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Abstract In this paper a family of LDPC codes based on the shortened and superposed

array LDPC codes is proposed for burst erasure channels. The design of constructions is

based on identifying and analyzing cycles corresponding to consecutive columns in parity

check matrices. The burst erasure capability of the codes, represented by Lmax, can be

determined by finding such cycles. Our constructions are categorized into four classes that

one of them is a burstMDS code with efficiency equal to 1. By considering a single burst

erasure-correcting over burst erasure channels, the simulation results show that our con-

structed codes can be competed with well-known LDPC codes in comparable rates, lengths

and efficiencies.

Keywords Low-density parity-check codes � Burst erasure � BurstMDS � Array LDPC

codes � Shortened codes � Superposed codes

1 Introduction and Background

1.1 Introduction

Low-density parity-check (LDPC) codes introduced by Gallager are near-capacity ap-

proaching codes under iterative message-passing decoding algorithms [1]. Most of
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researches have been done on these codes over the AWGN channels [1, 2]. However,

recently, different methods of constructing LDPC codes have focused on the performance

of these codes over the burst erasure channels [3, 4].

Some combinatorial properties of LDPC codes, such as stopping sets, can significantly

affect their decoding over erasure and burst erasure channels, [5–7]. This implies that

LDPC codes with appropriate combinatorial parameters should be designed to overcome

burst erasures. In such a channel, the longest decodable burst erasure by an iterative

decoding algorithm is called a reasonable maximum burst erasure length, Lmax [8]. In other

words, the iterative decoding algorithm can correct a burst erasure completely when the

length of the burst is equal to or smaller than Lmax.

There are several methods that have investigated correcting single burst erasure for

LDPC codes [3, 4, 8–10]. Some start from a parity-check matrix of a LDPC code and

permute some columns of it to find an optimized parity-check matrix with a good Lmax and

same rate over the erasure channels [11].

Yang and Ryan [8, 12], found Lmax by developing an efficient exhaustive search al-

gorithm which is guaranteed to correct the longest burst associated with LDPC code.

Moreover in [13] a pseudo random method for constructing parity-check matrices with

large Lmax is presented. In [14], a class of the product codes based on LDPC constituent

codes has been introduced for multiple phased-burst erasure correction (MPBEC) such that

these codes can correct one large burst and/or a number of shorter bursts.

In [5], some constructingmethods of LDPC codes for correcting burst erasures are proposed.

These methods are based on the size of the stopping sets of the base matrices and choosing the

appropriate permutationmatrices for superposing. The results are used to design both single and

multiple burst erasure-correcting LDPC codes. Array LDPC codes (Array codes) are well-

structured quasi-cyclic LDPC codes [15]. Their performance over the AWGN channels has

been the subject of many papers [16, 17]. Some combinatorial properties such as girth, stopping

sets, trapping sets and absorbing sets have been investigated in [2, 4, 6, 16, 18–20].

In this paper, LDPC codes have been derived from shortened array codes and super-

position of shortened array codes. By superposing (particular products) of the various

shortened array codes, four constructions of LDPC codes with the capability of correcting a

single burst of erasures have been constructed. One of the constructed LDPC codes is the

burstMDS code with efficiency 1.

The other types of constructed LDPC codes have a high efficiency, good, and acceptable

Lmax compared to LDPC codes in [5]. The main contribution of this paper is finding and

analyzing cycles corresponding to consecutive columns in parity check matrices of the

constructed codes. By finding such cycles, the value of Lmax can be determined.

The rest of the paper is organized as follows: In Sect. 1.2, the necessary background,

definitions and notations are provided. Section 2 is devoted to the main lemma for finding a

special cycle in a parity check matrix and the product operations. In Sect. 3, we introduce

four proposed constructions based on the definitions given in Sect. 2 and also in this

section their important parameters over burst erasure channels are described. Simulation

results are provided in Sect. 4 and, finally, the conclusion is presented in Sect. 5.

1.2 Background

A binary erasure channel is the simplest model for memoryless erasure channels where a

transmitted bit is either correctly received or erased. There are two basic types of binary

erasure channels, namely random and burst. In a random binary erasure channel, erasures

occur at random locations, each with the same probability of occurrence, whereas over a
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binary burst erasure channel, erasures cluster into bursts. Indeed, if the memoryless era-

sure channel is considered as a model of packet-based transmission, then a burst erasure

can occur for this type of transmission (e.g. wireless transmission).

In [21], the classical case for burst erasure channel has been defined with two states:

burst space and guard space. In the burst space, the channel output carries no information

about the inputs in the guard space, either the outputs are erasure free or are randomly

corrupted with erasure probability p. In this paper, both states of the channel are considered

for simulating the proposed codes.

Definition 1 An LDPC code with parity-check matrix Hðm; qÞ

Hðm; qÞ ¼

I I I � � � I

I P P2 � � � Pq�1

..

. ..
. ..

. . .
. ..

.

I Pm�1 P2ðm�1Þ � � � Pðq�1Þðm�1Þ

2
66664

3
77775

ð1Þ

is known as an array code [16] where q is an odd prime number and m is an integer number

between 1 and q. In (1), I ¼ Iq denotes the q� q identity matrix, and Pi; i� 0 is a q� q

circulant permutation matrix obtained from Iq by cyclically shifting its rows i positions to

the left. We set P1 ¼ P and P0 ¼ I and Hðm; qÞ may be considered as an m� q matrix,

with q� q circulant permutation matrices as its entries. In this case, each of the m rows (q

columns) of Hðm; qÞ is referred to as a block-row (block-column).

