
Wireless Pers Commun (2015) 81:661–683
DOI 10.1007/s11277-014-2151-y

A Novel Human Computer Interaction Aware Algorithm
to Minimize Energy Consumption

P. K. Gupta · G. Singh

Published online: 1 November 2014
© Springer Science+Business Media New York 2014

Abstract In this paper, we have developed a novel algorithm to minimize the energy con-
sumption of the computer system. We have discussed various scenarios to understand the
human interaction with computer system like, when a computer system is in idle mode or the
user of the system has left it inactive, however as both of the cases are not very significant
with reference to the energy consumption as well as heat dissipation. In another scenario,
we have utilized the central processing unit of the computer system to its full extent and
evaluated its performance in idle and active mode. In addition to this, we have also evaluated
the memory performance using the proposed algorithm.

Keywords Algorithm · Energy consumption · Human computer interaction · Performance
evaluation · Sustainable computing

1 Introduction

Recently, there has been an obvious explosion of technological growth, particularly in the
Information and Communication Technology (ICT) industry and several technological break-
throughs have taken place, and more are yet to come. Earlier, people used Central Processing
Unit (CPU) speeds of 386, 486 or 900 MHz for their work and currently, the minimum CPU
speed available is in the GHz range. However, the rate at which ICT devices are being pro-
duced is proportional to increase in the energy consumed and heat dissipated by these devices,
which poses the problem of power crisis and the exacerbation of the greenhouse gas problem

P. K. Gupta (B)
Department of Computer Science and Engineering, Jaypee University of Information Technology,
Waknaghat, Solan 173 215, India
e-mail: pradeep1976@yahoo.com

G. Singh
Department of Electronics and Communication Engineering, Jaypee University of Information
Technology, Waknaghat, Solan 173 215, India
e-mail: ghanshyam.singh@juit.ac.in

123

662 P. K. Gupta, G. Singh

and global warming. It has been proposed that by the year 2020 [1] there will be an enormous
demand for electricity by developing countries, such as India and China, and if a sufficient
number of energy-generation sources are not developed to meet this demand, the situation
will become worse. Therefore, the vision of a sustainable planet and the minimization of the
energy consumed by the computer systems motivated us to examine the energy-sustainable
Human Computer Interaction (HCI) methods [2]. These methods are useful for solving the
energy-consumption issue by the computer systems and being environmentally friendly. It is
believed that in the future there will be a great demand for energy-sustainable software.

The computer systems are supposed to use a variable amount of power when they are
switched on, which depends on their configuration and various software processes running
on them [3,4]. In computer systems, the operating system acts like a manager and controls
a computer’s hardware and software, therefore it is considered as a major source of energy
consumption. To manage the energy consumption, there are several predefined power schemes
at one’s disposal. These power-saving options are responsible for switching a computer
system to different states, such as Standby mode, Sleep mode, and monitor and hard disk
drive (HDD) shutdown, depending on the inactivity period defined by the power scheme of
the operating system. However, most of the time, the users rely on the default settings of
power schemes, which allow for only up to 20 % in power savings [5]. However, two major
issues that arise from this situation are as follows:

(i) Are these available power schemes sufficient for the energy-sustainable computing?
(ii) What type of energy-sustainable HCI methods could be applied for sustainable develop-

ment?

In response to these issues, this paper contributes the following:

• We have proposed a novel HCI algorithm that estimates the percentage of total CPU
usage by the various processes running on the machine over a given time interval. The
experimental results reveal that this technique is more effective in handling computer
system fully, and minimizing the energy consumption using sustainable development.
• Furthermore, we have implemented this technique on a Windows platform as it is con-

sidered one of the most preferred operating system. However, the use of JAVA has made
the implementation of this technique very user-friendly and begins as soon as the user
logs in to the system, therefore users need not configure it all the time.
• We have introduced the concept of a repository that keeps a record of all installed appli-

cations on the computer system and is maintained by the user. This repository requires a
one-time configuration by the user to classify the various running applications into two
groups, Hibernate and Shutdown, which helps the operating system to adopt the mode
when it is turned-off.
• Finally, we have evaluated the performance of proposed HCI algorithm using CPU as

well as memory performance analysis and find that the performance of the proposed HCI
algorithm is much better over existing techniques in the power schemes, with no memory
leakage or degradation in CPU speed.

The remainder of the paper is organized into various sections and subsections that address
the energy-sustainable methods to minimize the power consumption of computer systems. In
Sect. 2, we have summarized various reported literature related to energy consumption using
approaches like hardware, software as well as energy sustainable techniques. In Sect. 3, we
present the proposed HCI framework and algorithm, which addresses the issue of human
inactivity and idleness of the computer system. The proposed HCI algorithm continuously
monitors the total CPU usage (%) of various running processes on a system as well as human

123

A Novel Human Computer Interaction Aware Algorithm 663

activity on the system. The Sect. 4 presents the experimental setup and evaluation of the
proposed HCI algorithm. Section 5 discusses the results obtained thoroughly and considers
the various scenarios under which the proposed HCI algorithm is executed. Furthermore,
Sect. 6 discusses the performance evaluation of the proposed HCI algorithm and analyzes
the various results obtained after CPU and memory performance analysis. Finally, Sect. 7
concludes the work and recommends future directions.

2 Related Work

To date, much work has been performed with respect to the issue of energy consumption
by the computer systems. In this section, we describe only those areas that are related to
our proposed work and emphasize only software-based approaches. These software-based
approaches can be classified into various categories as per the available literature.

