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Abstract A conventional quasi orthogonal space time block code (QO-STBC) scheme can
achieve full rate, but at the cost of decoding complexity. This limitation of the conventional
QO-STBC scheme is mainly due to interference terms in the detection matrix. In this article, a
novel QO-STBC scheme is proposed which eliminates the interference terms. The proposed
method achieves improved diversity as compared to the conventional QO-STBC scheme,
also providing a considerable reduction in decoding complexity. A transmit antenna shuf-
fling scheme for the proposed code is also illustrated. It is shown that by adaptively mapping
space time sequences of the proposed code to appropriate transmit antennas depending on
channel condition, proposed scheme can improve its transmit diversity with limited feed-
back information. Lastly, simulation results show that the symbol error rate performance is
improved considerably.

Keywords Space time block code · QO-STBC · Transmit diversity · Zero-forcing
decoding · Antenna shuffling and simple linear decoding

1 Introduction

Multiple input multiple output (MIMO) system has been studied extensively in over past few
years as a method of combating impairments in wireless fading channel. In order to approach
the capacity of MIMO systems, space time coding has received the significant amount of
attention. In 1998, Alamouti [1] proposed the transmit diversity scheme which is usually
regarded as the first space time coding with two transmit antennas and has been used in 3G
cellular communications. This scheme is a complex orthogonal design with full rate and
full diversity and allows for a simple linear maximum likelihood decoding. These kinds of
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space time coding are known as orthogonal space time block codes (O-STBC). However,
it is demonstrated that the complex orthogonal full rate design, offering full diversity, was
limited to the case of two transmit antennas [2]. When three or four transmit antennas were
considered, the maximum symbol transmission rate of the complex O-STBCs with linear
processing was 3/4. In order to achieve the advantages of O-STBC schemes with properties
close to such optimal codes providing full rate, the so called QO-STBCs were proposed [3].
These space time block codes (STBC) were developed from quasi-orthogonal designs, where
orthogonality is relaxed to provide higher rate. A QO-STBC scheme can achieve full rate,
but it also adds interference terms resulting from neighboring signals during signal detection.
These results in increase in decoding complexity and a decrease in performance gain, with
respect to the O-STBC schemes. Two maximum likelihood detectors are used in parallel
to decode pairs of transmitted symbols in QO-STBC, which results in higher complexity
decoding at the receiver. With increase in modulation level, receiver computes the decision
metric over larger number of symbols in the constellation [6], which subsequently increases
decoding complexity and hence increases transmission delay.

In this paper, based on the quasi-orthogonal code structures in the Jafarkhani scheme,
an efficient QO-STBC scheme for four transmit antennas is proposed, which can achieve
both the full rate and simple linear decoding. Using symmetric nature of detection matrix
of conventional QO-STBC scheme, detection matrix is changed accordingly in order to
eliminate interference terms, and derive an encoding matrix corresponding to the interference
free detection matrix. Later on, a transmit antenna shuffling scheme (TAS) is used for the
proposed code. The optimum antenna shuffling pattern can be selected to improve the transmit
diversity with limited feedback information during the whole signal transmission.

2 Conventional QO-STBC Scheme

First QO-STBC code was proposed by Jafarkhani [3] for four transmit antenna and one
receive antenna, which is given by S (4 × 4):

S =

⎡
⎢⎢⎣

s1 s2 s3 s4

−s∗
2 s∗

1 −s∗
4 s∗

3−s∗
3 −s∗

4 s∗
1 s∗

2
s4 −s3 −s2 s1

⎤
⎥⎥⎦ (1)

Assuming a flat fading channel over four time slots and the channel gain between the
transmit antennas and receiver antenna is denoted by:

H = [h1 h2 h3 h4]T (2)

where T stands for transpose operator
Received signal is given by:

R = SH + N (3)

where, N = [n1 n2 n3 n4]T and ni is the complex white Gaussian noise added in the ith time
slot.