Definition 2 Hðm; q; hÞ is defined as a shortened array code with a parity-check matrix

containing the first h block-columns of Hðm; qÞ, where m\ h � q. Hence the length of the

associated code is hq.

Definition 3 A set of columns in a parity check matrix is said to form a cycle, if the

associated Tanner graph contains a cycle and the column and row weight of the associated

regular sub-matrix be 2.

There is a relationship between the above definition of cycles and stopping sets concept.

In Tian et al. [22], proved that every stopping set contains at least one cycle. A bipartite

graph without singly connected variable nodes called a stopping set.

Definition 4 A maximum distance separable code (MDS code) is an achievable code that

satisfies the relation d ¼ n� k þ 1 where d, n and k are minimum distance, length and

dimension of the code, respectively.

Definition 5 A BurstMDS code corrects bursts of erasures with combined length of n� k

bits [5].

In this paper, it is proved that shortened binary array codes with parity-check matrices

Hð2; q; hÞ;m\ h � q, are burstMDS codes.

Another required parameter of a code is efficiency [5] which depends on the maximum

resolvable erasure burst length Lmax, and that is

g ¼ Lmax

n� k
:

The efficiency g is a parameter between 0 and 1. Therefore, in single burst erasure-

correcting codes, a burstMDS code achieves the maximum efficiency if Lmax is equal to

n� k.
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2 Main Lemma and Product Operations

The main lemma for finding a special cycle in a parity check matrix and the definition of

product operations between two parity check matrices are given in this section.

Lemma 1 In the parity-check matrix Hð2; qÞ of an array code, columns in every two

consecutive block-columns k and ðk þ 1Þ; 1� k\q, form a cycle of length 4q.

Proof Let the rows of Hð2; qÞ be indexed from 1 to 2q and the columns in every block-

column be indexed from 1 to q. In a permutation matrix, each left cyclic shift is equivalent

to a down cyclical shift, then in Hð2; qÞ the tth column of the kth block-column has

intersection with the tth row and the qþ 1þ\t þ k � 2[ qth row, where \ � [ q is the

remainder modulo q; 1� t� q. Moreover, Hð2; qÞ is 4-cycle free.

To show that the columns in block-columns k and ðk þ 1Þ form a cycle, we start from an

arbitrary column in block-columns k or ðk þ 1Þ and after going through all the other columns

in these two block-columns, we return to the starting column. We start from the tth column,

1 � t � q, of the kth block-column. This column intersects with the tth row. The tth row

intersects with the tth column of the ðk þ 1Þth block-column and this column intersects with

the qþ 1þ\t þ ðk þ 1Þ � 2[ qth row. It should also be noted that the \t[ q þ 1th

column of the block-column k intersects with qþ 1þ\t þ ðk þ 1Þ � 2[ qth row.

Similarly,\t[ q þ 1th row intersects with\t[ q þ 1th column of both block-columns k

and ðk þ 1Þ. The \t[ q þ 1th column of the ðk þ 1Þth block-column intersects with the

qþ 1þ\ðt þ 1Þ þ ðk þ 1Þ � 2[ qth row and so on.

According to the above sequence of incidences, it can easily be seen that at first the tth

column of both block-columns are added to the path, then the\t[ q þ 1th columns of both

block-columns of both block-columns are added to the path and then the \t þ 1[ q þ 1

columns of both block-columns are added to the path and so on. Since t was arbitrary value,

by an inductive method it can be concluded that this procedure will continue until the

\t þ q� 1[ q þ 1th column is reached which is the beginning column t. Therefore, all 2q

columns of both block-columns k and ðk þ 1Þ form a cycle of length 4q. h

Example 1 In Hð2; 3Þ, columns in the first and second block-columns, form a cycle of

length 4q ¼ 12. This cycle is shown in Fig. 1.

Remark 1 Lemma 1 can be simply proved for any selected block-columns i and j where

1� i\j� q. In the first step and by starting the cycle from a block-column i, for an

arbitrary t; 1� t� q, two columns t and \t þ l� 1[ q þ 1 of two block-columns i and j,

where l ¼ j� i are added to the path. Then, the \t þ 2l� 1[ q þ 1th column of each of

these block-columns is added and so on. Since q is an odd prime number, for each c where

1� c� q� 1, the numbers \t þ cl� 1[ q þ 1 are distinct integer numbers belong to

f1; � � � ; qg. Thus, after passing through all pairs of columns we return to the tth column.

Therefore, there is a cycle of length 4q.

Fig. 1 A cycle of length 12
formed by columns in the first
and second block-columns in
parity-check matrix H(2,3)
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Definition 6 A product operation �� between two parity-check matrices Hð2; q; hÞ and

Hð2; q0; hÞ where q and q0 are odd prime numbers is defined as follows:

H(2, q, θ)�̄H(2, q′, θ) =
[
A1A2 · · · Aθ

]
=⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0 I 0 · · · 0 0 · · · I · · · 0 0 · · · 0
0I · · · 0 0 I · · · 0 0 · · · 0 · · · 0 0 · · · 0
...
...
. . .