2.1 Dynamic Power Management-Based Approaches

Dynamic power management (DPM) is an approach by which one can reduce power con-
sumption by placing system components into different states. DPM also refers to the selective
shutting or slowing down of computer system components that are idle for a long time or
rarely used. These approaches can be classified into three subcategories: stochastic, predic-
tive and time-out approaches. Benini et al. [6,7] explored several approaches to system-level
DPM and modeled a power-managed system as a set of interacting power-manageable com-
ponents controlled by a power manager and then analyzed the DPM implementation issue
in electronic systems. Later, they used the stochastic approach to power-managed systems
and categorized the set of components into different states based on their performance and
power-consumption levels. They have created a power-management policy to decide when to
perform component state transitions and which transitions should be performed, depending
on system history, work-load, and performance constraints. In [8], Li has investigated the
multiprocessor environment with dynamically variable voltage and speed and analyzed the
problem of minimizing schedule length with energy-consumption constraints and the prob-
lem of minimizing energy consumption with schedule-length constraints; moreover, they
compared the performance of algorithms with optimal solutions analytically and validated
their results experimentally. Wang et al. [9] investigated the smart power-saving scheme
PowerSleep for servers with the aim of reducing static power consumption using DPM. To
minimize the mean power consumption, they have chosen the execution speed for servers
with dynamic voltage scaling and sleep periods when placing the servers into sleep mode with
DPM. Huang et al. [10] focused on implementing the DPM in hard real-time systems and
proposed online algorithms to change the mode of the system. They considered three modes
for the system, active mode, standby mode and sleep mode, and stated that based on the
controller’s decision the device can be switched to any mode to reduce energy consumption.
Using these algorithms, they predicted the next moment for mode switching. Abbasian et
al. [11] introduced an adaptive method for DPM that is based on wavelet forecasting theory,
which allows for very accurate modeling of system components with non-stationary behav-
ior. They also stated that this model can be used to capture the local information of a system
very accurately and achieved 95 % accuracy in their results when predicting the state of a
HDD. Hwang and Wu [12] focused on the need to switch off a computer system running in
idle or sleep mode and presented a predictive system-shutdown method to avoid sleep mode
operations and thereby save energy when running event-driven applications. They used static

123

664 P. K. Gupta, G. Singh

power management and DPM techniques to define and detect the sleep modes and idle period.
Srivastava et al. [13] conducted an extensive analysis of various system shutdown approaches
and proposed a predictive system shutdown strategy for event-driven applications in portable
devices. They developed two predictive formulas: one based on general regression-analysis
techniques to compare the length of an upcoming off period with that of a previous one and
the other obtained by the observation of on-off activity. Jiang et al. [14] investigated the
timeout policy for DPM and formulated a semi-Markov control process model to optimize
and analyze the performance of the timeout DPM policy. They also stated that the timeout
policy is equivalent to a stochastic policy in terms of power performance tradeoffs, and this
relationship is expressed as a mathematical formula.

2.2 Energy-Sustainable Approaches

In recent years, sustainability-based approaches have received a very good response when
designing any energy-saving approach. These types of approaches directly focus on the
environment and are categorized under sustainable computing. This section lists the var-
ious energy-sustainable approaches developed by various researchers over time. Wang et
al. [15] investigated the existing power models by re-evaluating them on multi-core com-
puter systems (MCSs). They proposed a two-level power model that estimates the power
consumption for each core on MCSs. Furthermore, based on this model, they designed and
implemented a software power analyzer by using only one performance-monitoring counter
and frequency information from the CPUs to identify the power behavior of MCSs. Chen et al.
[16] investigated the adverse effects of dynamic voltage and frequency scaling and running a
virtual machine on system performance using methods used for energy conservation in server
consolidation. They proposed a new application-aware approach by introducing a new set of
metrics: CPU gradients that predict the impact of changes in CPU frequency. These gradients
are simple models and represent the local point derivatives of the end-to-end response time
with respect to the resource parameters. They later used these CPU gradients for performance-
aware energy conservation by deploying energy controllers. Naumann et al. [17] addressed
the consumption of power and resources by ICT and presented a software-based model of
GREENSOFT. This model addresses the issue of energy reduction and resource consumption
in ICT and the use of ICT to contribute to sustainable development. Chen et al. [3] relied
on operating-system-level power-saving strategies to minimize the energy consumption of
computer systems and introduced the concept of process-level power management in their
tool pTopW. This tool captures real-time power-consumption data at the process level to
make critical power-saving decisions. They then introduced a power-aware system module
called Energy Guard, which is used to terminate the abnormal behavior of an application to
curb energy consumption.

2.3 Tool-Based Approaches

This section presents the various tool-based approaches proposed by the researchers to esti-
mate and minimize the energy consumed by computer systems. Here, we address a few tools
in addition to tools discussed in the previous section. Do et al. [18] developed a tool, pTop,
to estimate the amount of energy consumed by each application in a system. This is basi-
cally a process-level profiling tool that runs parallel to services of the operating system at
the kernel level and provides energy-consumption data. Gurumurthi et al. [19] investigated
the existing power simulators for their design and found that they are manly targeted for
particular hardware such as CPU and memory and do not capture the interaction between

123

A Novel Human Computer Interaction Aware Algorithm 665

other components. The SoftWatt tool developed by Gurumurthi et al. considers the disk drives
in addition to the CPU and memory and quantifies the power behavior of applications and
operating systems. This tool also locates the power hot spots in system components and iden-
tifies the power-hungry processes in operating systems. Banerjee and Agu [20] introduced
the tool PowerSpy, which tracks the battery power consumed by different running threads
and various I/O devices attached to the device. This tool requires no additional hardware to
monitor the power consumption of a device. Chen et al. [21] investigated a user-level simu-
lator at the micro-architectural and memory level and found that operating system activity is
not modeled in them. They introduced the tool SimWattch—a system-level simulation tool
and a flexible user-level simulation tool for predicting performance and power dissipation.

2.4 Other Useful Approaches

This section describes various useful approaches used to minimize the energy consumption
of a computer system. These approaches are based on different methods and algorithms
proposed by various researchers. Ramanathan and Gupta [22] investigated the problem of
power management in an embedded system and introduced online algorithms to manage the
power of these systems by shutting off parts of the system when they are not being used and
turning them back on when required. Li and John [4] characterized the power behavior of
an operating system with respect to a number of applications to understand the operating
system energy profile and to estimate its runtime energy dissipation. All estimates were
based around the operating system because it is considered a major software application
and dissipates a significant amount of power in executing and running applications. Bircher
and John [23] introduced the microprocessor performance counter for measuring the power
consumption of computer system. They considered the trickle-down effect of performance
events in a microprocessor. The results obtained after implementing the developed tool show
an accurate estimate of total system power, with an average error of<9 % per subsystem across
the considered workload. Cameron [24] investigated various power-management issues and
their threatening impacts. He stated that a number of techniques and tools are available to
calculate and optimize the power consumption of hardware components. Thus, he introduced
and demon strated formal approach to modeling how software affects power dissipation. Cho
et al. [25] took advantage of the dynamic-voltage and frequency-scaling technique used to
minimize the power consumption of a system and introduced an algorithm for embedded
devices that uses system scaling and sets the deadline of a task as per the value provided by
the user. Their study resulted in an algorithm that can reduce energy consumption by 45 %.

