
Dynamic Auction for Revenue Maximization
in Spectrum Market

Ayoub Alsarhan • Ahmad Quttoum • Mohammad Bsoul

Published online: 4 March 2015
� Springer Science+Business Media New York 2015

Abstract The paradigm of spectrum trading has spontaneously prompted a wide interest in

spectrum market where licensed users (primary users, PUs) aim at efficiently share spectrum

with unlicensed users (secondary users, SUs). SUs pay PUs for radio resource usage. Spec-

trum pricing plays a pivotal role towards the success of spectrum trading. Most of the existing

pricing schemes neglect service guarantees. Furthermore, they use static pricing scheme

where the price cannot respond quickly to the changes in the spectrum market. To overcome

these problems, we design dynamic auction where spectrum is periodically auctioned off to

meet SUs demands over time. Our scheme determines the size of spectrum to be auctioned for

each session. Performance evaluation of the proposed scheme shows the ability of our scheme

to maximize the reported revenue for the PU under different spectrum market conditions.

Keywords Cognitive radio � Spectrum trading � Spectrum market � Spectrum sharing �
Wireless mesh networks � Auction theory

1 Introduction

The twenty-first century has seen an explosion in wireless technology. From mobile phones

to wireless local area networks, users want always to be connected to the internet no matter
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where they are [1, 2]. Wireless Mesh Networks (WMNs) help to solve spectrum scarcity

problem by providing high-bandwidth network and extending internet access and other

networking services. Although WMNs improve performance, some factors degrade the

network performance. These factors include spectrum scarcity, large fluctuation of spec-

trum demand and the inefficiency in the spectrum usage [2]. To overcome spectrum

scarcity problem, Federal Communications Commission (FCC) has already started work on

the concept of spectrum sharing where secondary users (SUs) can access the unused

spectrum if they get permission from primary users (PUs) [1].

Dynamic spectrum access (DSA) is proposed to solve spectrum scarcity problem. It

enables SUs to adjust communication parameters (such as operating frequency, trans-

mission power, and modulation scheme) in response to the changes in the radio environ-

ment [1–5]. DSA enables implementation of cognitive radio (CR). CR allows SUs to

access the unused licensed spectrum using underlay, overlay or spectrum trading ap-

proaches [1–5]. In this paper, we focus on spectrum trading approach where PUs rent free

spectrum for SUs. PUs need to determine how spectrum can be optimally priced for SUs,

so that the profit is maximized. In our scheme, SUs periodically submit bids for PUs

(sellers), who in turn post spectrum prices for each auction session. The highest bidders

(SUs) win the auction and their requests are fulfilled in this session. Our auction scheme

adapts quickly to the changes in the spectrum market. A sequence of auctions is carried out

periodically in the spectrum market to meet spectrum demand. The winners are charged a

constant usage price specified by the auction scheme.

Two challenges should be considered for the optimal design of dynamic auction:

• Designing auction mechanism over different auction session with service guaranteed

where the rented spectrum should not be offered for the next sessions until the current

requests are served. Our optimal design allows the PU to keep some available spectrum

for the future profitable request. The scheme rejects some requests (low bidders) even

the available spectrum is sufficient to accommodate these requests.

• Making sure the auction design is truthful where each SU submits its true valuation of

spectrum with no incentive to lie. Truthful auction eliminates the SUs’ incentive for

strategic behavior that may harm the integrity of auction and provides accurate

information about spectrum demand for PUs. Demand information helps PUs to predict

market dynamics in the future.

To address these challenges, we propose optimal auction scheme that determines the

size of spectrum that should be offered for each auction session. For SUs, we specify

dynamic truthful payment based on the offered spectrum size over time. The main ob-

jective of our scheme is to maximize the generated profit of PUs. Unfortunately, this

objective alone encourages SUs to lie about their real valuations (i.e. an ‘‘untruthful’’

auction), instill fear of market manipulation, and indirectly possibly decrease the reported

profit. Moreover, in a competitive spectrum market, PUs spend a lot of time/effort for

predicting the behavior of other SUs and planning against them. In our work, our main

concern is designing a spectrum auction mechanism that encourages truthful behavior of

SUs.