...
...
...
. . .

...
...
. . .

...
. . .

...
...

. . .
...

00 · · · I 0 0 · · · 0 I · · · 0 · · · 0 0 · · · I
I 0 · · · 0 0 0 · · · 0 P · · · 0 · · · 0 P θ−1 · · · 0
0I · · · 0P 0 · · · 0 0 · · · 0 · · · 0 0 · · · 0
...
...
. . .

...
...
...
. . .

...
...

...
...
. . .

...
...

. . .
...

00 · · · I 0 0 · · · P 0 · · · 0 · · · P θ−1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ð2Þ

This shows that each sub-matrix Ai for 1� i� h; 3� h� minfq; q0g is obtained by replacing
the nonzero entries of each block-column i of Hð2; q; hÞ from rows 1 to q with I :¼ Iq0 , from

rows qþ 1 to 2q with Pi�1 :¼ Pi�1
q0 and the zeros with q0 � q0 zero matrices. In each sub-

matrix Ai; Sij represents the jth block-column in sub-matrix Ai; 1� i� h and 1� j� q.

Remark 2 If q ¼ q0, then we use notation H2ð2; q; hÞ instead of product

Hð2; q; hÞ��Hð2; q; hÞ.

Definition 7 A product operation � between two parity-check matrices Hð2; q; hÞ and

Hðq; q0; hÞ, where q and q0 are odd prime numbers, 3� h� minfq; q0g and q\q0 is defined
as follows:

H(2, q, θ)�H(q, q′, θ) =
[
A1 A2 · · · Aθ

]
,

where each sub-matrixAi; 1� i� h, is obtained by replacing the nonzero entries of each block-
column i of Hð2; q; hÞ from rows 1 to q with I :¼ Iq0 and by replacing the nonzero entries of

qþ kth row, 1� k� q, withPkði�1Þ :¼ P
kði�1Þ
q0 .Moreover, replacing all zeros of block-column

iwill be substituted with q0 � q0, all zeromatrices. In each sub-matrixAi; Sij represents the jth

block-column in sub-matrix Ai; 1� i� h and 1� j� q (Eq. (3) verifies definition 7).

H(2, q, θ)�H(q, q′, θ) =
[
A1 A2 · · · Aθ

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I · · · 00 I · · · 0 0 I 0 · · · 0 0 · · · I · · · 0 0 0 · · · 0
0 · · · 00 0 · · · 0 0 0 I · · · 0 0 · · · 0 · · · 0 0 0 · · · 0
...
. . .

...
...

...
. . .

...
...
...

...
. . .

...
...

. . .
...
. . .

...
...

...
. . .

...
0 · · · 0I 0 · · · 0 I 0 0 · · · 0 I · · · 0 · · · 0 0 0 · · · I

I · · · 00 0 · · · 0 P 0 0 · · · P 2 0 · · · 0 · · · 0 P θ−1 0 · · · 0
0 · · · 00P 2 · · · 0 0 0 0 · · · 0 P 2(2) · · · 0 · · · 0 0 P 2(θ−1) · · · 0
...
. . .

...
...

...
. . .

...
...
...

...
. . .

...
...

. . .
...
. . .

...
...

...
. . .

...
0 · · · 0I 0 · · · P q 0 0P q(2) · · · 0 0 · · · 0 · · · P q(θ−1) 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ð3Þ
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3 Constructions

Based on the two previous definitions, the following four types of QC-LDPC codes are

constructed:

type-I;Hð2; q; hÞ (shortened array codes);

type-II;H2ð2; q; hÞ;
type-III;Hð2; q; hÞ��Hð2; q0; hÞ;
type-IV ;Hð2; q; hÞ�Hðq; q0; hÞ.

Some properties of the constructed codes such as Lmax, efficiency g and rate R have been

analyzed.

3.1 Construction Type I (Hð2; q; hÞ)

Theorem 1 Let q be an odd prime number and 3� h� q. Then Lmax ¼ 2q� 1 for

Hð2; q; hÞ.

Proof It is clear that two consecutive block-columns of length 2q form a cycle (and so a

stopping set) in Hð2; q; hÞ. So 2q� 1 is an upper bound for Lmax. Therefore, it is sufficient

to show that a burst erasure of length 2q� 1 can be corrected at any location of a received

word, x, by iterative decoding. In general, two or three block-columns of Hð2; q; hÞ can be

involved by such a burst erasure of length 2q� 1.

a. If two block-columns i and ðiþ 1Þ; 1� i\h, have been involved by the burst erasure,

then either the first column of the ith block-column or the last column of the ðiþ 1Þth
block-column has the correct value and the rest of bits in these two block-columns are

erased. Hence according to Lemma 1, all the 2q� 1 erased bits will be corrected by

iterative decoding.

b. Suppose three consecutive block-columns ði� 1Þ; i and ðiþ 1Þ; 2� i� h� 1, have

been involved by the burst erasure. Suppose the bits in the last k columns of the

ði� 1Þth block-column, the first l columns of the ðiþ 1Þth block-column and all the

columns in the ith block-column are erased, where 1� k; l� q� 2 such that

lþ k ¼ q� 1. It is easy to investigate that the ðlþ 1Þth, ðqþ i� 1Þth and ðqþ iÞth
rows have only one erased bit. This is because the bits corresponding to the ðlþ 1Þth
column of each of the ði� 1Þth and ðiþ 1Þth block-columns is out of the burst range.

