting ones).

The area geometry has to be considered for the discretization (see Fig. 10).

The instances computed by the algorithms are defined by a set of positions P (output of

the discretization) and a coverage matrix a (considering P and Rcov) where ai;j represents

the coverage relation between the positions i and j, with ði; jÞ 2 P2.

In this paper, we consider only homogeneous instances, defined as rectangular grids.

The experiment consists of running the algorithms for 2 generated instances sets S and L.

The first one contains all the small instances, allowing to compare the algorithms to the

optimal Pareto fronts given by Gurobi. The instances set S contains 30 instances, the

numbers of lines and columns varying between 6 and 10. The instances set L contains 27

generated instances. For these instances, the dimension of the grid varies within the range

[10, 30] for the large size instances. The sensing radius is set to 3. Table 2 shows both

instances sets.

The parameters of the NSGA-II and MOPSO are as follows: the population size

(NSGA-II) and the swarm size (MOPSO) are set to 120 and 200 respectively. The

crossover and mutation probabilities (NSGA-II) are set to 0.9 and 1
N
. The velocity pa-

rameters (MOPSO) w; c1 and c2 are set to 0.9, 2.5 and 2.5 respectively. The specific

heuristic parameters are set as follows: the number of clusters K is randomly set between 2

and 20. The solution Xstart is computed by the MetaRaps method, with a number of

iterations set to 200. For all optimization processes in the second phase, the number of

iterations of the MetaRaps is limited to 50. The number of columns to remove of the

solutions is set to 70 %. For all the algorithms, the number of iterations has been replaced

by a time limit set to 3 minutes.

5.2 Multi-objective Metrics

Among the large number of metrics (quality measures) proposed in the literature, in this

paper we have chosen to use two metrics: the coverage of two Pareto fronts (noted C

metric) proposed by [47] and the proportion of optimal solutions found by the algorithms

(noted Opt metric).c The coverage of two Pareto fronts is a relative evaluation of two

fronts. A front Q is evaluated by comparison to a front Q0 by considering the proportion of

solutions in Q0 that are dominated by a solution belonging to Q. This measure is not

symmetric and has to be computed in both directions due to the possible equivalent non-

dominated solutions.

Fig. 10 Example of an area discretization
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Let Q and Q0 be two sets of solutions;

CðQ;Q0Þ ¼ jfq
0 2 Q0 as 9q 2 Q; q 	 q0gj

jQ0j
ð23Þ

In addition, we use the number of optimal solutions found by the algorithms in the small

size instances experimentations. The metric is computed as follows:

Let Q be a set of solutions and Q� the optimal

Pareto front;