The rest of this paper is organized as follows. Section 2 describes the spectrum market

and auction model. Related works are reviewed in Section 3. The auction mechanism is

presented in Section 4. Section 5 presents the performance evaluation results. Finally the

paper is concluded and future research directions are given.
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2 Network Overview

In this section, we present our assumptions. The secondary network consists of two types

of nodes: mesh routers (MRs) and mesh clients (MCs). A wireless mesh network has

several MRs that jointly form a cluster [26]. Each cluster is a WLAN, where MRs (SUs)

play the role of access point and the MCs act as nodes served by them. The algorithm

proposed in [26] is used to form and maintain clusters. Moreover, the proposed signaling

protocol in [26] is used to manage communication among the PUs and the SUs. MRs have

fixed locations whereas MCs are moving and changing their places arbitrarily. SUs form

the CR which is overlaid on a PU’s network. This new network relays MCs traffic to the

destinations using the rented spectrum from PUs. In our work we refer to MR as a SU.

The spectrum market consists of E PUs and N SUs. We define a PU as a spectrum owner

that may rent a spectrum to other users. Each PU has K channels and it offers these

channels to MRs (SUs). The total capacity of the network is given as:

F ¼ KE ð1Þ

MRs use the rented channels to serve MCs. Each jth PU, j = 1, 2,….,E, specifies Sj the

spectrum size for renting, and the price of spectrum. We assume that these parameters are

changed over time corresponding to the network conditions, such as traffic load, spectrum

demand, and spectrum cost. The PU therefore needs to change the price and the size of the

offered spectrum when needed.

We use auction theory in our network to extract an optimal control policy for managing

spectrum size and price for all SUs. From PUs point of view, the optimal resource man-

agement scheme is the one which maximizes their revenue. However, some constraints

prevent PUs from maximizing their profits such as resource constraint, SUs budget and

competition among SUs. In this paper, we address the problem of optimizing spectrum

trading in the secondary spectrum market for satisfying SUs and for PUs and maximizing

the profit of PUs. SUs pay the PUs for their spectrum usage based on short term contract.

PUs serve different SUs to maximize their profits while considering the trading constraints.

Since spectrum usage charges differ between SUs, serving new SUs whenever there is

available spectrum may not maximize the PU’s revenue. The PU has to compute the gained

reward and decide whether to serve the request or reject it and wait till a user with worthy

reward arrives. Therefore, the optimal resource management scheme is mandatory in our

system. A policy for maximizing the profit for the PUs plays an important role in the

spectrum market.

For SUs, we assume that spectrum requests arrival follows Poisson distribution and each

spectrum request has arrival rate k The service time l for each request is assumed to be

exponentially distributed. These assumptions capture some reality of wireless applications

such as phone call traffic [27–29]. The problem of optimal resource allocation for

maximizing PUs’ revenue is a challenging problem in the design of our network. The main

motivation for the research in this problem is to adapt the services to the changes in the

structure of the spectrum secondary market.

3 Related Work

Using auction for spectrum trading is not a new idea. The first spectrum auction was

conducted in New Zealand for selling television (TV) spectrum bands. Since then,
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spectrum trading evolved into a very popular method for renting spectrum and many

countries have run spectrum auctions to generate extra revenue.

Authors in [5] introduce a new optimal auction mechanism, called the generalized

Branco’s mechanism (GBM). The GBM is used to rent spectrum and to determine the

prices for spectrum. Spectrum market consists of selfish buyers. A noncooperative game is

used to model the interaction among buyers and sellers. Authors in [6] model a spectrum

market where wireless service providers (WSPs) lease chunks of spectrum on a short-term

basis. WSPs compete to acquire spectrum and to attract clients for renting it. An economic

framework is proposed for leasing spectrum and to specify spectrum price. A knapsack

based auction model is used to allocate dynamically spectrum for WSPs such that revenue

and spectrum usage are maximized.

Jia et al. [7] propose a new auction mechanism for renting underutilized spectrum. Each

buyer submits its bid which consists of the number of requested channels and the price that

the buyer is willing to pay. The auction mechanism is strict in that no partial allocation of

request is permitted. Weighted graph is used in the proposed auction mechanism for

spectrum allocation [8]. Moreover, a polynomial-time dynamic programming algorithm is

designed to optimally solve the access allocation problem when the number of possible

cardinalities of the set of secondary networks on a channel is upper-bounded. A low-

complexity auction framework is used in [9] to distribute spectrum in real-time among a

large number of wireless users with dynamic traffic. The framework consists of a highly-

expressive bidding format, two pricing models, and auction clearing algorithms for

spectrum allocation. In [10], a new truthful auction mechanism is proposed based on the

SUs’ needs. Authors design general framework for truthful double spectrum auctions. The

proposed framework takes as input any reusability-driven spectrum allocation algorithm. A

novel pricing mechanism is used to achieve truthfulness and other economic properties

while significantly improving spectrum utilization. Spectrum auction with multiple auc-

tioneers (PUs) and multiple bidders (SUs) is studied in [11]. A new mechanism called

MAP, a Multiauctioneer Progressive auction mechanism, is proposed where each PU

gradually raises the spectrum price and each SU subsequently selects one PU for bidding.