Equivalent virtual channel matrix (EVCM) for this code, which is formed by after applying
a complex conjugate operation to the second and the third elements of the received signal, is
given by:
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H =

⎡
⎢⎢⎣

h1 h2 h3 h4

h∗
2 −h∗

1 h∗
4 −h∗

3
h∗

3 h∗
4 −h∗

1 −h∗
2

h4 −h3 −h2 h1

⎤
⎥⎥⎦ (4)

Now, received signal is expressed as:

Rn = HCn + N (5)

where, Cn = [s1 s2 s3 s4]T, N = [n1 n∗
2 n∗

3 n4]T

In case of the orthogonal scheme, the received signals are decoded using a detection matrix
D defined as H H H where H H is Hermitian of H . For an O-STBC scheme, the detection
matrix is always a diagonal matrix and this enables simple linear decoding .However for
QO-STBC scheme simple linear decoding cannot be applied because detection matrix is not
diagonal. For example, the detection matrix for the aforementioned four transmit antenna
QO-STBC scheme is expressed by:

D = HHH =

⎡
⎢⎢⎣

a 0 0 b
0 a −b 0
0 −b a 0
b 0 0 a

⎤
⎥⎥⎦ (6)

where, a = ∑4
i=1 |hi |2 represents channel gain for the four transmit antennas, b =

2Re (h1h∗
4 − h2h∗

3) represents interference terms.
For decoding this, a more complex decoding method to detect the estimate Ĉ has been

introduced (zero forcing decoding), as given by:

Ĉ = (
HHH

)−1
HHRn (7)

3 Proposed QO-STBC Scheme

Due to the presence of interference terms in detection matrix D, more complex decoding is
required. In this section, a method to eliminate the interference terms is presented so that
simple linear decoding can be applied. As detection matrix D is symmetric, which means
DT = D and so, by using property of symmetric matrix, D can be expressed as

D = QDnQT (8)

where, Q is orthogonal matrix and Dn is diagonal matrix whose diagonal elements are eigen
values of D. Equation (8) can also be written as

QTDQ = Dn (9)

By Eq. (9) it is cleared that by pre and post multiplying the detection matrix D with QT

and Q, diagonal matrix Dn is obtained which is interference free. In Taha Scheme [6], they
used the same concept of symmetry of detection matrix but the value of Q was taken as
general unitary matrix for constructing their code. But in proposed scheme singular value
decomposition is used to derive value of Q (Appendix). So Q is given by:

Q =

⎡
⎢⎢⎣

0.5 0.5 0.5 −0.5
0.5 −0.5 0.5 0.5

−0.5 0.5 0.5 0.5
0.5 0.5 −0.5 0.5

⎤
⎥⎥⎦ (10)
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New interference free detection matrix Dn is given by

Dn =

⎡
⎢⎢⎣

a + b 0 0 0
0 a + b 0 0
0 0 a − b 0
0 0 0 a − b

⎤
⎥⎥⎦ (11)

Then, new channel matrix is derived by Dn as:

Dn = QTD Q = QHD Q = QHHHH Q

= (H Q)H (H Q) (12)

So, new channel matrix is defined as Hn = H Q, which can be expressed as following
matrix:

Hn

=

⎡
⎢⎢⎣

(h1+h2−h3+h4)/2 (h1−h2+h3+h4)/2 (h1+h2+h3−h4)/2 (−h1+h2+h2+h4)/2
(h∗

2−h∗
1−h∗

4−h∗
3)/2 (h∗

2+h∗
1+h∗

4−h∗
3)/2 (h∗

2−h∗
1+h∗

4+h∗
3)/2 (−h∗

2−h∗
1+h∗

4−h∗
3)/2

(h∗
3+h∗

4+h∗
1−h∗

2)/2 (h∗
3−h∗

4−h∗
1−h∗

2)/2 (h∗
3+h∗

4−h∗
1+h∗

2)/2 (−h∗
3+h∗

4−h∗
1−h∗

2)/2
(h4−h3+h2+h1)/2 (h4+h3−h2+h1)/2 (h4−h3−h2−h1)/2 (−h4−h3−h2+h1)/2

⎤
⎥⎥⎦

(13)