3 Proposed HCI Framework and Algorithm

As illustrated in the preceding section, there are various approaches that have been used to
minimize the energy consumption of the computer systems. The proposed HCI algorithm
focuses over CPU utilization, which is based on snapshots of total CPU utilization. If there
is any work/processing being performed on a computer system, the CPU of the system must
be in use and the percentage of total CPU usage should be greater than zero, otherwise, it
should be equal to zero. In [2], Gupta et al. also suggested that a processor not performing
any operation can be kept in sleep or hibernation mode to reduce the energy consumption of
the system. The proposed framework is shown in Fig. 1.

123

666 P. K. Gupta, G. Singh

Fig. 1 Framework of proposed HCI technique

This proposed HCI framework takes input from two sources:

• First, in the form of a configuration file where a user has to define the value of the snapshot
time (S) and its threshold limit (τ). Here, the threshold limit represents the percentage of
total CPU usage, which should be kept at its minimum. In the proposed HCI framework,
we have considered the range 20 ≤ τ ≤ 10 because during this time very few application
processes in addition to system processes are running on the computer system and CPU
remains in idle state.
• Second, the input is also taken from the user when logging in to the computer system, the

user must select the roughly estimated time (L) he/she will be working on the computer
system. Thus, it follows that:

Snapshot time (S) < Total Login duration (L) (1)

If any difference is found in the values of S and L , then the proposed HCI algorithm as given
in Sect. 3.1 will consider the total login duration (L) as the snapshot time (S). In the next
step, the total login duration (L) will be divided equally into the small chunks of snapshot
times S, 2S, 3S, . . . , nS. This value is determined as follows:

Total number of chunks of snapshot times = Total login duration (L)

Snapshot time (S)
(2)

For example, if a user inputs a total login duration L = 15 min and the value of the snapshot
time defined in configuration file S = 5 min, according to Eq. (2) there will be only three
chunks of snapshot times, S = 5 min, 2S = 10 min and 3S = 15 min. This shows that after
each interval of 5 min. the total CPU usage will be checked. In the next step, to increase the
accuracy of the system’s decision, we have defined the concept of snapshots for obtaining
the percentage of total CPU usage after each interval of time (X), which is also known as
the sleeping time within a given chunk of snapshot time (S).

X = S/n (3)

123

A Novel Human Computer Interaction Aware Algorithm 667

Fig. 2 Snapshots of total CPU usage (%): a below threshold value and b above threshold value

where n represents the total number of CPU usage (%) snapshots in each chunk. In the
proposed technique, the value of X is 1 min, which means that after each 1-min of time
interval the percentage of total CPU usage will be stored in an array. These stored values are
compared with the predefined value of the threshold limit. If it is obtained, the percentage
of total CPU usage consumed by all processes running on the system is below the defined
threshold value, as shown in Fig. 2a, which indicates that the user is not actively working on
the system or very few processes are running on the system, then the proposed HCI algorithm
will make its decision accordingly to minimize the energy consumption. Furthermore, if it
is found that the percentage of total CPU usage exceeds the threshold value in any interval
of time for a given chunk, as shown in Fig. 2b, which means that the CPU of the machine is
being utilized and therefore the user or some application processes are continuously working,
the next snapshot chunk will be traced out and the percentage of total CPU usage will be
stored to determine the idle period of the CPU. The decision to “Hibernate” or “Shutdown”

123

668 P. K. Gupta, G. Singh

before the system goes off will be completely based on the configuration of the repository
and the various applications running on the operating system at that time.

3.1 HCI Algorithm

On the basis of previously discussed HCI framework (in previous section), this section rep-
resents the HCI algorithm and collects the various CPU processing data for analysis and
result purpose. The functioning of this algorithm is divided into three easy steps. Starting
with the various used variables in the algorithm, step-1 is associated with the initialization
of variables like CPU Usage (ξ), threshold limit for CPU usage (τ), snapshot duration (S),
time to compare the snapshots (s), total login duration (L) and an array of CPU usage (A).
In step-2, timer T1 and T2 gets started according to the value provided by the user. Here, the
timer T1 represents the Total login duration given by the user whereas the timer T2 represents
the duration time to compare the snapshots of total CPU percentage. The timer T2 gets started
internally and its value is predefined in the configuration file. In step-3, which is a major step
in this algorithm that computes the total CPU usage (%) and store this value into an array
and compares the array value for taking the decision when to shut down or hibernate the
computer system.
Symbols used in this algorithm

(i) ξ—For CPU usages
(ii) τ—The threshold for CPU usage

(iii) S—The snapshot duration.
(iv) s—Time to compare the snapshots.
(v) L—The total login duration time

(vi) X—The sleeping time
(vii) A—An array of CPU Usage

(viii) T1 and T2—Timers
(ix) C—Counter

Step-1

Initialize ξ, τ, s, S, L and A
τ ← Take the value from configuration file which is stored by the user while settings of
power saver module.
s ← Take the value from configuration file which is stored by the user for comparing the
various snapshots.
S← Take the value from configuration file which is stored by the user while settings of
the power saver module.
L ← Take the input from the user during login to the system.
A creates an array of size s. C ← 0

Step-2

Starts two timer threads T1 and T2;
T1: expires after L × 60× 1,000 ms
T2: expires after each 1× 60× 1,000 ms and sleeps for X time.

123

A Novel Human Computer Interaction Aware Algorithm 669

Step-3
IF T2 expires THEN

a) X 1 x 60 x 1000
b) Calculate ξ CPU (P1) + CPU (P2) ++ CPU(Pn)
c) A[C] ξ
d) IF C = = s THEN

IF THEN
Invoke user prompt to find user availability on the system;

IF any loss-able program is running, (checks with repository)
HIBERNATE the computer system

ELSE
SHUT DOWN the computer system

END
ELSE

C 0
END

e) Increment C C + 1 and T2 should sleep for X (ms)
END
END

4 Experimental Methodology

To characterize the behavior of the HCI algorithm herein proposed, we first describe the
experiment setup used to verify the proposed algorithm. Then, we will describe how we
performed the experiment and compared the various states of computer systems with respect
to the percentage of total CPU used by the various running processes. This section describes
the experiment setup and the evaluation of the algorithm under the executed workload.

4.1 Experiment Setup

We have used a cluster of 15 machines to execute proposed HCI algorithm and thus record
various snapshots of the percentage of total CPU being used during different intervals of
time.