The mechanism converges to an equilibrium state after several bidding rounds where no

PU and SU would like to change their decision. In [12], spectrum sharing among users is

studied using auction mechanisms. The utility function for each user is defined as the

received signal-to-interference ratio. Auction mechanism is used for allocating the signal

power for each SU. The users are charged for the received signal-to-interference plus ratio

(SINR).

Authors in [13] propose new auction mechanism for trading the spectrum. The proposed

auction mechanism considers the exclusive use of spectrum while sharing it. It supports

sharing alongside quality-of-service protections. The problem of spectrum trading is for-

mulated based on bandwidth auction in [14]. Each SU makes a bid for the amount of

spectrum and each PU rents the free spectrum according to the SUs’ bids. A noncoop-

erative game is used for modeling the auction. The auction problem is solved by finding the

Nash equilibrium (NE). A single-PU network is considered to investigate the existence and

uniqueness of the NE. In [15], a novel auction-based algorithm is proposed to allow users

to fairly compete for a wireless fading channel. The second-price auction mechanism is

used for modeling the auction where each user bids for the channel, during each time-slot,

based on the fade state of the channel. The user who makes the higher bid wins and it can

access the spectrum by paying the second highest bid. The authors show existence of the

Nash equilibrium strategy which leads to a unique allocation under certain common

channel distribution.
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Authors in [16] introduce a new auction-based mechanism for nearly consistent reser-

vation of the resources of a UMTS (or GPRS) network. Generalized Vickrey Auctions is

used and a set of predefined user utility functions are proposed. Each user selects one of the

utility functions and submits its bid for the spectrum owner.

Two auction mechanisms are proposed in [17]: the SNR auction, and the power auction.

These mechanisms determine relay selection and relay power allocation in a distributed

fashion. The existence and uniqueness of the Nash Equilibrium are proved for a single-

relay network. Moreover, authors extend the model to networks with multiple relays, and

the existence of the Nash Equilibrium is shown under appropriate conditions. Authors in

[18] consider the risk of imperfect spectrum sensing which causes the SUs miss the

presence of PUs and interfere with them. To tackle this problem, a multi-unit sealed-bid

auction is proposed. The main concern of the proposed scheme is to optimize the payoff of

each SU. An expression for the total revenue for PU is derived. A parallel repeated auction

scheme is proposed in [19] for spectrum trading. A novel bid scheme is developed to

balance the system utility and allocation fairness. Each SU decides whether or not to

participate in spectrum auction based one limited entry budget. SU compares the possible

bid with access threshold and then decides the bidding price.

The problem of multimedia streaming over CR networks is tackled in [20]. Spectrum

market consists of one PU and multiple SUs. The uniquely scalable and delay-sensitive

characteristics of multimedia data and the resulting impact on users’ viewing experiences

of multimedia content are integrated in the utility function. Spectrum renting is formulated

as an auction game. Authors propose three distributed auction-based schemes, which are

spectrum allocation using Single object pay-as-bid Ascending Clock Auction (ACA-S),

spectrum allocation using Traditional Ascending Clock Auction (ACA-T), and spectrum

allocation using Alternative Ascending Clock Auction (ACA-A). In [21], authors propose a

repeated spectrum sharing game with cheat-proof strategies. The punishment-based re-

peated game is used to enforce users to share the spectrum in a cooperative way; and

through mechanism-design-based and statistics-based approaches, user honesty is further

enforced. The collusion problem among selfish network users for spectrum is tackled in

[22]. Selfish behavior may seriously deteriorate the efficiency of dynamic spectrum

sharing. This behavior of user should be taken into consideration for efficient and robust

spectrum trading. Authors model the spectrum allocation in wireless networks with mul-

tiple selfish legacy spectrum holders and unlicensed users as multi-stage dynamic games.

A pricing-based collusion-resistant is proposed to combat user collusion. Spectrum

renting problem is formulated in [23] by developing a general game-theoretic framework

and by carefully identifying requirements for the coexistence of PUs and SUs in spectrum

market. PUs dynamically adjust the amount of secondary interference that they are willing

to tolerate in response to the demand from SUs. SUs attempt to achieve maximum possible

throughput while not violating the interference threshold that is set by the PUs. PUs control

spectrum price based on their requirements of quality of service (QoS). Authors proof the

existence and uniqueness of Nash equilibrium. A new mechanism is proposed in [24] to

encourage PUs to lease their free spectrum for SUs. SUs submit their bids indicating how

much power they are willing to spend for relaying the primary signals to their destinations.