Now, new encoding matrix corresponding to Hn, which is expressed as:

Sn =

⎡
⎢⎢⎣

(s1+s2+s3−s4)/2 (s1−s2+s3+s4)/2 (−s1+s2+s3+s4)/2 (s1+s2−s3+s4)/2
(−s∗

1 +s∗
2 −s∗

3 −s∗
4 )/2 (s∗

1 +s∗
2 +s∗

3 −s∗
4 )/2 (−s∗

1 −s∗
2 +s∗

3 −s∗
4 )/2 (−s∗

1 +s∗
2 +s∗

3 +s∗
4 )/2

(s∗
1 −s∗

2 −s∗
3 −s∗

4 )/2 (−s∗
1 −s∗

2 +s∗
3 −s∗

4 )/2 (s∗
1 +s∗

2 +s∗
3 −s∗

4 )/2 (s∗
1 −s∗

2 +s∗
3 +s∗

4 )/2
(s1+s2−s3+s4)/2 (s1−s2−s3−s4)/2 (−s1+s2−s3−s4)/2 (s1+s2+s3−s4)/2

⎤
⎥⎥⎦

(14)

The new encoding matrix Sn is Quasi-orthogonal, but its channel matrix Hn is orthogonal
matrix, so simple linear decoding can be used to reduce decoding complexity at the receiver.
The decoding matrix is given by:

Ĉ = HH
n HnCn + HH

n N (15)

where Cn = [s1 s2 s3 s4]T, N = [n1 n∗
2 n∗

3 n4]T

4 TAS Scheme for Proposed QO-STBC

From Fig. 3, it is apparent that the performance of the proposed QO-STBC scheme is slightly
better than Taha scheme [6]. So, to increase the performance of the proposed QO-STBC
scheme, transmit antenna shuffling is employed in proposed QO-STBC for four transmit
antennas so that optimum antenna shuffling pattern can be selected to improve the transmit
diversity. Detection matrix for proposed QO-STBC scheme for four transmit antenna and one
receive antenna is given by Eq. (11), where (a+b), (a+b), (a−b) and (a−b) are total channel
gains for four transmit antenna respectively. For error free decoding, these channel gains must
be more positive. But they are strongly dependent on channel coefficients. As channel gain
is described by two factors a and b, where a is always positive quantity but b can be positive
large or negative large quantity depending on the channel condition, which in turn decrease
the positivity of half of the channel gains. So, for all channel gains, to have consistency in
its positivity, value of b should be minimized. It is known that by using shuffling in transmit
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Table 1 Six different shuffling
having different value of b

Index Six different shuffling Value of b

1 [1A,2,3,4] 2real (h1h∗
4 − h2h∗

3)

2 [1A,2,4,3] 2real (h1h∗
3 − h2h∗

4)

3 [1A,4,3,2] 2real (h1h∗
2 − h3h∗

4)

4 [1B,2,3,4] −2real (h1h∗
4 + h2h∗

3)

5 [1B,2,4,3] −2real (h1h∗
3 + h2h∗

4)

6 [1B,4,3,2] −2real (h1h∗
2 + h3h∗

4)

Antenna Shuffle 
[ 1B 4 3 2]

T1X1

Rx
T2 NoiseX2

QO-STBC

Encoder

Channel

Es�matorT3X3

QO-STBC

Decoder
X4 T4

Feedback

Fig. 1 Proposed closed loop system

antenna, six different shuffled antenna codes is possible for which detection matrices are
same but having different values of channel gain because of different value of b which are
given in Table 1. So, at the transmitter end that shuffled antenna code is used for which |b| has
minimum value. Here, six different type of shuffling is used, so three bit feedback is used to
tell transmitter about which shuffling undergoes during transmission having minimum value
of |b|. This in turns increase the performance of proposed QO-STBC scheme. The block
diagram of the proposed QO-STBC scheme using transmit antenna shuffling scheme (TAS)
[4] scheme with four transmit antennas and one receive antenna is given in Fig. 1. Here,
an antenna shuffling structure [1B 4 3 2] between the QO-STBC encoder and four transmit
antennas is implemented.