The experimental platform as stated above, we have used cluster of IBM Thinkcentre
desktops. Table 1 summarizes the configurations of cluster machines that are used in this
experiment to evaluate the proposed HCI algorithm. The simulated processors is Intel Core
i3 2100 with core speed of 1,597.8 MHz and stock frequency 3,100 MHz. The L1 data cache
is 8-way set associative, with size 2×32 KBytes, whereas the L2 cache size is 2×256 KBytes
and L3 cache is 12-way set associative with 3 MByte size, for all the cluster machines. The
processors operate at voltages of 0.986 V. The memory type is DDR3 with 2 GB size, single
bank and 665.7 frequencies for all cluster machines. The HDDs used to store the percentage
of total CPU usage data and for the performance evaluation of cluster machines are from
Seagate, measuring 320 GB SATA and running at 7,200 rpm.

4.2 Evaluation

We have used the software StressMyPC [26] for a thorough evaluation for the proposed HCI
algorithm. This software is freely available on the internet and checks the CPU and HDD
of the system by executing some algorithms. We have used this software on all the cluster
machines and executed it so that the CPU of the computer system could remain busy for a
certain period of time to determine the accuracy of proposed algorithm. The snapshot time
of the percentage of total CPU usage is recorded for each second in snapshot chunks lasting

123

670 P. K. Gupta, G. Singh

Table 1 Cluster configuration

Component Specification parameters Cluster of 15 machines

Make Manufacturer IBM Think centre
Type Desktop

CPU Name Intel Core i3 2100
Code name Sandy Bridge
No. of processor 1
Processor specification Intel� CoreTM i3-2100 CPU @ 3.10 GHz
Package Socket 1155 LGA (0× 1)

Technology 32 nm
Core speed 1,597.8 MHz
Stock frequency 3,100 MHz
Core VID 0.986 V
Max TDP 65 W
Multiplier×FSB 16.0× 99.9 MHz
Number of cores 2
Number of threads 4
Instruction set MMX, SSE (1, 2, 3, 3S, 4.1, 4.2), EM64T, VT-x, AVX
L1 Data cache 2× 32 KBytes, 8-way set associative, 64-byte line size
L2 Cache 2× 256 KBytes, 8-way set associative, 64-byte line size
L2 Cache 3 MBytes, 12-way set associative, 64-byte line size

Memory Memory Type DDR3
Size 2,048 MBytes
Number of banks 1
Voltage 1.5 V
Frequency 665.5 MHz

Disk Size 320 GB SATA
Manufacturer Seagate
Speed 7,200 rpm

one minute each. We also recorded the snapshots of the total CPU usage when there was
no process running on the system or when there was a process running completely within
the computer system’s memory and there was no or very limited interaction with the CPU.
We have used NetBeans [27] to implement the proposed algorithm. Then, using the profiler
available in NetBeans IDE, we have evaluated the performance of the proposed algorithm
by monitoring the memory and CPU. The results obtained from this profiling have been
discussed in the performance evaluation chapter.

5 Results

This section describes the various results obtained after executing the proposed HCI algorithm
in a real environment. We used various scenarios—usage scenario1, usage scenario 2 and
an internal scenario—to evaluate the proposed HCI algorithm. Usage scenarios1 and 2 also
describe an environment that includes the system and operating parameters. These scenarios
were implemented on all cluster machines. Specifically, we executed commonly used software
and obtained the results for the following scenarios.

5.1 Usage Scenario 1

This scenario represents the idle functioning of computer systems, during which no work is
carried out. The user must simply login to the system and execute certain software, as per

123

A Novel Human Computer Interaction Aware Algorithm 671

Table 2 Usage scenario 1 System parameters Cluster of 15 machines

Operating system 32-bit, Windows 7 Professional
Software executed by the user NIL
Total number of running processes 45
Status Idle
Operating parameters for algorithm
Total login duration (L) 20 min
Snapshot comparison time (s) 1 min
Threshold value (τ) 20 %

Fig. 3 Total CPU usage (%) for idle computer systems in the cluster

Table 2, and leave the system inactive due to some unknown reason. This is the most common
user practice around the globe. The running computer system not only consumes energy but
also completely depends on the operating system’s power scheme settings to switch to idle
mode or hibernate. Thus, this is when our proposed algorithm can be initialized, and the
system could be powered off long before the determined power scheme is implemented.

The results obtained for the scenario described above are presented in Fig. 3 for all cluster
machines. For L = 20, s=1 and τ = 20, Fig. 3 is equally divided and represent a total of
S=20 chunks of snapshots with lasting 60 s each for all cluster machines. We recorded the
various snapshots for the percentage of total CPU usage in a file for each second. To gain
greater clarity and to continue with experiment up to the last moment of total login duration,
we canceled the T2 timer whenever it was invoked at the end of each snapshot. Thus, at
the end of each minute, the final snapshot value of the total CPU usage percentage was
recorded, which is slightly higher than the previous one because the execution of the timer

123

672 P. K. Gupta, G. Singh

Table 3 Usage scenario 2 System parameters Cluster of 15 machines

Operating system Windows7
Software executed by the user StressMyPC (Nenad Hrg)
Total number of running processes 45+1 (StressMyPC)
Status Active state
Operating parameters for algorithm
Total login duration (L) 20 min
Snapshot comparison time (s) 1 min
Threshold value (τ) 20 %

Fig. 4 Total CPU usage (%) for active computer systems in the cluster

event also increases the percentage of total CPU usage. However, the peaks in the middle of
each snapshot are only due to the various processes running on the system. Therefore, if there
is the percentage of total CPU usage is higher than the threshold value, then HCI algorithm
will check the next snapshot and record the percentage of total CPU usage for each second
in that snapshot.

5.2 Usage Scenario 2

This scenario represents the active functioning of the cluster machines, which means that there
is a continuous pumping of data from the CPU side or instructions are being continuously
fed from the user side to the system, which keeps the CPU busy, this is unlike the previous
scenario, where user instructions were limited to the cancelation of the T2 timer. To keep the
CPU busy, we used the StressMyPC program with other programs such as Microsoft Office
and Internet Explorer. Table 3 presents the various system and operating parameters under
which the user logs in to the system.

However, no change in the operating parameters observed, and the proposed algorithm is
executed under the same environment as it was in the previous scenario. Figure 4 illustrates

123

A Novel Human Computer Interaction Aware Algorithm 673

the results obtained for all cluster machines. The processing represented by Fig. 4 is similar
to that of Fig. 3; because we kept the operating parameters remain same. The only difference
from the previous scenario is that the CPU of all cluster machines is actively involved in
processing and we can easily notice that the percentage of the total CPU reaches up to 80%
in active state. Figure 4 clearly shows that in the active state for all the cluster machines
average percentage of the total CPU usage always remains above 50 % during the execution
of the program StressMyPC as this program keeps the CPU busy all the time.