Moreover, the bits corresponding to the first two columns of the ði� 1Þth block-

column and to the last two columns of the ðiþ 1Þth block-column are not within the

burst range. Suppose the circulant matrices in each block-row are numbered from left

to right. In the second block-row, the ðiþ 1Þth circulant matrix is obtained by

cyclically left shifting the rows of the ði� 1Þth circulant matrix twice.

Therefore, the nonzero elements in the first and second columns of the ði� 1Þth
circulant matrix are located at the ðq� 1Þth and qth column of the ðiþ 1Þth circulant

matrix, respectively. Hence, the corresponding rows to these nonzero elements, i.e. the

ðqþ i� 1Þth and ðqþ iÞth rows, have only one erased bit in location i. In addition, the

only row with 3 erased bits is: qþ 1þ\ðlþ 2Þ þ ði� 1Þ � 2[ q ¼ qþ 1þ\lþ
i� 1[ q; since this row intersects with the q� k þ 1ð¼ lþ 2Þth column of the

ði� 1Þth block-column, and the ðlþ 1Þth column of the ith block-column and also

with the lth column of the ðiþ 1Þth block-column. The correction process of the burst

erasure can be carried out as follows:
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The erased bit associated to the ðlþ 1Þth column of the ith block-column will be

corrected by the ðlþ 1Þth row. Note that this correction reduces the number of erased

bits in the qþ 1þ\lþ i� 1[ qth row from 3 to 2 and there is no row with degree

greater than 2.

The last k columns of block-column ði� 1Þ and their corresponding columns within

the ith block-column are a part of the cycle formed by two block-columns ði� 1Þ and
i. Therefore by starting from the erased variable node in the qth column of block-

column i and correcting it by the ðqþ i� 1Þ row in the iterative decoding process, all

other erased variable-nodes in this cycle will be corrected. Similarly, the correspond-

ing erased variable-nodes to the first l columns of both block-columns i and ðiþ 1Þ
will be corrected by starting from the first column of the ith block-column.

Thus a burst erasure of length 2q� 1 can be corrected at any location of the received word,

which proves that Lmax ¼ 2q� 1. h

Proposition 1 rankðHð2; q; hÞÞ ¼ 2q� 1 for 3� h� q.

Proof As mentioned in [18], it follows simply by applying Gaussian elimination to find

rank of matrix Hð2; q; hÞ. h

From Theorem 1 and Proposition 1 it can be concluded that the efficiency of a shortened

array code with parity-check matrix Hð2; q; hÞ; 3� h� q, is g ¼ Lmax

ðn� kÞ ¼
Lmax

rankðHÞ ¼ 1.

Consequently, this family of codes are burstMDS codes. The rate of these codes depends

on the values of q and h. That is

R ¼ k

n
¼ qh� 2qþ 1

qh
¼ 1� 2q� 1

qh
:

3.2 Construction Type II ( H2ð2; q; hÞ)

Lemma 2 In H2ð2; q; hÞ, the columns in two consecutive sub-matrices Ai and

Aiþ1; 1� i� h� 1, form q distinct cycles, each of length 4q.

Proof Let Ai and Aiþ1; 1� i� h� 1, be two sub-matrices in Eq. (2). Note that an arbi-

trary column t; 1� t� q, of block-column Sij; 1� j� q intersect with the tth row of block-

row j and 1þ\t þ i� 2[ qth row of the block-row qþ 1þ\jþ i� 2[ q in

H2ð2; q; hÞ. Now, focussing on the tth column of the Sijth block-column of H2ð2; q; hÞ, the
tth row intersects with the tth column of the Sðiþ1Þjth block-column and the tth column

intersects with the 1þ\t þ ðiþ 1Þ � 2[ qth row of block-row qþ 1þ\jþ
ðiþ 1Þ � 2[ q. Column \t[ q þ 1 of block-column Sið\j[ qþ1Þ intersects with the

1þ\ðt þ 1Þ þ i� 2[ qth row of the qþ 1þ\ðjþ 1Þ þ i� 2[ qth block-row.

Similarly, the \t[ q þ 1th row intersects with the \t[ q þ 1th column of the

Sið\j[ qþ1Þth block-column and the \t[ q þ 1th row intersects with the \t[ q þ 1th

column of the Sðiþ1Þð\j[ qþ1Þth block-column. The \t[ q þ 1th column of the

Sðiþ1Þð\j[ qþ1Þth block-column intersects with the qþ 1þ\ðt þ 1Þ þ ðiþ 1Þ � 2[ qth

row and so on. According to the above sequence of incidences, it can be shown that at first

the tth columns of both block-columns Sij and Sðiþ1Þj are added to the path, then the