To achieve different values of b, the possible number of antenna shuffling patterns for the
proposed QO-STBC code is six, which are shown in Table 1.

From Table 1, pattern [1A,2,4,3] means that the four rows of the QOSTBC will be trans-
mitted from antenna 1,2,4 and 3 respectively and pattern [1B,3,4,2] representing that the
four rows of the QOSTBC are transmitted from antenna 1(with 180◦ phase shift before
transmission), 3, 4 and 2 respectively.

4.1 Adaptive Antenna Shuffling Algorithm

It is assumed that the CSI information is perfectly known at the receiver and both transmitter
& receiver has knowledge of different possible shuffling of the transmit antennas at different
channel conditions. Each antenna shuffling is associated with a particular value of channel
dependent parameter e.g. b. The association of the channel dependent parameter and antenna
shuffling is given in Table 1. The steps of the algorithm are:

• Calculate the values of the channel dependent parameter b at current channel condition
using the channel coefficients. The values of b are calculated according to the groupings
of channel coefficients as given in Table 1.
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• Select the index of the grouping providing min |b| from all calculated |b| values for
transmission to the transmitter as feedback.

• The transmitter selects the antenna shuffling associated with the received index.
• The transmitter shuffles the antennas according to the selected antenna shuffling based

on minimum value of |b|.
• At receiver, multiply the received signal by the hermitian of channel matrix of transmitted

shuffled antenna code so that simple linear decoding is possible.

Since, six different type of transmit antenna shuffling is employed, therefore a three bit
feedback (which selects the optimum antenna shuffling) is used to achieve minimum value
of |b|. This in turns increase the performance of the proposed QO-STBC code.

5 Comparison of Conventional QO-STBC Scheme and Proposed QO-STBC Scheme
when Both Employing TAS

Estimated transmitted signal for conventional QO-STBC scheme is given by:
⎡
⎢⎢⎣

s̃1

s̃2

s̃3

s̃4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

as1 + bs4

as2 − bs3

as3 − bs2

as4 + bs1

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

ñ1

ñ2

ñ3

ñ4

⎤
⎥⎥⎦

Estimated transmitted signal for proposed QO-STBC scheme is given by:
⎡
⎢⎢⎣

s̃1

s̃2

s̃3

s̃4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

(a + b)s1

(a + b)s2

(a − b)s3

(a − b)s4

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

ñ1

ñ2

ñ3

ñ4

⎤
⎥⎥⎦

where s̃i is the estimated symbol; si is the transmitted symbol and ñi is the noise component
By using the transmit antenna shuffling scheme, minimum value of the parameter b is

obtained in both the cases, which is the main reason behind the increase in performance of
both the schemes. So, the value of parameter b should be equal to zero. But in the actual
wireless environment, value of b (which is channel dependant parameter) is not always equal
or nearly equal to zero and effect of which is different in both proposed QO-STBC and
conventional QO-STBC. In conventional QO-STBC, if this condition occurs, let’s say for
(as1 + bs4), value of (as1 + bs4) is not nearly equal to as1, which means that simple linear
decoding is not possible and degradation of the performance takes place. But on the other
hand, in the proposed QO-STBC, let’s say for (a + b)s1, increase or decrease in value of b,
is added to s1 itself so that simple linear decoding can be used easily with no degradation of
performance.