5.3 Internal Scenario

This scenario represents the various results, obtained and used by the proposed HCI algorithm
make the decision whether to keep the computer system running or not. As we have seen in the
previously discussed usage scenarios 1 and 2, the percentage of total CPU usage was recorded
for each second in chunks lasting one minute each. In these various recorded percentage of
total CPU usages for each chunk, we focus ourselves on the maximum recorded value of total
CPU usage for the each cluster machines, so that it could be find whether there is any peak
of running processes in each snapshot chunk that breaches the defined threshold limit or not.
Figure 5 represents the maximum-recorded value of CPU usage for each cluster machines,
in each chunk of snapshot respectively and compared with each other and totally based upon
the value of snapshot time S.

For the previously discussed usage scenarios 1 and 2, we have considered the value of
snapshot comparison time s=1 min, which means each chunk of snapshot is treated separately
and there will be no comparison. Furthermore, based on recorded maximum values for CPU
usage, the proposed algorithm decides when to activate or cancel the T2 timer. The following
Table 4 represents the recorded value of maximum CPU usage (%) for all cluster machines
(M1–M15) in both the modes active (A) and idle (I) at a given time interval of up to 20 min.

From Table 4, we can derive the various graphs for both the states of each cluster machines.
As shown in Fig. 5a when the machine is in idle state then the snapshots of total percentage
of maximum CPU usage by cluster machine M1 always remains below the defined threshold
value, whereas in active state percentage of maximum CPU usage for each interval of time
remains above the defined threshold and represents that the continuous processing is being
done on the cluster machine M1.

In Fig. 5b, the snapshots taken for total percentage of CPU usage for cluster machine
M2 at each interval of time are very much similar to the snapshots presented in Fig. 5a and
remains always below the defined threshold in its idle state and above the threshold in its
active state during the supplied login duration time.

In, Fig. 5c for cluster machine M3, there is one snapshot of time interval at the start for
idle state that breaches the defined threshold value and no user prompt will be invoked by
proposed HCI snapshot algorithm and the next interval will be checked whereas in active
state percentage of total CPU usage remains always above the defined threshold.

Further, the snapshots of percentage of total CPU usage for cluster machines M4, M5,
M6, and M7 in Fig. 5d–g as shown above, always remains below the defined threshold in
their idle state and above the defined threshold in their active state. Here, in the idle states,
user prompt is invoked after each interval of time to check whether user is available or not
on the machine.

In Fig. 5h, for cluster machine M8, utilization of CPU is very much similar to the machine
M3 as there is one snapshot of percentage of total CPU usage in its idle state which breaches
the defined threshold value and the next time interval is checked by the algorithm whereas
in active state percentage of total CPU usage always remains above the threshold.

123

674 P. K. Gupta, G. Singh

Fig. 5 Maximum CPU usage (%) by cluster machines for each snapshot when active and idle. a M1, b M2,
c M3, d M4, e M5, f M6, g M7, h M8, i M9, j M10, k M11, l M12, m M13, n M14, o M15

123

A Novel Human Computer Interaction Aware Algorithm 675

Fig. 5 continued

123

676 P. K. Gupta, G. Singh

Ta
bl

e
4

M
ax

im
um

C
PU

us
ag

e
(%

)
by

ea
ch

cl
us

te
r

m
ac

hi
ne

s
(M

1–
M

15
)

in
ac

tiv
e

(A
)

an
d

in
id

le
(I

)
m

od
e

up
to

20
m

in

Sn
ap

sh
ot

tim
e

in
te

rv
al

(i
n

m
in

)

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

1
55

7
60

10
71

28
80

12
66

12
57

5
74

9
59

10
64

13
76

17
63

18
58

17
70

7
67

15
80

28

2
58

2
58

6
58

10
60

3
73

12
66

13
55

6
59

14
61

15
57

4
57

10
57

4
69

5
59

15
59

15

3
56

5
57

13
61

17
56

5
55

11
55

9
56

13
75

8
55

10
70

15
80

14
56

15
57

9
56

11
56

13

4
59

13
58

7
56

4
56

8
59

11
56

13
77

19
56

16
66

6
56

6
62

7
56

3
59

5
56

1
56

3

5
57

11
56

2
61

8
57

1
56

3
57

15
57

5
55

13
57

16
61

12
57

2
58

6
56

0
65

9
62

6

6
55

7
54

13
55

10
57

6
61

3
56

12
66

10
64

8
57

14
56

12
73

10
57

9
61

4
56

10
56

13

7
59

1
55

9
56

10
56

11
58

18
57

7
57

8
58

8
55

11
59

10
56

11
56

7
56

10
56

6
58

11

8
63

11
58

2
57

5
63

3
56

7
62

6
56

2
55

5
55

2
56

3
55

2
56

1
56

2
59

6
56

5

9
56

3
65

7
56

3
59

1
65

6
57

6
56

13
55

8
57

2
56

2
68

3
57

6
57

2
56

9
56

6

10
55

3
62

9
56

9
56

11
58

16
57

11
58

9
55

5
59

7
56

15
63

12
61

11
56

12
58

3
60

16

11
56

14
58

4
59

15
59

8
56

9
56

3
64

4
65

2
55

5
56

7
59

7
56

11
56

10
55

9
60

4

12
55

7
56

2
55

2
57

11
54

1
58

2
56

3
56

5
59

5
55

1
60

2
56

3
59

0
56

13
55

6

13
56

1
58

11
57

11
59

4
56

2
56

12
56

10
55

10
56

4
56

18
56

1
56

11
58

6
57

5
56

11

14
57

15
57

7
54

10
56

11
56

8
59

6
56

8
58

3
56

12
55

10
58

10
56

6
56

12
56

2
58

17

15
56

8
55

2
55

2
56

3
56

4
56

3
58

2
59

1
64

3
56

1
58

1
55

1
56

8
56

5
56

5

16
55

5
59

8
58

9
55

8
55

12
56

4
56

7
56

9
56

9
62

3
56

2
66

6
60

2
56

8
59

4

17
56

1
60

11
57

8
57

15
56

9
56

13
57

8
57

5
55

9
59

7
65

10
56

11
62

12
56

10
62

10

18
57

8
55

1
56

6
59

12
58

14
55

3
56

18
57

5
56

7
55

11
54

7
58

3
58

7
57

7
56

18

19
59

10
55

14
56

6
57

2
56

1
56

2
56

4
57

15
57

5
56

7
57

2
57

6
56

8
56

15
56

5

20
56

6
66

8
57

7
56

3
58

3
56

5
55

4
57

5
57

4
56

5
63

3
58

1
61

4
54

3
69

3

123

A Novel Human Computer Interaction Aware Algorithm 677

In Fig. 5i–o as shown below for cluster machines M9, M10, M11, M12, M13, M14, and
M15 represents the percentage of total CPU usage that remains always below the defined
threshold in the idle state and above the threshold in active state for all the cluster machines.