The PUs achieve power savings due to asymmetric cooperation.

In [25], authors propose and analyze an implementation of a framework for spectrum

leasing, whereby a primary link has the possibility to lease the free spectrum to an ad hoc

network of SUs in exchange for cooperation in the form of distributed space–time coding.

The PU attempts to maximize its QoS in terms of either rate or probability of outage,

accounting for the possible contribution from cooperation. On the other hand, SUs compete
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among themselves for spectrum. The problem is modeled using the framework of Stack-

elberg games. New cooperative communication-aware spectrum leasing framework is

proposed in [33] for spectrum leasing. The PU selects SUs as cooperative relays to help for

transmitting information. SUs have the right to decide their bids. Spectrum allocation

problem is formulated as a Nash bargaining game to avoid the ineffective solution obtained

by Stackelberg game. The Nash Bargaining Solution (NBS) is used to fairly and efficiently

lease the spectrum. Authors in [34] consider a three-layered spectrum trading market. This

market consists of the spectrum holder, the spectrum owners and the SUs. Authors jointly

study the strategies for the three parties. The PU (spectrum holder) determines the auction

scheme and size of spectrum to optimize its revenue. A novel auction mechanism is

proposed to enable dynamic supplies and demands in the auction. The problem of online

spectrum auction is tackled in [35]. SUs bid for spectrum at any time when they need

spectrum. Authors in [36] propose a Truthful double Auction mechanism for HEteroge-

neous Spectrum, called TAHES. TAHES allows buyers to explicitly express their per-

sonalized preferences for heterogeneous spectrums and also addresses the problem of

interference graph variation. Authors show that TAHES has nice economic properties such

as truthfulness, individual rationality and budget balance. In [37], authors develop a novel

truthful double auction scheme to enable spectrum owner to sell to free spectrum for SUs.

First double auction is designed for spectrum allocation. The scheme explicitly decouples

the buyer side and seller side auction design while achieving: truthfulness, individual

rationality, and budget balance. To avoid interference and support spectrum reuse, the

conflict graph is used so that buyers with strong direct and indirect interference are put into

the same subgraph and buyers with no or weak interference are put into separate subgraphs

and finally spectrum price is computed independently within each subgraph. A merge

scheme is proposed to combine spectrum allocation results from all subgraphs. An auction

approach is proposed in [38] to enhance spectrum utilization. The proposed scheme

leverages dynamic spectrum access techniques to allocate spectrum in a secondary market.

In this market, spectrum is shared among some bidders while respecting the needs of others

for exclusive use. SATYA (Sanskrit for ‘‘truth’’) is developed to enable scalable spectrum

auction algorithm. SUs’ optimal bid strategies are derived in [39]. These strategies max-

imize the profits of SUs. Authors relax the limitation of SU’s value on spectrum band and

they introduce the affiliated value which considers the impacts from other SUs. In [40],

authors propose a new market-based channel allocation scheme. The main objective of this

scheme is to maximize the winning SUs’ service satisfaction degree while enhancing the

utilities of winning PUs and SUs.

However most of these schemes neglects spectrum trading over time. The entire

spectrum may be rented without considering the future demand of spectrum. Moreover, the

whole future requests may be rejected since there is no longer available spectrum. These

requests should wait until the spectrum is terminated by SUs. Our scheme allows the PU to

optimally reserve some available spectrum for future high-bid requests while rejecting

current low requests.

4 Optimal Auction Design for Spectrum Trading

Each SU has maximum cash that can bid. Assume Bi is the budget for ith SU. The budget

constraint is expressed as follows:

bi �Bi ð2Þ
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where bi is the ith SU bid. The reservation value vi is the maximum bidding price for ith

SU. Each ith SU wishes to access sj channels. Each ith SU submits its bid Ri (bi,di, rt)

where di is number of the requested channels, and rt is the rental period.

The PU carries out the auction at the beginning of each session and it selects the winners

based on the bids. After deciding the winners, the charged prices are fixed for all SUs until

the next session. SUs’ request is either rejected or served and no partial fulfillment is

accepted. Let pi is the charged price for ith SU. The utility for ith SU is defined by:

ui ¼
Pdi

i¼1

vi � pið Þl; i 2 W

0; O:W

8
<

:

9
=

;
ð3Þ

where W is the set of the winners. For the losers, the charged price and the utility are zero.