6 Simulation Results

Using four transmit antennas, the performance of the proposed QO-STBC scheme is evaluated
over a Rayleigh fading channel (assuming that channel is quasi-static and receiver has perfect
knowledge about the channel). Quadrature Phase-Shift Keying (QPSK) is chosen for the
modulation format leading to information rate of 2 bits/sec/Hz.

Figure 2 shows symbol error rate performance of the following schemes: conventional
QO-STBC scheme [3], Park’s scheme [5], proposed QO-STBC scheme without TAS and
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Fig. 2 a, b, c, d, e and f shows performance of different shuffled proposed codes under optimum channel
conditions respectively. a Using shuffled antenna code corresponding to min |b| when b = 2real (h1h∗

4 −h2h∗
3).

b Using shuffled antenna code corresponding to min |b| when b = 2real (h1h∗
3−h2h∗

4). c Using shuffled antenna
code corresponding to min |b| when b = 2real(h1h∗

2 − h3h∗
4). d Using shuffled antenna code corresponding

to min |b| when b = −2real (h1h∗
4 + h2h∗

3). e Using shuffled antenna code corresponding to min |b| when b =
−2real (h1h∗

3 +h2h∗
4). f Using shuffled antenna code corresponding to min |b| when b = −2real (h1h∗

2 +h3h∗
4)

proposed QO-STBC scheme with TAS. In these figures, taking the noise constant for all
simulations, the performance of six types of shuffled antenna code is compared with other
schemes in their optimum channel conditions. The shuffling of the antenna is based on the
feedback information given by the receiver. The feedback information has index of minimum
|b| value from all calculated |b| values at the receiver, where b is channel dependent parameter.
By analyzing figures from (a) to (f) in Fig. 2, it is apparent that proposed QO-STBC scheme
with transmit antenna shuffling (TAS) achieves better performance than all the other schemes
in changing channel condition.

Figure 3 shows that proposed QO-STBC scheme performs slightly better than Taha scheme
[6] but after using transmit antenna shuffling the proposed QO-STBC scheme performs far
better than Taha scheme. It is clear from the figures that proposed QO-STBC scheme with TAS
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Fig. 3 Symbol error rate versus SNR

Fig. 4 BER performance of proposed QO-STBC versus conventional QO-STBC when TAS is used

achieved better performance than any other scheme discussed above with limited feedback
information.

Figure 4 shows the comparison of bit error rate between the conventional QO-STBC
scheme and proposed QO-STBC scheme when both are employing transmit antenna shuffling
(TAS).

7 Conclusion

In this work, a new QO-STBC is proposed whose decoding complexity is considerably lower
than the decoding complexity of maximum likelihood decoder and zero forcing decoder. QO-
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STBC is developed by using the symmetry property of the detection matrix of Jafarkhani
code. The new encoding matrix Sn is Quasi-Orthogonal but its equivalent virtual channel
matrix Hn is an Orthogonal matrix, so that simple linear decoding is possible for the code
which in turn reduces the transmission delay. Hence, the decoding complexity of proposed
code is much lower than conventional QO-STBC without losing BER performance. It is
known that transmission strategy can be improved when CSI is known to the transmitter.
For this closed loop QO-STBC is employed using transmit antenna shuffling (TAS) for both
proposed QO-STBC and conventional QO-STBC. It is clear that at bit error probability of
10−4, the proposed QO-STBC with TAS provides about 2dB power gain over the conventional
QO-STBC. So, by using transmit antenna shuffling technique, proposed QO-STBC scheme
has minimum decoding complexity and can be achieve better BER performance than any
other QO-STBC schemes.