\t[ q þ 1th columns of both block-columns Sið\j[ qþ1Þ and Sðiþ1Þð\j[ qþ1Þ are added and

subsequently the \t þ 1[ q þ 1 columns of both block-columns Sið\jþ1[ qþ1Þ and
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Sðiþ1Þð\jþ1[ qþ1Þ are added to the path and so on. Since t and j were arbitrary values, it can

be concluded by an inductive method that this procedure will continue until the

\t þ q� 1[ q þ 1th column of the block-column Sið\jþq�1[ qþ1Þ is reached, i.e. the

beginning column t of the Sijth block-column. Therefore, by starting from an arbitrary

column t in any arbitrary block-column of Sij, where 1� i� h and 1� j� q, and after

passing from 2q columns, we return to the starting column, so a cycle of length 4q is

formed (note that for 1� t� q; 1� j� q; t ¼ \t þ q� 1[ q þ 1 and j ¼ \jþ
q� 1[ q þ 1). If the next cycle starts from the \t[ q þ 1th column of the block-column

Sij, it is easy to see that a right shift of all columns in the previous cycle is included in the

new cycle. That is to say in forming a new cycle, at first columns \t[ q þ 1 of both

block-columns Sij and Sðiþ1Þj are added to the cycle, then columns \t þ 1[ q þ 1 of both

block-columns Sið\j[ qþ1Þ and Sðiþ1Þð\j[ qþ1Þ are added and so on.

The same argument can be used by starting from every q column of block-column Sij.

Therefore q distinct cycles in two sub-matrices Ai and Aiþ1 will be obtained where each

column in these two sub-matrices belongs to one and only one of these cycles. Thus in

general case there exist q cycles of length 4q. See Fig. 2. h

Theorem 2 For a code with parity-check matrix H2ð2; q; hÞ; Lmax ¼ 2q2 � q� 1.

Proof It is sufficient to show that a burst erasure of length 2q2 � q� 1 can be corrected at

any location of the received word, x, by iterative decoding. From Lemma 2, columns of

any two consecutive block-columns form q distinct cycles of length 4q. In general, two or

three sub-matrices of the parity-check matrix H2ð2; q; hÞ can be involved by such burst

erasures of length 2q2 � q� 1.

a. Assume that only sub-matrices Ai and Aiþ1 have been involved by a burst erasure of

length 2q2 � q� 1. In this case, either the Si1th or the Sðiþ1Þqth block-column have no

Fig. 2 A graph representation of q cycles in two sub-matrices Ai and Aiþ1 each of length 4q
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erased bits. Hence an entire block-column is not involved by the erasure bits and so

there is a variable-node with a correct value in every q cycles that are constructed by

columns in these two sub-matrices. Therefore the rest of the erased bits can be

corrected by using iterative decoding. Otherwise, the last k columns of the Si1th block-

column, the first l columns of the Sðiþ1Þqth block-column, and all the columns in block-

columns Siz for 2� z� q and block-columns Sðiþ1Þv for 1� v� q� 1 are affected the

erased bits in x where 1� l; k� q� 1 and lþ k ¼ q� 1. It is clear that both of the

first column of block-column Si1 and the last column of block-column Sðiþ1Þq belong to

a cycle and their associated variable-nodes have correct values. The rest of the first

q� k columns of block-column Si1 and the rest of the last q� l columns of block-

column Sðiþ1Þq belong to one of the q� 1 remaining cycles and then by iterative

decoding and the above discussion, there is at least one variable-node with a correct

value in each cycle and so all 2q2 � q� 1 erased bits can be corrected.

b. Assume three sub-matrices Ai�1;Ai and Aiþ1 have been involved by a burst erasure of

length 2q2 � q� 1 in x. Thus the first d1 columns and the last d2 columns of the sub-

matrices Ai�1 and Aiþ1; qþ 2� d1; d2 � q2 � 1, are not erased. Consider the cycles of

columns in two sub-matrices Ai�1 and Ai and also the cycles of columns in two sub-

matrices Ai and Aiþ1 simultaneously. It is known that each row is associated to a check

node with 3 erased bits, which are at most q� 1, connects to two erased variable-

nodes in one cycle and connects to one erased variable-node in the second cycle.

Therefore each variable-node with a correct value in the second cycle can reduce the

number of erased bits of the mentioned rows to 2. Then, having a variable-node with a

correct value in the first cycle can correct the two other erased bits of a row. It is easy

to investigate whether each pair of cycles formed by columns of a sub-matrix Ai and its

left and right neighbour sub-matrices, intersect with one or two variable-nodes with

erased values. In each case, with either one or two intersections, the number of

variable nodes with correct values is at least one more than the number of erased bits

in these pair of cycles. Consequently, all the erased bits in both cycles can be

corrected.

Therefore, each burst erasure of length 2q2 � q� 1 can be corrected at any location of x.
On the other hand, if two consecutive block-columns Ai and Aiþ1 are affected a burst

erasure of length 2q2 � q and the starting column is column t in Ai; t� 2, then there exists a

cycle in which all of its variable-nodes are erased and the 2q bits corresponding to this

cycle can not be corrected. It is concluded that Lmax ¼ 2q2 � q� 1. h

Proposition 2 rankðH2ð2; q; hÞÞ ¼ 2q2 � q.