There are two major reasons for selecting this utility function. First, since the function is

concave, it is able to model the saturation of SUs satisfaction as the reservation price (vi)

increases. Second, the adjustable parameters vi and pi provide flexibility to model different

types of SUs behaviors. Each SU attempts to find the optimal bid vi that maximizes the SU

utility.

We assume the PU may predict the spectrum demand in the near future. The PU knows

the distribution of di, and the number of SUs at time t where t B t ? D, where D is the

prediction window. For the jth PU, the maximum net revenue from t to t ? D using auction

policy p is computed as follows:

V�
j pð Þ ¼

XjW j

i2W
pil� C ð4Þ

where C is the cost of renting the spectrum. The total revenue for the jth PU is computed as

follows:

RjðpÞ ¼ lim
M!1

XM

t¼1

V�
j pð Þ ð5Þ

where M is the time horizon. The auction problem can be formulated as follows:

max
p

XM

t¼1

V�
j pð Þ ð6Þ

subject to

X

i2W
di �K;

bi �Bi;

where K is the size of spectrum allocated to accommodate SUs’ demand for spectrum.

Policy p should have some salient economic properties especially truthfulness. Each bidder

should submit the true reservation value and the number of required channels regardless of

others SUs’ bids. Truthfulness provides accurate information for the PU where it can

predicate the future spectrum demand. Furthermore, truthfulness eliminates the users’

behaviors that may harm the PUs’ revenue. For discrete settings, the service time follows

geometric distribution and its probability is computed as follows:
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P l ¼ tð Þ ¼ f ð1� f Þt�1 ð7Þ

where f is the probability that SU request which is served currently will be terminated

in the next auction session. This exponential usage pattern captures some reality of

wireless applications such as phone call traffic [22–24]. We assume Qt is the re-

quested spectrum at time t. Let St is the spectrum size allocated to meet the current

spectrum demand at time t. Assume the PU has S channels for serving SUs. Suppose

SUs release x channels at time t. Then the available spectrum at time t ? 1 is

computed as follows:

Atþ1 ¼ S� St þ x ð8Þ

Since each request has a probability f to be served in the next session. Assume x follows

binomial distribution, x�BðAtþ1; f Þ, where BðAtþ1; f Þ is computed as follows:

B Atþ1; x; fð Þ ¼ Atþ1

x

� �

f xð1� f ÞAtþ1�x ð9Þ

Lemma 1 Let Z(x) be decreasing and concave function. Assume the function LðAtþ1Þ is
defined as follows:

L Atþ1ð Þ ¼
XAt

x¼0

B At; x; fð ÞZðxÞ ð10Þ

The function L Atþ1ð Þ is decreasing and concave.

Proof Assume L(0) = 0. Using (9), we obtain:

1

f
rL Atð Þ ¼

XAt

x¼0

B At; x; fð ÞrZðxÞ ð11Þ

and

XAt

x¼0

B At; x; fð ÞrZðxÞ� 0 ð12Þ

Therefore, we conclude that L Atþ1ð Þ is decreasing and concave.

Lemma 2 Let Zi Ai�1 � xð Þ be function that is increasing and concave for each i; Zi � 0.

Assume the function Z(x) is defined as follows:

Z Atþ1ð Þ ¼ max
x¼1;2;...:;At

fZ0 A0ð Þ þ Z1 A0 � xð Þ þ � � � þ ZðAtþ1 � xÞg ð13Þ

The function Z Atþ1ð Þ is concave and increasing.

Proof Consider any Ai�1; x 2 K and k [ (0, 1). For each Zi concave, we have the

following:
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ZiðkAi�1 � ð1� kÞxÞ� kZiðAi�1Þ � ð1� kÞZiðxÞ ð14Þ

Therefore,

Z kAtþ1 þ 1� kð Þxð Þ ¼
Xtþ1

i¼0

Zi kAi�1 � 1� kð Þxð Þ�
Xtþ1

i¼0

kZiðAi�1Þ � ð1� kÞZiðxÞ ð15Þ

Z kAtþ1 þ 1� kð Þxð Þ ¼ k
Xtþ1

i¼0

Zi Ai�1ð Þ � 1� kð Þ
Xtþ1

i¼0

Zi xð Þ � kZi Ai�1ð Þ þ ð1� kÞZi xð Þ

ð16Þ

Since both Zi Ai�1ð Þ and Zi xð Þ are increasing and concave, we conclude that Z Atþ1ð Þ is
concave.