From the above figures, we can easily find out that when there is no processing on the
machines or machines are in idle state than the total CPU usage always remains below the
defined threshold and the same condition is detected. The proposed HCI algorithm which
tries to find the users availability by invoking the prompt after each defined interval of time
period whenever it is found that the percentage of total CPU usage is below the threshold.

6 Performance Evaluation

This section describes the various performance measures used to evaluate our proposed
algorithm in a real environment. We used the profiler available in NetBeans to examine
our algorithm with respect to performance-related issues. By using the profiler, one can
easily analyze the performance of a system’s CPU and memory, monitor application, object
allocation, garbage collection and memory leakage, etc. We profiled the proposed algorithm
to analyze the CPU and memory performance using the basic settings with default overhead.

6.1 Analyze CPU Performance

By using this performance measurement, we were able to analyze our proposed HCI algorithm
and obtain data related to its performance, including the time required to execute a code
fragment within a method and the number of times that particular method was invoked. This
analysis is shown in Fig. 6a–c, which show the call tree class of total CPU usage, login
duration and various threads created to record the total CPU usage for each minute.

In the obtained results, we have analyzed the CPU performance up to 20 min, using only
all project related classes. In Fig. 6a various call tree methods are shown. Here, User Thread-8
continues till the end of login-duration and User Thread-7 stops its working as the framework
settle down. In Fig. 6b, the user threads are created for monitoring the user activity on the
computer system for each minute and whenever the percentage of total CPU usage is found
below the threshold a popup window get activated to know the user status on the machine.
This pop-up window also created some user thread for a smaller duration of time as in this
performance evaluation we have always given our consent in “YES” whenever the pop-up
window was invoked and executed the process till the end of login-duration. In Fig. 6c some
user threads are expanded to show their detailed functioning. In this figure, we have expanded
the user Thread-10, 12, 18 and 14, all these threads are invoked 60 times and recorded the
percentage of total CPU Usage for each minute in a file.

For all the created user threads in each minute, we found no thread which over utilizes
the CPU. Here, all the methods are executed for their assigned time limit and proposed HCI
algorithm invokes the popup window whenever the percentage of total CPU usage found
below the threshold for that interval as we have considered the snapshots timing for a minute.

6.2 Analyze Memory Performance

To verify the performance of our algorithm, memory must also be considered. By using this
measurement, we can analyze memory usage according to the various objects that have been
allocated space in it, memory leakage, threads and loaded class. Using VM telemetry, we
analyzed these memory measures and obtained the results shown in Fig. 7a–c.

123

678 P. K. Gupta, G. Singh

Fig. 6 Analysis of CPU performance. a Call tree methods for AWT-EventQueue-0, Thread-8, main, and
Thread-7. b Various user threads to monitor user activity. c Few expanded user threads with methods

123

A Novel Human Computer Interaction Aware Algorithm 679

Fig. 7 Analyzing memory performance: a Memory–Heap. b Memory–GC, and c1, c2 thread/loaded classes

123

680 P. K. Gupta, G. Singh

Fig. 7 continued

Here, Fig. 7a shows that our proposed HCI algorithm uses a minimum of 9.0 MB and a
maximum of 13 MB of heap out of a total available heap size of 16.318 MB. This increase in
the size of the heap is due to the expiration of the T2 timer, which occurs after each minute.
Moreover, whenever garbage is collected by the garbage collector, we see a steep fall in
the graph and heap is released; this process continues until the end of the login duration.
Here, from Fig. 7b one can find that once the framework gets initialized the total number of
surviving generations becomes constant and remains at 6 for the proposed HCI algorithm, till
the login-duration ends. So, there is no problem of memory leakage in proposed framework.
Moreover, maximum relative time spent in garbage collection is 1.2 % only.

Figure 7c1, c2 shows the various threads and loaded classes in the memory during the
execution of the proposed HCI algorithm. Here, various peaks are shown after each minute
of time interval, which represents that the algorithm is performing a check throughout the
interval to find the percentage of total CPU usage and this utilization is found always below
the threshold for each snapshots then an inner timer in the form of popup window to find the
user’s activity on the machine gets started otherwise this inner timer thread gets cancelled.
The purpose of popup window is to know the user consensus on the machine. Here, to perform
the performance evaluation till the end of login-duration we have pressed “YES” whenever
the popup window was activated. These figures also indicates that immediately after the
execution of the algorithm, the number of loaded classes becomes stable in the memory

7 Conclusion

In this paper, we have proposed an HCI algorithm to minimize the energy consumption by
computer systems. The main objective of the proposed technique is to structure concepts,
strategies, and activities to design an effective algorithm. The proposed algorithm is imple-
mented using the various total CPU utilization snapshots, which is specially designed for
desktop computer systems, though the same can also be used for laptop systems. This algo-
rithm constantly tracks the total CPU usage of all running processes on a computer system,

123

A Novel Human Computer Interaction Aware Algorithm 681

and whenever it is found that the computer system is in idle mode or the user of the system
has left the computer inactive, the proposed algorithm switches the state of the system from
idle or inactive to hibernate or shutdown. The working principal of the proposed algorithm is
based on determining whether the system is idle or in an inactive state because theoretically
at that time the percentage of total CPU usage should be zero; otherwise, as indicated by our
results, it should be below the threshold limit defined by the user to enable the system make
the decision to hibernate or shutdown. However, through the experiment and performance
evaluation, we have obtained that the proposed algorithm is very effective and for some cases
which claim upto 90 % reduction in total energy consumption. To enhance the accuracy of
proposed HCI algorithm, we have evaluated the CPU and memory performance. The results
obtained from this evaluation are very impressive, showing no slowdown in CPU speed or
memory leakage. The results show that the proposed algorithm meets the goals theoretically
as well as practically for designing a complete energy-sustainable tool and suggest that the
changes can be incorporated into the power schemes of operating systems. We hope this
algorithm will help researchers/scientists to develop a comprehensive solution for the energy
efficient HCI computing.