Appendix

Singular value decomposition is based on linear algebra which says that a rectangular matrix
D can be broken down into the product of three matrices - orthogonal matrix U, a diagonal
matrix S and the transpose of an orthogonal matrix W. The theorem is usually presented like
this:

D = USWT (16)

where UUT = I, WWT = I; the columns of U are orthogonal eigenvectors of DDT, the
columns of W are orthogonal eigenvectors of DTD, and S is a diagonal matrix containing the
square roots of eigen values from U or W in descending order. Start with the matrix

D =

⎡
⎢⎢⎣

a 0 0 b
0 a −b 0
0 −b a 0
b 0 0 a

⎤
⎥⎥⎦ (17)

In order to find U, start with DDT

DDT =

⎡
⎢⎢⎣

a 0 0 b
0 a −b 0
0 −b a 0
b 0 0 a

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a 0 0 b
0 a −b 0
0 −b a 0
b 0 0 a

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

a2 + b2 0 0 2ab
0 a2 + b2 −2ab 0
0 −2ab a2 + b2 0

2ab 0 0 a2 + b2

⎤
⎥⎥⎦ (18)

Now, to find the eigen values and corresponding eigenvectors of DDT. It is known that
eigenvectors are defined by the equation A�v = λ�v, applying this to DDT gives us:

⎡
⎢⎢⎣

a2 + b2 0 0 2ab
0 a2 + b2 −2ab 0
0 −2ab a2 + b2 0

2ab 0 0 a2 + b2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ = λ

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ (19)
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Rewrite above matrix as the set of equations

(a2 + b2 − λ)x1 + (2ab) x4 = 0 (20)

(a2 + b2 − λ)x2 + (-2ab) x3 = 0 (21)

(-2ab) x2 + (a2 + b2 − λ) x3 = 0 (22)

(2ab) x1 + (a2 + b2 − λ) x4 = 0 (23)

which are solved by setting determinant of coefficient matrix to zero,
⎡
⎢⎢⎣

a2 + b2 − λ 0 0 2ab
0 a2 + b2 − λ −2ab 0
0 −2ab a2 + b2 − λ 0

2ab 0 0 a2 + b2 − λ

⎤
⎥⎥⎦ = 0 (24)

which works out as

⇒ (a2 + b2 − λ)[(a2 + b2 − λ)3 − 4(a2 + b2 − λ)a2b2

−2ab[2ab(a2 + b2 − λ)2 − 2ab(4a2b2)] = 0 (25)

⇒ (a2 + b2 − λ)4 − 8(a2 + b2 − λ)2a2b2 + 16a4b4 = 0 (26)

This gives eigen values λ = (a + b)2; λ = (a + b)2; λ = (a − b)2 and λ = (a − b)2.
Plugging λ back to the original equations gives eigenvectors.

For λ = (a + b)2,

(a2 + b2 − (a + b)2)x1 + (2ab)x4 = 0 or (−2ab)x1 + (2ab)x4 = 0 (27)

(a2 + b2 − (a + b)2)x2 + (−2ab)x3 = 0 or (−2ab)x2 + (−2ab)x3 = 0 (28)

(−2ab)x2 + (a2 + b2 − (a + b)2)x3 = 0 or (−2ab)x2 + (−2ab)x3 = 0 (29)

(2ab)x1 + (a2 + b2 − (a + b)2)x4 = 0 or (2ab)x1 + (−2ab)x4 = 0 (30)

By solving these equation x1 = x4 and x2 = −x3 is obtained. Thus, corresponding to
eigen value λ = (a + b)2, eigenvectors are [1 1 −1 1] and [1 −1 1 1].

For λ = (a − b)2,

(a2 + b2 − (a − b)2)x1 + (2ab)x4 = 0 or (2ab)x1 + (2ab)x4 = 0 (31)

(a2 + b2 − (a − b)2)x2 + (−2ab)x3 = 0 or (2ab)x2 + (−2ab)x3 = 0 (32)

(−2ab)x2 + (a2 + b2 − (a − b)2)x3 = 0 or (−2ab)x2 + (2ab)x3 = 0 (33)

(2ab)x1 + (a2 + b2 − (a − b)2)x4 = 0 or (2ab)x1 + (2ab)x4 = 0 (34)

By solving these equation x1 = −x4 and x2 = x3 is obtained. Thus, corresponding to
eigen value λ = (a − b)2, eigenvectors are [1 1 1 −1] and [−1 1 1 1].