5 Maximizing the PUs Revenue Using Optimal Auction Mechanism

Truthful auction generates the maximum revenue among all auction [30, 31]. The total

revenue for the jth PU is computed as follows:

Rj pð Þ ¼ lim
M!1

XM

t¼1

XWj j

i2W
pil�C

¼ 1

f
lim
M!1

XM

t¼1

XWj j

i2W
pi � C

ð17Þ

Partial fulfillment for SU’s request is not allowed in our system. Hence, the revenue for

truthful auction is computed as follows:

Tr pð Þ ¼
X

i2W
diu bið Þdiðdi; biÞ ð18Þ

where u(bi) is virtual valuation which is computed as follows [30]:

u bið Þ ¼ bi �
1� YðbiÞ
yðbiÞ

ð19Þ

The true value is private information for the SU. bi is drawn from the distribution Y. y is

computed as follows [7]:

y ¼ d

db
YðbiÞ ð20Þ

di(di, bi) takes the value 0 or 1 depending on whether SU wins the auction or loses it. We

assume Y(bi) satisfy the monotone hazard rate assumption. With this assumption, u(bi)
(virtual valuation function) is a monotone non-decreasing function. The auction mechan-

ism associates the SUs who offer high reservation price with high valuation distribution

and the SUs with low reservation price are associated with low valuation distribution.

Lemma 3 The virtual valuation function is monotonic increasing if the SU increases its

bid on the request. Moreover, the utility function for the SU is monotonic increasing.
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The expected revenue of the auction policy depends on the winners. Hence, the auction

mechanism should select the winners who pay more. The problem of maximizing the PUs’

revenue can expressed as follows:

max
diðdi;biÞ

X

i2W
di di; bið Þdiu bið Þ ð21Þ

subject to

X

i2W
di � St;

bi �Bi;

At time t, the instantaneous revenue is computed as follows:

Vt ¼
X

i2W
d�i diu bið Þ ð22Þ

where di
* solves the problem in (5). The problem of maximizing the jth PU revenue’s is

formulated as follows:

V�
j pð Þ ¼ max

0� St �Qt

1

f
VtðQtÞ þ Vtþ1 Qt � Stð Þ ð23Þ

Unfortunately, solving (23) requires solving the problem in (22). The problem in (22) is

NP-Hard. We use linear programming to find approximate value of VtðQtÞ. The value of

VtðQtÞ is calculated as follows. The PU sorts all bids in decreasing order, i.e. b1 -

C b2… C bn. The PU serves requests in the list from the highest bid (bidder 1) until all the

spectrum is allocated. The PU needs to solve the following problem:

�VtðQtÞ ¼ max
0� St �Qt

1

f
�VtðQtÞ þ �Vtþ1 Qt � Stð Þ ð24Þ

The boundary conditions are VMþ1 xð Þ ¼ 0 for all x = 1,2,3,…,Qt.

Theorem 1 VtðQtÞ is increasing and concave for a given bi, di, i.e.

rVtðQtÞ ¼ VtðQtÞ � Vt�1ðQt�1Þ.

Proof Since both VtðQtÞ, and Vtþ1ðQt � StÞ are concave, applying Lemma 2 to Theorem

(1) leads to the statement.

Lemma 4 For each b, d the optimal spectrum size that are rented for SUs is computed as

follows:

QtðdÞ ¼ max0� d�K d :
1

f
r �VtðdÞ[r �Vtþ1 Qt � dð Þ

� �

; if
1

f
r �Vtð1Þ[r �Vtþ1ðdÞ

0; o:w

8
<

:
:

ð25Þ

Proof Let the spectrum is allocated one by one. The marginal profit increases by
1
f
rVt dð Þ. However, the PU suffers gain loss ofrVtþ1 Qt � dð Þ since the rented spectrum at
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time t (d) will be temporarily unavailable for serving the new spectrum requests at time

t ? 1. Because of the concavity of VtðQtÞ (Theorem 1), as more spectrum is rented for

SUs, the profit of the PU decreases while the opportunity cost of renting spectrum

(rVtþ1 Qt � dð Þ) decreases. Hence, the PU should stop renting more spectrum before the

opportunity cost of renting spectrum exceeds the instantaneous revenue.

Assume there are N bidders. The PU selects the top W bidders subject to the capacity

condition that is expressed as follows:

XW

i¼1

di �Qtþ1 ð26Þ

ith SU wins if:

(1) it is among the top W where bi[ bw?1.

(2) The rented spectrum is sufficient to accommodate all the accepted requests.