Proof The proof can be simply concluded by using Gaussian elimination on H2ð2; q; hÞ.h

By Theorem 2 and proposition 2, it can be concluded that the efficiency of the code

with parity-check matrix H2ð2; q; hÞ is equal to

g ¼ Lmax

ðn� kÞ ¼
Lmax

rankðHÞ ¼
2q2 � q� 1

2q2 � q
¼ 1� 1

2q2 � q
:

Also this code has also a very high efficiency and by increasing the value of q efficiency

will become close to 1. The rate of the code can be changed by the values of q and h. That

is R ¼ q2h� 2q2 þ q

q2h
¼ 1� 2q2 � q

q2h
:
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3.3 Construction Type III (Hð2; q; hÞ��Hð2; q0; hÞ)

Lemma 3 In parity-check matrix

Hð2; q; hÞ��Hð2; q0; hÞ;

where q and q0 are distinct odd prime numbers and 3� h� minfq; q0g, the columns in two

consecutive sub-matrices Ai and Aiþ1; 1� i� h� 1, form a cycle of length 4qq0.

Proof Let Ai and Aiþ1; 1� i� h� 1 be two sub-matrices in Hð2; q; hÞ��Hð2; q0; hÞ and

the tth column of the Sijth block-column is selected arbitrarily where 1� j� q. Note that

column t; 1� t� q0, of block-column Sij intersects with the tth row of block-row j and the

1þ\t þ i� 2[ q0 th row of block-row qþ 1þ\jþ i� 2[ q. Similar to Lemma 2, we

can check that at first the tth columns of both block-columns Sij and Sðiþ1Þj are added to the

path. Then, the \t[ q0 þ 1th columns of both block-columns Sið\j[ qþ1Þ and

Sðiþ1Þð\j[ qþ1Þ are added to the path. The \t þ 1[ q0 þ 1th columns of both block-col-

umns Sið\jþ1[ qþ1Þ and Sðiþ1Þð\jþ1[ qþ1Þ are added next and so on. Since t and j were

arbitrary values, then by induction it can be concluded that this procedure will continue

until the \t þ q� 1[ q0 þ 1th column of block-column Sið\jþq�1[ qþ1Þ is reached.

j ¼ \jþ q� 1[ q þ 1, we return to the \t þ q� 1[ q0 þ 1th column of the first block-

column , i.e. Sijth block-column, but not to the tth column. Therefore, if moving on the path

is continued from the \t þ q� 1[ q0 þ 1th column, then after adding the other 2q col-

umns to the path, the \t þ 2q� 1[ q0 þ 1th column in Sijth block-column will be

available. As q and q0 are distinct odd prime numbers, after the q0 th iteration, which we are
passing from the Sijth block-column, we reach the t ¼ \t þ qq0 � 1[ q0 þ 1th column of

the Sijth block-column, that is the tth column (starting column of the cycle) of the Sijth

block-column. Therefore a cycle of length 4qq0 is formed. h

Theorem 3 For a code with parity-check matrix Hð2; q; hÞ��Hð2; q0; hÞ, where q and q0

are distinct odd prime numbers and 3� h� minfq; q0g, we have Lmax ¼ 2qq0 � q0 � 1.

Proof It is sufficient to show that a burst erasure of length 2qq0 � q0 � 1 can be corrected

at any location of the received word, x, by iterative decoding. Similar to the previous

theorems and according to Lemma 3 and iterative decoding, if all columns of two sub-

matrices Ai and Aiþ1 in matrix (2) except one are erased, then iterative decoding can correct

all the erased bits(2qq0 � 1 erased bits). Note that H2ð2; q; hÞ can be considered as a special
case of Hð2; q; hÞ��Hð2; q0; hÞ where q ¼ q0. Moreover, the length of each cycle associated

to two consecutive block-columns in Hð2; q; hÞ��Hð2; q0; hÞ is greater than 4q and q and q0

are co-prime. Hence by referring to the proof of Theorem 2 for H2ð2; q; hÞ it is concluded
that Lmax for Hð2; q; hÞ��Hð2; q0; hÞ is at least 2qq0 � q0 � 1 (since the proof is based on

length of cycles). Now it is shown that Lmax is equal to this lower bound. It is sufficient to

show that a burst erasure of length 2qq0 � q0 can not be corrected. It is known that column

t; 1� t� q0, of block-column Sij; 1� j� q and 1� i� h, intersects with the tth row of

block-row j and with the 1þ\t þ i� 2[ q0 th row of block-row qþ 1þ\sþ i� 2[ q

of Hð2; q; hÞ��Hð2; q0; hÞ. We claim that if a burst erasure of length 2qq0 � q0 involves
three sub-matrices Ai�1;Ai and Aiþ1 and column t of block-column Sði�1Þj is the start of the

burst range, where j; t[ 1, then there is a cycle of length 8 in the burst range. This cycle is

as follows:

If we start from the tth column of the Sði�1Þjth block-column, then row t of block-row j

intersects with the tth column of the Sijth block-column and this column intersects with the
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1þ\t þ i� 2[ q0 th row of block-row qþ 1þ\jþ i� 2[ q. Moreover, column ðt �
1Þ of block-column Sðiþ1Þðj�1Þ intersects with this row (the 1þ\t þ i� 2[ q0 th row of

block-row qþ 1þ\jþ i� 2[ q) and this column intersects with the ðt � 1Þth row of

block-rowðj� 1Þ. The ðt � 1Þth row of block-row ðj� 1Þ intersects with the ðt � 1Þth
column of Siðj�1Þth block-column and this column has intersection with the

1þ\ðt � 1Þ þ i� 2[ q0 th row of block-row qþ 1þ\ðj� 1Þ þ i� 2[ q. Row

1þ\t þ ði� 1Þ � 2[ q0 , of block-row qþ 1þ\jþ ði� 1Þ � 2[ q intersects with the

tth column of the Sði�1Þjth block-column which is indeed the starting column. Since the

length of the burst is 2qq0 � q0 and all of the mentioned columns are located within the

burst range, therefore correction of these 4 bits is not possible by iterative decoding. Hence

Lmax ¼ 2qq0 � q0 � 1. h

Proposition 3 rankðHð2; q; hÞ��Hð2; q0; hÞÞ ¼ 2qq0 � 1.