OptðQÞ ¼ jfq 2 Q \ Q�gj
jQ�j

ð24Þ

Table 2 Instances sets S and L

H W Rmax
L H W Rmax

L

Instance S1 6 6 1 Instance S16 7 9 2

Instance S2 6 6 2 Instance S17 7 10 1

Instance S3 6 7 1 Instance S18 7 10 2

Instance S4 6 7 2 Instance S19 8 8 1

Instance S5 6 8 1 Instance S20 8 8 2

Instance S6 6 8 2 Instance S21 8 9 1

Instance S7 6 9 1 Instance S22 8 9 2

Instance S8 6 9 2 Instance S23 8 10 1

Instance S9 6 10 1 Instance S24 8 10 2

Instance S10 6 10 2 Instance S25 9 9 1

Instance S11 7 7 1 Instance S26 9 9 2

Instance S12 7 7 2 Instance S27 9 10 1

Instance S13 7 8 1 Instance S28 9 10 2

Instance S14 7 8 2 Instance S29 10 10 1

Instance S15 7 9 1 Instance S30 10 10 2

H W Rmax
L H W Rmax

L

Instance L1 10 15 1 Instance L15 15 30 1

Instance L2 10 15 2 Instance L16 15 30 2

Instance L3 10 20 1 Instance L17 20 20 1

Instance L4 10 20 2 Instance L18 20 20 2

Instance L5 10 25 1 Instance L19 20 25 1

Instance L6 10 25 2 Instance L20 20 25 2

Instance L7 10 30 1 Instance L21 20 30 1

Instance L8 10 30 2 Instance L22 20 30 2

Instance L9 15 15 1 Instance L23 25 25 1

Instance L10 15 15 2 Instance L24 25 25 2

Instance L11 15 20 1 Instance L25 25 30 1

Instance L12 15 20 2 Instance L26 25 30 2

Instance L13 15 25 1 Instance L27 30 30 1

Instance L14 15 25 2
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5.3 Small Size Instances Results

For each instance belonging to the instances set S, the optimal Pareto front has been

computed by a linear optimization procedure using the linear solver Gurobi. The ex-

periments results on the small size instances set S are presented in Table 3. The Opt metric

results values vary between 0 and 1, 0 meaning none optimal solutions have been found

and 1 meaning the algorithm has found the complete optimal Pareto front. In Table 3,

minimum, average and maximum values of the Opt metric are reported for each algorithm

and each instance, the algorithms running ten times each instance. The results show that the

heuristic H3P provides better solutions than the metaheuristics in average. Indeed the

average values OptðH3PÞ are greater than the average values of OptðNSGAIIÞ and

OptðMOPSOÞ for all the instances of the set S. The heuristic seems to provide an important

part of the optimal Pareto front for almost all the instances except the most difficult ones as

S21 where the OptðH3PÞ average value is below 0.5 (i.e. the heuristic provides less than

50 % of the optimal Pareto front in average for this instance).

However, the H3P results are always greater than MOPSO and NSGAII on this in-

stances set, considering the Opt metric. The comparison between the two metaheuristics

allows to see the MOPSO algorithm is better than the NSGAII, expect for the instances

S3; S11 and S24. The NSGAII seems not able to find optimal solutions for the last instances

S29 and S30, where the OptðH3PÞ average values for S29 and S30 are 0.51 and 0.5

respectively, and the OptðMOPSOÞ average values are 0.4 and 0.33 respectively.

5.4 Large Size Instances Results

The experiments results on the large size instances set L are presented in Tables 4, 5 and 6.

Considering two methods M1 and M2, the C metric results values vary between 0 and 1, 0

meaning the methodM1 does not dominate the solutions provided by the methodM2, and 1

meaning the solutions provided by the algorithmM1 dominate all the solutions provided by

the method M2. Tables 4, 5 and 6 present the dominance of NSGAII, MOPSO and H3P

respectively.

The dominance is gived by the CðNSGAII; Þ values. The results presented in Table 4

show the NSGAII dominates weakly the other algorithms. The CðNSGAII; Þ average
values are equal to zero for almost all the instances, except for the instances

L1; L2; L4; L9; L13; L17; L23 and L25 where the dominance of the NSGAII over the

MOPSO is greater than the other instances results. Indeed, the CðNSGAII;MOPSOÞ av-
erage values vary between 0.10 and 0.25 for these instances. If the dominance of the

NSGAII over the heuristic H3P is weak but not null for some instances, the

CðNSGAII;H3PÞ values are equal to zero for almost all the instances.

Table 5 presents the dominance of the MOPSO over the NSGAII and H3P algorithms.

The average values of CðMOPSO;NSGAIIÞ show that theMOPSO algorithm outperformed

the NSGAII on the large instances set. Indeed, the C metric values are close to one for

almost all the instances, meaning the solutions provided by the MOPSO algorithm dom-

inates almost all solutions provided by the NSGAII. However the dominance of the

MOPSO over the H3P heuristic is clearly weak, the average values of CðMOPSO;H3PÞ
tend to decrease as the instance size grows.