Lemma 5 The bidding price is monotone function. If the ith SU wins by bidding bi then it

wins by bidding bi
* where bi

*[ bi. However, the ith SU loses if bi
*[ bw.

Auction mechanism is truthful if and only if the bid is monotonic and the PU selects the

highest bids.

Proposition 1 The expected revenue for the jth PU Vt ! V�
j is optimal if the SUs number

N ! 1 and K ! 1.

Theorem 2 Average revenue for jth PU is sensitive to the charged spectrum price pi and

this sensitivity can be calculated as follows:

oRj

opi
¼ E gjðtÞ

� �
ð27Þ

Proof the net gain for jth PU at time t can be expressed as follows:

gj tð Þ ¼ gj t � 1ð Þ þ Di ð28Þ

where Di denotes the new state of the system after accepting the i requests. The right-hand

side of Eq. (27) can be written as [32]:

oRj

opi
¼ lim

H!1
E r

t0þM

t0�M

Rj t þ 1ð Þ � Rj tð Þ
� 	

dt

" #

ð29Þ

where Rj(t ? 1) denotes the revenue rate after serving Di at time t. By using Eq. (28) it can

be shown that (29) is equivalent to:

oRj

opi
¼ E gj tð Þ

� �
ð30Þ

Analogous proof holds if one request is served. This analysis is helpful for a PU to

decide if a request is to be admitted or rejected based on the sensitivity of the net gain to

the bidding price.
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6 Performance Evaluation

In this section, we conduct simulation experiments to evaluate the performance of the

proposed auction scheme. Our simulation is developed using MATLAB. First, we set up a

random graph by creating |N| = 100 SUs in [1000 m, 1000 m] area. We set the radio range

to 200 m and the interference range to 500 m. There are 10 different PUs coexist geo-

graphically. The status of a PU channel is determined according to the ON/OFF channel

model. Our simulations are averaged over 1000 runs, each last for 500 s.

For comparison purpose, the greedy auction scheme is also simulated. For the greedy

policy, spectrum renting is asynchronous where SUs send their requests at any time and

PUs start renting spectrum upon receiving these requests without waiting other SUs. If

more than one SUs submit their requests at the same time, the PU checks the available

spectrum to see if all the requests can be served. If they can be served, the spectrum is

rented. However, if all the requests cannot be granted, then the PU selects the requests that

offer the highest prices regardless of future requests. Each SU should specify the rental

duration for the PU with the price and the required size of spectrum.

6.1 Impact of Spectrum Demand on the Revenue

In this section, we study the impact of the spectrum demand on PUs’ revenue for both

schemes: greedy, and our proposed scheme (i.e. capacity-aware scheme). The SUs traffic

(spectrum demand) varies over time from k = 2 (low traffic) to k = 10 (high traffic).

Figure 1 shows a comparison of the reported revenue under different spectrum demand for

the two auction schemes. The figure depicts that, as the SUs traffic increases the PUs’

revenue increases for both schemes. This is because the chance of serving more SUs’

requests and generating more money becomes higher. For higher traffic, many SUs re-

quests are arrived and the chance for serving more SUs and generating extra revenue is

increased. It is clear from the figure the capacity-aware scheme outperforms the greedy

policy for all spectrum demands.
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Fig. 1 Revenue comparison for
the two schemes under different
values of spectrum demand
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Capacity-aware scheme considers the future profitable requests. It gives more time for

these requests to arrive. However, the reported revenue for the greedy policy is very close

to our scheme for high traffic loads. For high traffic loads, the competition among SUs is

high and the likelihood of client’s migration is less. Hence, both schemes serve most of the

arrived requests.

We evaluate the proposed auction scheme by comparing its reported revenue against

greedy scheme over time. From Fig. 2, we notice that the reported revenue for both

schemes is observed to be linearly increasing over time. The revenue is increased as the

traffic load increases in the spectrum market. As time elapses, our scheme outperforms

greedy scheme. The justification is that our scheme gives more time for the highest bids to

arrive. However, greedy scheme serves the current requests without considering the dy-

namic nature of the spectrum demand. For high demand, the likelihood of serving more

requests increases. Therefore, the greedy scheme performs very close to our proposed

scheme for high demand. For high spectrum demand, SUs have not choice to switch for

others PUs because they are busy with serving their clients.