Proof The proof can be easily concluded by using Gaussian elimination. h

By Theorem 3 and Proposition 3, it can be concluded that the efficiency of a code with

parity-check matrix Hð2; q; hÞ��Hð2; q0; hÞ is equal to

g ¼ Lmax

ðn� kÞ ¼
Lmax

rankðHÞ ¼
2qq0 � q0 � 1

2qq0 � 1
¼ 1� q0

2qq0 � 1
:

The rate of the code is equal to R ¼ hqq0 � 2qq0 þ 1

hqq0
¼ 1� 2qq0 � 1

hqq0
and can be changed

by the different values of q; q0, and h ð3� h� minfq; q0gÞ.

3.4 Construction Type IV (Hð2; q; hÞ�Hðq; q0; hÞ)

Lemma 4 In parity-check matrix

Hð2; q; hÞ�Hðq; q0; hÞ

where q and q0 are distinct odd prime numbers, q0 [ q and 3� h� q, columns in two

consecutive sub-matrices Ai and Aiþ1; 1� i� h� 1, form a cycle of length 4qq0.

Proof The proof is similar to the proof of Lemma 3. h

The next theorem provides an upper and a lower bound for Lmax in parity-check matrix

Hð2; q; hÞ�Hðq; q0; hÞ.

Theorem 4 Let q and q0 be two odd prime numbers where q0 [ q. For a code with

parity-check matrix Hð2; q; hÞ�Hðq; q0; hÞ, we have 2qq0 � q0 � 1� Lmax � 2qq0 � 1.

Proof According to Lemma 4 if the columns of two sub-matrices Ai and

Aiþ1; 1� i� h� 1, are considered, then a cycle of length 2qq0is obtained. Thus Lmax can be
at most 2qq0 � 1. Similar to Theorem 3 it can be shown that each burst erasure of length

2qq0 � q0 � 1 is corrected and this value is a lower bound for Lmax. Thus, both bounds for

this code are obtained. h

Proposition 4 rankðHð2; q; hÞ�Hðq; q0; hÞÞ ¼ 2qq0 � 1.

Proof The proof can be easily concluded by using Gaussian elimination. h
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The rate of this code is R ¼ 1� 2qq0 � 1

hqq0
. Due to varying of q; q0 and h in

Hð2; q; hÞ�Hðq; q0; hÞ; Lmax of this matrix is not determined explicitly. The efficiency of

this code is computed for some parameters in Table 1.

4 Simulation Results

In [5] four code construction methods are introduced, so in Table 1 values of q; q0 and h, in
the proposed codes, have been chosen to construct codes with lengths and rates near to the