Table 6 presents the dominance of the H3P heuristic over the implemented meta-

heuristics. First, the CðH3P;NSGAIIÞ average values are close to one for all the instances,

meaning the heuristic outperformed the implemented multi-objective genetic algorithm.

Secondly, if the dominance of the H3P over the MOPSO is not as great as the dominance
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Table 3 Opt metric results on the small instances set S

Min Avg Max Min Avg Max Min Avg Max

S1 S2 S3

Opt(NSGAII) 0.86 0.86 0.86 1.00 1.00 1.00 0.71 0.71 0.71

Opt(MOPSO) 0.86 0.86 0.86 1.00 1.00 1.00 0.43 0.43 0.43

Opt(H3P) 1.00 1.00 1.00 1.00 1.00 1.00 0.86 0.93 1.00

S4 S5 S6

Opt(NSGAII) 0.60 0.60 0.60 0.00 0.00 0.00 0.60 0.72 0.80

Opt(MOPSO) 1.00 1.00 1.00 0.71 0.71 0.71 1.00 1.00 1.00

Opt(H3P) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

S7 S8 S9

Opt(NSGAII) 0.38 0.38 0.38 0.60 0.60 0.60 0.25 0.25 0.25

Opt(MOPSO) 0.62 0.62 0.62 1.00 1.00 1.00 0.50 0.56 0.75

Opt(H3P) 0.75 0.85 1.00 1.00 1.00 1.00 0.62 0.79 0.88

S10 S11 S12

Opt(NSGAII) 0.40 0.40 0.40 0.75 0.75 0.75 0.60 0.60 0.60

Opt(MOPSO) 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00

Opt(H3P) 1.00 1.00 1.00 0.75 0.91 1.00 1.00 1.00 1.00

S13 S14 S15

Opt(NSGAII) 0.22 0.22 0.22 0.40 0.40 0.40 0.11 0.11 0.11

Opt(MOPSO) 0.33 0.33 0.33 0.60 0.60 0.60 0.33 0.33 0.33

Opt(H3P) 0.78 0.86 1.00 1.00 1.00 1.00 0.56 0.72 0.89

S16 S17 S18

Opt(NSGAII) 0.33 0.33 0.33 0.00 0.09 0.11 0.33 0.33 0.33

Opt(MOPSO) 0.67 0.67 0.67 0.33 0.39 0.44 0.50 0.50 0.50

Opt(H3P) 1.00 1.00 1.00 0.67 0.71 0.78 0.67 0.82 1.00

S19 S20 S21

Opt(NSGAII) 0.11 0.11 0.11 0.20 0.20 0.20 0.11 0.11 0.11

Opt(MOPSO) 0.22 0.23 0.33 0.80 0.80 0.80 0.22 0.22 0.22

Opt(H3P) 0.33 0.54 0.78 1.00 1.00 1.00 0.11 0.36 0.44

S22 S23 S24

Opt(NSGAII) 0.40 0.40 0.40 0.00 0.00 0.00 0.40 0.40 0.40

Opt(MOPSO) 0.60 0.60 0.60 0.38 0.38 0.38 0.20 0.20 0.20

Opt(H3P) 0.80 0.96 1.00 0.38 0.53 0.62 1.00 1.00 1.00

S25 S26 S27

Opt(NSGAII) 0.12 0.12 0.12 0.00 0.00 0.00 0.12 0.12 0.12

Opt(MOPSO) 0.25 0.25 0.25 0.60 0.60 0.60 0.50 0.50 0.50

Opt(H3P) 0.62 0.74 0.88 1.00 1.00 1.00 0.62 0.72 0.88

S28 S29 S30

Opt(NSGAII) 0.60 0.60 0.60 0.00 0.00 0.00 0.00 0.00 0.00

Opt(MOPSO) 0.60 0.60 0.60 0.40 0.40 0.40 0.33 0.33 0.33

Opt(H3P) 0.60 0.74 0.80 0.20 0.51 0.70 0.33 0.50 0.83
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over the NSGAII for the 8 first instances, the average values of CðH3P;MOPSOÞ increase
quickly as the instance size grows. For almost all the instances, the H3P dominates an

important part of the Pareto fronts provided by the metaheuristics. It seems the dominance

of the heuristic over the other implemented methods increases as the instance size grows.