6.2 Impact of Spectrum Size on the Revenue for the PU

In this section, we study the impact of the spectrum size on the PUs’ revenue. We also

examine what happens when several PUs adopt greedy scheme for auction; there are no

theoretical guarantees that this strategy would outperform our strategy. We simulate

spectrum market where different sizes of spectrum are offered for SUs. Figure 3 shows that

the reported revenue of our scheme is greater than the revenue of the greedy scheme for all

sizes. Our scheme serves the requests that give more reward over time. Furthermore, the

figure depicts that, as the SUs demand for spectrum increases, the PUs’ revenue increases

due to the competition among SUs for the spectrum. For high demand, the likelihood of

100 120 140 160 180 200 220 240 260 280 300
10

15

20

25

30

35

40

45

Steps over time

R
ev

en
ue

Capacity-aware scheme λ=2 

Greedy scheme λ=2

Capacity-aware scheme λ=4 

Greedy scheme λ=4 

Capacity-aware scheme λ=6 

Greedy scheme λ=6 

Capacity-aware scheme λ=8 

Greedy scheme λ=8 

Fig. 2 Revenue comparison for the two schemes over time
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offering lower price and find a PU who accept to rent its spectrum with this price becomes

lower.

We compare analytical results obtained by solving (23) with simulation results. Figure 4

illustrates the results. We notice from the figure that analytical results are in good

agreement with simulation results. We can see that the approximation design is almost

optimal and very close to simulation results: in all cases, the revenue gap between the
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Fig. 3 Revenue comparison for different values of spectrum size and demand
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analytical results and simulation results is less than 5 %. Furthermore, the gap is de-

creasing when more spectrum is offered in the spectrum market. These results suggest that

our scheme is appropriate for large spectrum market.

Figure 5 shows the winning price for different arrival rates of spectrum requests.

Clearly, the SUs are enforced to increase the price for high spectrum demand because of

competition with other SUs. However, SUs have more freedom to offer less prices for

spectrum when the demand for spectrum decreases.

For high spectrum demand, the SUs cannot keep increasing the prices forever because

of the budget constraint. Clearly, if the SUs have extra cash they bid more for renting

spectrum. Figure 6 shows the winning price for different values of clients’ budget. It can

be observed that in any period when the SU has more cash, the winning price is increased

significantly. For high cash, the likelihood of offering high price and find PU who accepts

the offered price becomes high. Large values of the budget promote SUs to increase the

bids. Large values of the budget model the SUs who are wealthy and they concern more for

the service instead of the satisfaction level they may get from the product (spectrum).

6.3 Impact of Spectrum Size on the Bidding Prices for the SU

Although PUs generate more revenue for larger spectrum sizes, SUs bid less since they

have more chances for switching to another PU who may accept low prices. Therefore, the

bidding price for SU becomes more dynamic as capacity increases. Figure 7 shows the

average of bidding prices for different system capacities. We notice from the figure that

with the same demand level, a low capacity (spectrum size = 50) intensifies the bid

competition among SUs. In this case, only those who bid very high win and have their

requests served. As a result, over 80 % of the prices are higher than 20. However, this

situation changes when more spectrum is offered for SUs. As supplies become more
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Fig. 5 Winning price for different values of spectrum demand (k)
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abundant, the intensity of bid competition among SUs decreases, resulting in more dy-

namic clearing prices (spectrum size = 150).

Our scheme does not offer the entire spectrum for SUs and this enforces the SUs to offer

high bids all the time. For greedy scheme, the whole spectrum is offered and this makes

supplies more abundant, the intensity of bid competition among SUs decreases. Hence,

SUs offer less prices.
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Fig. 6 PU’s revenues under different SUs budget
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7 Conclusion

In this paper, we presented a general spectrum trading framework, and in particular, an

auction mechanism, for trading free spectrum. The PU can rent free spectrum using this

mechanism. We motivated this mechanism and present some of the design principles. How

to maximize PUs’ revenue while enforcing truthful bidding, and how to offer the optimal

size of spectrum at each auction session are two key challenges we addressed in this work.

The optimal auction strategy of the PU is obtained under dynamic spectrum market where

the spectrum demand is ‘‘uncertain.

The proposed model has two contributions to spectrum trading in the secondary spec-

trum market. From the application side, the main contribution is developing a spectrum

pricing policy that considers different requirements such as revenue for PU, the dynamic

nature of the spectrum market, and the requirements for the SUs. All basic functions are

integrated and optimized into one homogenous, theoretically based model. From the

modeling side, we formulate trading of free spectrum problem as a revenue maximization

problem. Such a formulation allows auction scheme to optimize the trading problem. The

approach presents a general framework for studying, analyzing, and optimizing other

resources trading in the spectrum market. The future work includes extension of the

auction model and considering the competition among PUs in the spectrum market.
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