Table 1 Burst correction properties of proposed codes

Code type Length Rate Lmax g ¼ Lmax=ðn� kÞ

Construction1ðN ¼ 2; v ¼ 1500Þ [5] 3000 0.5 1496 0.997

Construction2ðN ¼ 2; v ¼ 1500Þ [5] 3000 0.5 1468 0.978

Construction4ðp ¼ 2;N ¼ 5; v ¼ 300Þ [5] 3000 0.5 1498 0.900

Hð2; 743; 4Þ 2972 0.5003 1485 1

Hð2; 751; 4Þ 3004 0.5003 1501 1

H2ð2; 29; 4Þ 3364 0.5 1652 0.999

Hð2; 23; 4Þ��Hð2; 31; 4Þ 2852 0.5 1394 0.978

Hð2; 31; 4Þ��Hð2; 23; 4Þ 2852 0.5 1402 0.984

Hð2; 23; 4Þ�Hð23; 31; 4Þ 2852 0.5 1398 0.981

Construction1ðN ¼ 6; v ¼ 693Þ [5] 4158 0.833 682 0.927

Construction2ðN ¼ 6; v ¼ 693Þ [5] 4158 0.833 613 0.833

Construction3ðp ¼ 6; v ¼ 231Þ [5] 4158 0.833 686 0.932

Hð2; 337; 12Þ 4044 0.8336 673 1

Hð2; 347; 12Þ 4164 0.8336 693 1

H2ð2; 19; 12Þ 4332 0.833 702 0.999

Hð2; 17; 12Þ��Hð2; 19; 12Þ 3876 0.833 627 0.971

Hð2; 19; 12Þ��Hð2; 17; 12Þ 3876 0.833 629 0.974

Hð2; 13; 12Þ��Hð2; 29; 12Þ 4524 0.833 724 0.961

Hð2; 29; 12Þ��Hð2; 13; 12Þ 4524 0.833 739 0.983

Hð2; 17; 12Þ�Hð17; 19; 12Þ 3876 0.834 643 0.997

Hð2; 13; 12Þ�Hð13; 29; 12Þ 4524 0.834 737 0.979

Construction1ðN ¼ 10; v ¼ 1650Þ [5] 16,500 0.9 1648 0.999

Construction3ðp ¼ 10; v ¼ 550Þ [5] 16,500 0.9 1639 0.993

Hð2; 821; 20Þ 16,420 0.9 1641 1

Hð2; 823; 20Þ 16,460 0.9 1645 1

Hð2; 825; 20Þ 16,500 0.9 1653 1

H2ð2; 29; 20Þ 16,820 0.9 1652 0.999

Hð2; 23; 20Þ��Hð2; 37; 20Þ 17,020 0.9 1664 0.978

Hð2; 37; 20Þ��Hð2; 23; 20Þ 17,020 0.9 1678 0.986

Hð2; 23; 20Þ�Hð23; 37; 20Þ 17,020 0.9 1671 0.982
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codes in [5]. In addition, values of Lmax and efficiency g ¼ Lmax=ðn� kÞ have been

computed. It can be seen that shortened array codes with parity-check matrix Hð2; q; hÞ and
efficiency 1 have better efficiency than other proposed structures in this paper. Moreover

these codes compete with the codes in [5].

The implementation of proposed codes is conducted with lengths and rates similar to

lengths and rates of the structured codes in [5], namely, near to the length 1500 and rate 4/

5. Then the comparison of our proposed codes with the codes in [5] are presented in

Figs. 3, 4, 5 and 6. Simulation results of our structures are marked by symbol filled circles.

The curves present two cases; solid curves, when the probability of error for the guard band

equals to p ¼ 0, and the dashed curves, for the case that the probability of error in the guard

band is equal to p ¼ 0:01.
In the case of dashed curves, just like [5], other solid and dash curves in figures belongs

to the first, second and third structures of [5] and the interleaved MDS code where the

symbol of each code is shown in the guide of the figures. The derived Lmax for the

shortened array code with parity-check matrix Hð2; 151; 10Þ is 301, (Fig. 3).
The value Lmax of this structure is greater than other codes, because it is a burstMDS

code, and has less bit error rate than other structures for bursts erasure length larger than

Lmax. The derived Lmax for the code with parity-check matrix H2ð2; 13; 9Þ is 324, (Fig. 4).
In solid curves, the bit error rate of this construction is better than the others because, first

of all Lmax of this code is greater than others and second it has a better BER than other

codes when the burst erasure length is increased.

Fig. 3 The performance Comparison of shortened array code with parity-check matrix Hð2; 151; 10Þ of
length 1510 and rate 0.80, and code in [8] of length 1500 and rate 0.8 on an erasure channel with one
randomly located burst erasure and guard band erasure probabilities p ¼ 0 (solid curves) and p ¼ 0:01
(dashed curves)
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Fig. 4 The performance Comparison between the code with parity-check matrix H2ð2; 13; 9Þ of length 1521
and rate 0.78, and code in [8] of length 1500 and rate 0.8 on an erasure channel with one randomly located
burst erasure and guard band erasure probabilities p ¼ 0 (solid curves) and p ¼ 0:01 (dashed curves)

Fig. 5 The performance comparison between the code with parity-check matrix Hð2; 17; 8Þ��Hð2; 11; 8Þ of
length 1496 and rate 0.75, and code in [8] of length 1500 and rate 0.8 on an erasure channel with one
randomly located burst erasure and guard band erasure probabilities p ¼ 0 (solid curves) and p ¼ 0:01
(dashed curves)
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The obtained Lmax for the code with parity-check matrix Hð2; 17; 8Þ��Hð2; 11; 8Þ is 362,
(Fig. 5). In both cases, solid curves with p ¼ 0, and dashed curves with p ¼ 0:01, the bit

error rate of the code is better than the others. Computed Lmax for the code with parity-

check matrix Hð2; 11; 8Þ�Hð11; 17; 8Þ is 359, (see Fig. 6). This construction has provided

better results in both cases, solid curves and dashed curves.

5 Conclusion

Some structured LDPC codes on burst erasure channels have been proposed. It was shown

how array codes, as a well known LDPC codes over AWGN channels, and a kind of

shortened and superposed of them could be used for constructing suitable codes over burst

erasure channels. Cycles, corresponding to consecutive columns in parity check matrices of

the constructed codes, were studied and used for determining the value of Lmax as an

important parameter in the constructed codes over burst erasure channels. These LDPC

codes are categorized in four classes with one of them being a burstMDS code and having

efficiency equal to 1. It was shown that all the constructed codes compete with the well-

known LDPC codes of comparable rate and length over single burst erasure channels.

Simplicity in construction, low encoding complexity, various lengths and rates are another

advantages of the introduced codes.

Fig. 6 The performance comparison of the code with parity-check matrix Hð2; 11; 8Þ�Hð11; 17; 8Þ of

length 1496 and rate 0.75, and code in [8] of length 1500 and rate 0.8 on an erasure channel with one
randomly located burst erasure and guard band erasure probabilities p ¼ 0 (solid curves) and p ¼ 0:01
(dashed curves)
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