Acknowledgments The authors are sincerely thankful to the potential reviewers for their fruitful comments
and suggestions to improve the quality of the manuscript.

References

1. Technology outlook 2020. http://production.presstogo.com/fileroot/gallery/DNV/files/preview/
9ec457bc750b4df9e040007f0100061c/9ec457bc75094df9e040007f0100061c.pdf. Accessed June
15, 2014.

2. Gupta, S. K. S., Mukherjee, T., Varsamopoulos, G., & Banerjee, A. (2011). Research directions in energy-
sustainable cyber–physical systems. SUSCOM, 1(1), 57–74. doi:10.1016/j.suscom.2010.10.003.

3. Chen, H., Li, Y., & Shi, W. (2012). Fine-grained power management using process-level profiling. SUS-
COM, 2(1), 33–42. doi:10.1016/j.suscom.2012.01.002.

4. Li, T., & John, L. K. (2003). Run-time modeling and estimation of operating system power consumption.
SIGMETRICS Performance Evaluation Review, 31(1), 160–171. doi:10.1145/885651.781048.

5. Blackburn, M., & Collins, G. (2009). Why power schemes are not enough. http://www.computerworlduk.
com/cmsdata/whitepapers/3208279/powerprofile.pdf. Accessed May 20, 2012.

6. Benini, L., Bogliolo, A., & De Micheli, G. (2000). A survey of design techniques for system-level dynamic
power management. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8(3), 299–316.
doi:10.1109/92.845896.

7. Benini, L., Bogliolo, A., Paleologo, G. A., & De Micheli, G. (1999). Policy optimization for dynamic
power management. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
18(6), 813–834. doi:10.1109/43.766730.

8. Li, K. (2008). Performance analysis of power-aware task scheduling algorithms on multiprocessor com-
puters with dynamic voltage and speed. IEEE Transactions on Parallel and Distributed Systems, 19(11),
1484–1497. doi:10.1109/TPDS.2008.122.

9. Wang, S., Liu, J., Chen, J.-J., & Liu, X. (2011). Power sleep: A smart power-saving scheme with sleep
for servers under response time constraint. IEEE Journal on Emerging and Selected Topics In Circuits
and Systems, 1(3), 289–298. doi:10.1109/JETCAS.2011.2167532.

10. Huang, K., Santinelli, L., Chen, J.-J., Thiele, L., & Buttazzo, G. C. (2010). Adaptive power management
for real-time event streams. In Proceedings of IEEE 15th Asia and South Pacific design automation
conference (pp. 7–12). doi:10.1109/ASPDAC.2010.5419928.

11. Abbasian, A., Hatami, S., Afzali-Kusha, A., Nourani, M., & Lucas, C. (2004). Event-driven dynamic
power management based on wavelet forecasting theory. In Proceedings of the 2004 international sym-
posium on circuits and systems ISCAS (pp. 325–328). doi:10.1109/ISCAS.2004.1329528.

12. Hwang, C.-H., & Wu, A. C. H. (2000). A predictive system shutdown method for energy saving of event-
driven computation. ACM Transactions on Design Automation of Electronic Systems, 5(2), 226–241.
doi:10.1109/ICCAD.1997.643266.

123

http://production.presstogo.com/fileroot/gallery/DNV/files/preview/9ec457bc750b4df9e040007f0100061c/9ec457bc75094df9e040007f0100061c.pdf
http://production.presstogo.com/fileroot/gallery/DNV/files/preview/9ec457bc750b4df9e040007f0100061c/9ec457bc75094df9e040007f0100061c.pdf
http://dx.doi.org/10.1016/j.suscom.2010.10.003
http://dx.doi.org/10.1016/j.suscom.2012.01.002
http://dx.doi.org/10.1145/885651.781048
http://www.computerworlduk.com/cmsdata/whitepapers/3208279/powerprofile.pdf
http://www.computerworlduk.com/cmsdata/whitepapers/3208279/powerprofile.pdf
http://dx.doi.org/10.1109/92.845896
http://dx.doi.org/10.1109/43.766730
http://dx.doi.org/10.1109/TPDS.2008.122
http://dx.doi.org/10.1109/JETCAS.2011.2167532
http://dx.doi.org/10.1109/ASPDAC.2010.5419928
http://dx.doi.org/10.1109/ISCAS.2004.1329528
http://dx.doi.org/10.1109/ICCAD.1997.643266

682 P. K. Gupta, G. Singh

13. Srivastava, M. B., Chandrakasan, A. P., & Brodersen, R. W. (1996). Predictive system shutdown and
other architecture techniques for energy efficient programmable computation. IEEE Transactions on
VLSI Systems, 4(1), 42–55. doi:10.1109/92.486080.

14. Jiang, Q., Xi, H. S., & Yin, B. Q. (2010). Adaptive optimisation of timeout policy for dynamic power
management based on semi-Markov control processes. IET Control Theory and Applications, 4(10),
1945–1958. doi:10.1049/iet-cta.2009.0467.

15. Wang, S., Chen, H., & Shi, W. (2011). SPAN: A software power analyzer for multicore computer systems.
SUSCOM, 1(1), 23–34. doi:10.1016/j.suscom.2010.10.002.

16. Chen, S., Joshi, K. R., Hiltunen, M. A., Schlichting, R. D., & Sanders, W. H. (2011). Using CPU gradients
for performance-aware energy conservation in multitier systems. SUSCOM, 1(2), 113–133. doi:10.1016/
j.suscom.2011.02.002.

17. Naumann, S., Dick, M., Kern, E., & Johann, T. (2011). The GREENSOFT Model: A reference model
for green and sustainable software and its engineering. SUSCOM, 1(4), 294–304. doi:10.1016/j.suscom.
2011.06.004.

18. Do, T., Rawshdeh, S., & Shi, W. (2009). ptop: A process-level power profiling tool. In Proceedings of the
2nd workshop on power aware computing and systems (HotPower’09).

19. Gurumurthi, S., Sivasubramaniam, A., Irwin, M. J., Vijaykrishnan, N., Kandemir, M., Li, T., & John, L.
K. (2002). Using complete machine simulation for software power estimation: The SoftWatt approach.
In Proceedings of the eighth international symposium on high-performance computer architecture
(HPCA.02) (pp. 1–10). doi:10.1109/HPCA.2002.995705.