However we notice an instability of the CðH3P;MOPSOÞ average values considering the

instance, especially for the instance L28, where the CðH3P;MOPSOÞ and

CðMOPSO;H3PÞ average values are 0.63 and 0.28 respectively. In conclusion of the

minimum, average and maximum values of the C metric, it seems the H3P heuristic

outperformed the implemented metaheuristics, except the MOPSO has provided some

good quality solutions for a reduced number of instances.

Figure 11 presents the distributions of C metric on the L instances set. For each graph,

the bars represent the proportionality of C metric results belonging to the following in-

tervals: ½0; 0:1½; ½0:1; 0:2½; ½0:2; 0:3½; ½0:3; 0:4½; ½0:4; 0:5½; ½0:5; 0:6½,
½0:6; 0:7½; ½0:7; 0:8½; ½0:8; 0:9½ and ½0:9; 1
. The distributions of CðNSGAII; Þ,
CðMOPSO; Þ; CðH3P; Þ, Cð ;NSGAIIÞ; Cð ;MOPSOÞ and Cð ;H3PÞ are plotted. In

Table 4 CðNSGAII; Þ metric results on the large instances set L

Min Avg Max Min Avg Max Min Avg Max

L1 L2 L3

C(NSGAII,MOPSO) 0.27 0.28 0.29 0.11 0.12 0.12 0.00 0.00 0.00

C(NSGAII,H3P) 0.20 0.29 0.38 0.00 0.00 0.00 0.00 0.01 0.06

L4 L5 L6

C(NSGAII,MOPSO) 0.08 0.14 0.17 0.00 0.00 0.00 0.00 0.00 0.00

C(NSGAII,H3P) 0.00 0.18 0.27 0.00 0.07 0.13 0.00 0.06 0.13

L7 L8 L9

C(NSGAII,MOPSO) 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.10

C(NSGAII,H3P) 0.00 0.00 0.00 0.00 0.01 0.06 0.00 0.01 0.06

L10 L11 L12

C(NSGAII,MOPSO) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C(NSGAII,H3P) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

L13 L14 L15

C(NSGAII,MOPSO) 0.19 0.21 0.23 0.00 0.00 0.00 0.03 0.03 0.03

C(NSGAII,H3P) 0.00 0.05 0.16 0.00 0.01 0.05 0.00 0.00 0.00

L16 L17 L18

C(NSGAII,MOPSO) 0.00 0.00 0.00 0.18 0.18 0.18 0.00 0.04 0.05

C(NSGAII,H3P) 0.00 0.00 0.00 0.03 0.05 0.11 0.00 0.02 0.14

L19 L20 L21

C(NSGAII,MOPSO) 0.05 0.07 0.10 0.00 0.00 0.00 0.00 0.01 0.02

C(NSGAII,H3P) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

L22 L23 L24

C(NSGAII,MOPSO) 0.00 0.00 0.00 0.23 0.25 0.27 0.00 0.00 0.00

C(NSGAII,H3P) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

L25 L26 L27

C(NSGAII,MOPSO) 0.13 0.16 0.17 0.00 0.00 0.00 0.03 0.05 0.06

C(NSGAII,H3P) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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blue we can see the dominance of a method over the other algorithms, and in red the

method proportion to be dominated by the other algorithms.