These eigenvectors become column vectors in a matrix ordered by the size of the corre-
sponding eigen value. In the matrix below, the eigenvectors for λ = (a + b)2 are in column
one and two, and, the eigenvectors for λ = (a − b)2 are in column three and four.

⎡
⎢⎢⎣

1 1 1 −1
1 −1 1 1

−1 1 1 1
1 1 −1 1

⎤
⎥⎥⎦ (35)

Finally, by applying Gram-Schmidt orthonormalization process to the column vector,
above matrix is converted into an orthogonal matrix. Begin by normalizing
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For

−→v1 = [1 1 −1 1]
−→u1 = −→v1 /|−→v1 | = [1 1 − 1 1]/

√
12 + 12 + −12 + 12 = [1 1 − 1 1]/2 = [0.5 0.5 − 0.5 0.5]

(36)

For

−→v2 = [1 − 1 1 1]
−→w2 = −→v2 − −→u1 .−→v2 ∗ −→u1
−→u2 = −→w2/|−→w2| = [1 −1 1 1]/

√
12 + −12 + 12 + 12 = [1 − 1 1 1]/2 = [0.5 − 0.5 0.5 0.5]

(37)

For

−→v3 = [1 1 1 − 1]
−→w3 = −→v3 − −→u1 .−→v3 ∗ −→u1 − −→u2 .−→v3 ∗ −→u2
−→u3 = −→w3/|−→w3| = [1 1 1 − 1]/

√
12 + 12 + 12 + −12 = [1 1 1 − 1]/2 = [0.5 0.5 0.5 − 0.5]

(38)

For

−→v4 = [−1 1 1 1]
−→w4 = −→v4 − −→u1 .−→v4 ∗ −→u1 − −→u2 .−→v4 ∗ −→u2 − −→u3 .−→v4 ∗ −→u3
−→u4 = −→w4/|−→w4| = [−1 1 1 1]/

√
−12 + 12 + 12 + 12 = [−1 1 1 1]/2 = [−0.5 0.5 0.5 0.5]

(39)

All these �u ‘s result in an orthogonal matrix U which is given by
⎡
⎢⎢⎣

0.5 0.5 0.5 −0.5
0.5 −0.5 0.5 0.5

−0.5 0.5 0.5 0.5
0.5 0.5 −0.5 0.5

⎤
⎥⎥⎦ (40)

In order to find W, start with DTD
As D is the symmetric matrix, so DTD = DDT. This means that value of W will be equal

to the value of U which was derived earlier by DDT. So, WT is given by
⎡
⎢⎢⎣

0.5 0.5 −0.5 0.5
0.5 −0.5 0.5 0.5
0.5 0.5 0.5 −0.5

−0.5 0.5 0.5 0.5

⎤
⎥⎥⎦ (41)

For finding S, take square roots of the non-zero eigen values and populate the diagonal
with them, putting largest first. So, S is given by

⎡
⎢⎢⎣

a + b 0 0 0
0 a + b 0 0
0 0 a − b 0
0 0 0 a − b

⎤
⎥⎥⎦ (42)
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So, D = USWT is given by

D =

⎡
⎢⎢⎣

0.5 0.5 0.5 −0.5
0.5 −0.5 0.5 0.5

−0.5 0.5 0.5 0.5
0.5 0.5 −0.5 0.5

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a + b 0 0 0
0 a + b 0 0
0 0 a − b 0
0 0 0 a − b

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

0.5 0.5 −0.5 0.5
0.5 −0.5 0.5 0.5
0.5 0.5 0.5 −0.5

−0.5 0.5 0.5 0.5

⎤
⎥⎥⎦ (43)
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