20. Banerjee, K. S., & Agu, E. (2005). PowerSpy: Fine-grained software energy profiling for mobile devices.
In Proceedings of IEEE international conference on wireless networks, communications and mobile
computing (pp. 1136–1141). doi:10.1109/WIRLES.2005.1549572.

21. Chen, J., Dubois, M., & Stenström, P. (2007). Simwattch: Integrating complete-system and user-level
performance and power simulators. IEEE Micro, 27(4), 34–48. doi:10.1109/MM.2007.73.

22. Ramanathan, D., & Gupta, R. (2000). System level online power management algorithms. In Proceedings
Design, Automation, Test in Europe (pp. 606–611). doi:10.1109/DATE.2000.840847.

23. Bircher, W. L., & John, L. K. (2007). Complete system power estimation: A trickle-down approach
based on performance events. In IEEE International Symposium on Performance Analysis of Systems and
Software (pp. 158–168). doi:10.1109/ISPASS.2007.363746

24. Cameron, G. (2005). Modelling software driven power consumption. In Instrumentation and Measurement
Technology Conference (IMTC), Ottawa, Canada (pp. 2082–2087). doi:10.1109/IMTC.2005.1604540.

25. Cho, K.-M., Liang, C.-H., Huang, J.-Y., & Yang, C.-S. (2011). Design and implementation of a gen-
eral purpose power-saving scheduling algorithm for embedded systems. In IEEE conference on signal
processing, communications and computing (ICSPCC) (pp. 1–6). doi:10.1109/ICSPCC.2011.6061645.

26. StressMyPC. http://www.softwareok.com/?seite=Microsoft/StressMyPC. Accessed June 23, 2012.
27. NetBeans IDE 7.1.2. http://netbeans.org/community/news/show/1556.html. Accessed May 05, 2012.

P. K. Gupta received Ph.D. degree in Computer science and Engi-
neering from the Jaypee University of Information Technology, Wak-
naghat, Solan, India in 2012. He graduated in Informatics and Com-
puter Engineering from Vladimir State University, Vladimir, Russia,
in 1999 and received his M.E. degree in Informatics and Computer
Engineering in 2001 from the same university. He has been asso-
ciated with academics more than twelve years in different institu-
tions like BIT M.Nagar, RKGIT Ghaziabad in India. Currently, he is
working as Assistant Professor (Sr. Grade) with the Department of
Computer Science and Engineering, Jaypee University of Information
Technology, Waknaghat, Solan, India. He has supervised a number of
B.Tech/M.Tech/M.Phil. theses from various universities of India. Dr.
Gupta has served as a General Co Chair for 2013 IEEE Second Inter-
national Conference on Image Information Processing. He has orga-
nized more than 30 workshops on LINUX, PHP and MySQL, LaTeX,
Python, SciLab and three Faculty development programs (FDPs) on
LaTeX and SciLab. His research interests include Storage Networks,

Green Computing, Software Testing, Cloud Computing, and Internet-of-Things. He has worked as a reviewer
for several reputed Journals and Conferences. He is a Member of IEEE, Professional member of ACM, Life
Member of CSI and Life member of Indian Science Congress Association.

123

http://dx.doi.org/10.1109/92.486080
http://dx.doi.org/10.1049/iet-cta.2009.0467
http://dx.doi.org/10.1016/j.suscom.2010.10.002
http://dx.doi.org/10.1016/j.suscom.2011.02.002
http://dx.doi.org/10.1016/j.suscom.2011.02.002
http://dx.doi.org/10.1016/j.suscom.2011.06.004
http://dx.doi.org/10.1016/j.suscom.2011.06.004
http://dx.doi.org/10.1109/HPCA.2002.995705
http://dx.doi.org/10.1109/WIRLES.2005.1549572
http://dx.doi.org/10.1109/MM.2007.73
http://dx.doi.org/10.1109/DATE.2000.840847
http://dx.doi.org/10.1109/ISPASS.2007.363746
http://dx.doi.org/10.1109/IMTC.2005.1604540
http://dx.doi.org/10.1109/ICSPCC.2011.6061645
http://www.softwareok.com/?seite=Microsoft/StressMyPC
http://netbeans.org/community/news/show/1556.html

A Novel Human Computer Interaction Aware Algorithm 683

G. Singh received Ph.D. degree in Electronics Engineering from the
Indian Institute of Technology, Banaras Hindu University, Varanasi,
India, in 2000. He was associated with Central Electronics Engineering
Research Institute, Pilani, and Institute for Plasma Research, Gandhina-
gar, India, respectively, where he was Research Scientist. He had also
worked as an Assistant Professor at Electronics and Communication
Engineering Department, Nirma University of Science and Technology,
Ahmedabad, India. He was a Visiting Researcher at the Seoul National
University, Seoul, South Korea. At present, he is Professor with the
Department of Electronics and Communication Engineering, Jaypee
University of Information Technology, Wakanaghat, Solan, India. He is
an author/co-author of more than 180 scientific papers of the refereed
Journal and International Conferences. His research and teaching inter-
ests include RF/Microwave Engineering, Millimeter/THz Wave Anten-
nas and its Applications in Communication and Imaging, Next Gen-
eration Communication Systems (OFDM and Cognitive Radio), and
Nanophotonics. He has more than 14 years of teaching and research

experience in the area of Electromagnetic/Microwave Engineering, Wireless Communication and Nanopho-
tonics. He has supervised various Ph. D. and M. Tech. theses. He has worked as a reviewer for several reputed
Journals and Conferences. He is author of two books “Terahertz Planar Antennas for Next Generation Com-
munication” and “MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch” published
by Springer.

123

	A Novel Human Computer Interaction Aware Algorithm to Minimize Energy Consumption
	Abstract
	1 Introduction
	2 Related Work
	2.1 Dynamic Power Management-Based Approaches
	2.2 Energy-Sustainable Approaches
	2.3 Tool-Based Approaches
	2.4 Other Useful Approaches

	3 Proposed HCI Framework and Algorithm
	3.1 HCI Algorithm

	4 Experimental Methodology
	4.1 Experiment Setup
	4.2 Evaluation

	5 Results
	5.1 Usage Scenario 1
	5.2 Usage Scenario 2
	5.3 Internal Scenario

	6 Performance Evaluation
	6.1 Analyze CPU Performance
	6.2 Analyze Memory Performance

	7 Conclusion
	Acknowledgments
	References