The NSGA-II results show that at least 80 % of the dominance metric values belong to

the interval ½0; 0:1½ and almost all the CðNSGAII; Þ values belong to the interval ½0; 0:3½,
the algorithm dominating very weakly the other methods. The Cð ;NSGAIIÞ distribution is
consistent with these results, the NSGAII method is strongly dominated by the other

algorithms. Indeed, most of the Cð ;NSGAIIÞ values belong to ½0:6; 1
 and at least 80 % of

these values belong to ½0:9; 1
. So the NSGA-II is clearly outperfomed by both MOPSO

and H3P algorithms.

The MOPSO results are presented in the CðMOPSO; Þ and Cð ;MOPSOÞ distribution
graphs. We notice an important spread in both distributions. Indeed, an important part of

the CðMOPSO; Þ values belong to ½0:7; 1
, meaning the MOPSO strongly dominates one

or more of the other propose algorithms. On the other hand, a large part of these values also

belong to ½0; 0:3
, expressing a weak dominance of the MOPSO over one or more

Table 5 CðMOPSO; Þ metric results on the large instances set L

Min Avg Max Min Avg Max Min Avg Max

L1 L2 L3

C(MOPSO,NSGAII) 0.73 0.74 0.75 0.75 0.82 0.88 0.95 0.96 1.00

C(MOPSO,H3P) 0.21 0.30 0.46 0.12 0.28 0.44 0.11 0.24 0.50

L4 L5 L6

C(MOPSO,NSGAII) 0.77 0.79 0.85 1.00 1.00 1.00 1.00 1.00 1.00

C(MOPSO,H3P) 0.00 0.34 0.58 0.13 0.23 0.36 0.07 0.32 0.57

L7 L8 L9

C(MOPSO,NSGAII) 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.91 0.91

C(MOPSO,H3P) 0.04 0.17 0.38 0.12 0.31 0.67 0.05 0.11 0.22

L10 L11 L12

C(MOPSO,NSGAII) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

C(MOPSO,H3P) 0.08 0.21 0.33 0.04 0.11 0.15 0.12 0.22 0.31

L13 L14 L15

C(MOPSO,NSGAII) 0.82 0.83 0.83 1.00 1.00 1.00 0.98 0.98 0.98

C(MOPSO,H3P) 0.00 0.07 0.14 0.05 0.14 0.23 0.03 0.06 0.13

L16 L17 L18

C(MOPSO,NSGAII) 1.00 1.00 1.00 0.78 0.81 0.81 0.96 0.96 0.96

C(MOPSO,H3P) 0.04 0.15 0.30 0.06 0.12 0.32 0.05 0.17 0.36

L19 L20 L21

C(MOPSO,NSGAII) 0.90 0.93 0.94 1.00 1.00 1.00 0.98 0.98 1.00

C(MOPSO,H3P) 0.00 0.07 0.14 0.00 0.17 0.38 0.00 0.09 0.21

L22 L23 L24

C(MOPSO,NSGAII) 1.00 1.00 1.00 0.70 0.74 0.76 1.00 1.00 1.00

C(MOPSO,H3P) 0.04 0.17 0.32 0.00 0.09 0.25 0.00 0.07 0.27

L25 L26 L27

C(MOPSO,NSGAII) 0.83 0.85 0.86 1.00 1.00 1.00 0.90 0.92 0.94

C(MOPSO,H3P) 0.00 0.10 0.27 0.03 0.11 0.18 0.00 0.13 0.25
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algorithms. Due to the previous results, we can explain this by a strong dominance of the

MOPSO on the NSGA-II and a weak dominance of the MOPSO on the H3P heuristic.

Finally, the H3P results available in the CðH3P; Þ and Cð ;H3PÞ distribution graphs

validate the previous conclusion. Indeed, most of the CðH3P; Þ belong to ½0:7; 1
, ex-
pressing a strong dominance of the H3P heuristic over both MOPSO and NSGAII.

Moreover, almost all Cð ;H3PÞ values belong to the interval ½0; 0:3
, meaning the H3P is

weakly dominated by the other methods on the instances set L. So we can conclude that the

heuristic is clearly better than the implemented metaheuristics for the optimization of this

problem, considering the instances and the metrics used.

Table 6 CðH3P; Þ metric results on the large instances set L

Min Avg Max Min Avg Max Min Avg Max

L1 L2 L3

C(H3P,NSGAII) 0.67 0.74 0.81 0.88 0.99 1.00 0.90 0.97 1.00

C(H3P,MOPSO) 0.50 0.62 0.73 0.38 0.60 0.78 0.42 0.66 0.84

L4 L5 L6

C(H3P,NSGAII) 0.77 0.84 1.00 0.89 0.93 0.96 0.86 0.91 1.00

C(H3P,MOPSO) 0.33 0.61 1.00 0.61 0.72 0.87 0.43 0.59 0.86

L7 L8 L9

C(H3P,NSGAII) 1.00 1.00 1.00 0.87 0.99 1.00 0.95 0.98 1.00

C(H3P,MOPSO) 0.54 0.73 0.96 0.18 0.64 0.88 0.76 0.84 0.90

L10 L11 L12

C(H3P,NSGAII) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

C(H3P,MOPSO) 0.62 0.78 0.92 0.73 0.82 0.92 0.65 0.78 0.88

L13 L14 L15

C(H3P,NSGAII) 0.87 0.95 1.00 0.96 1.00 1.00 1.00 1.00 1.00

C(H3P,MOPSO) 0.71 0.85 0.97 0.75 0.83 0.90 0.79 0.89 0.95

L16 L17 L18

C(H3P,NSGAII) 1.00 1.00 1.00 0.91 0.94 0.98 0.89 0.97 1.00

C(H3P,MOPSO) 0.70 0.80 0.87 0.56 0.77 0.88 0.50 0.76 0.91

L19 L20 L21

C(H3P,NSGAII) 0.94 0.98 1.00 1.00 1.00 1.00 0.98 1.00 1.00

C(H3P,MOPSO) 0.70 0.87 0.93 0.56 0.75 0.92 0.73 0.85 1.00

L22 L23 L24

C(H3P,NSGAII) 0.97 0.99 1.00 0.95 0.98 1.00 1.00 1.00 1.00

C(H3P,MOPSO) 0.55 0.72 0.86 0.77 0.89 0.96 0.55 0.87 0.97

L25 L26 L27

C(H3P,NSGAII) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

C(H3P,MOPSO) 0.63 0.80 0.94 0.69 0.79 0.91 0.73 0.82 0.97
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6 Conclusion and Perspectives

In this paper, a multi-objective deployment problem in WSNs is studied. A modification of

a previously studied model is proposed, allowing to reduce the high number of the model

variables. The deployment of sensors has to ensure total coverage of sensing field for

tracking applications. Therefore, we define two objectives to optimize: (1) the

minimization of the number of deployed sensors and (2) the minimization of the non-

accuracy. The main interest of this modeling is the introduction of accuracy for tracking

applications in the problem. We assume that the WSN has to ensure a minimum precision

to track targets efficiency. The main difficulty of this problem is the large number of

constraints. The optimization is done with NSGA-II and an MOPSO multi-objective op-

timization algorithms. We also proposed a specific heuristic (H3P) based on the mathe-

matical decomposition of the problem and the clustering of localization variables. We

evaluate these algorithms with various size instances, and compare their results with multi-

objective metrics. The H3P heuristic has provided more optimal solutions than the
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Fig. 11 C metric distribution on the large instances set L
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implemented metaheuristics for the small size instances. For the large size instances tests,

the heuristic dominates a large part of the Pareto front provided by the metaheuristics for

almost all the proposed instances.

Our perspectives for future works are following: first, we plain to propose new multi-

objective models, taking into account new definitions of accuracy to reduce the numbers of

variables and constraints, and also to consider user preferences. We also plain to propose new

heuristics based on themodels decomposition, considering the SCP subproblems optimization.
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