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Abstract In heterogeneous wireless networks (HWNs), paths constituting multipath routing
are characterized by selfish rationality. Each path’s intentions of pursuing individual prof-
its may cause unreasonable competition for limited wireless resources, which leads to the
unreliable data transport problem. Therefore, multipath routing optimization is a challenge
issue in HWNs. This paper provides a novel approach to study this issue by employing game
theory. By taking the utility maximization as the design goal, limited bandwidth resources
as the constraint and path reliability as the key metric, a noncooperative stochastic differen-
tial game model is constructed for HWNs. With the feedback Nash equilibrium solution, an
optimal multipath routing strategy is obtained. Theoretical derivations and simulation results
verify the validity of the method present in this paper.

Keywords Heterogeneous wireless networks · Multipath routing · Utility maximization ·
Path reliability · Nash equilibrium

1 Introduction

With the development tendency of wireless networks, the research of heterogeneous wireless
networks (HWNs) which meet the communication aspiration of the seamless connection has
been a promising field [1–3]. As a revolutionary technology, multipath routing can be used
in HWNs to improve the transmission efficiency, which outperforms the single-path routing
technology in the performance of the transmission success rate, end-to-end delay, network
lifetime, additional overhead and so on [4,5].
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Since HWNs are constituted by heterogeneous nodes, paths in multipath routing of HWNs
are charactered by selfish rationality. Each path intends to pursue individual profit, which
may cause unreasonable competition for limited wireless bandwidth resources and lead to
the unreliable data transport problem. Therefore, transmission optimization under the con-
sideration of limited bandwidth is a challenge issue in multipath routing of HWNs.

Discovering the optimal path is a considerable approach in multipath routing discovery
phase [5]. The shortest-path algorithm is no longer the best choice in the multipath rout-
ing mechanism, though it serves for the single path routing mechanism for a long time.
Other than the shortest hop counts, several new routing metrics have been proposed, such as
Expected Transmission Time (ETT) and a series of its extensions, including Expected Trans-
mission Count Time (ETX), Weighted Cumulative ETT (WCETT), Multicast ETX (METX),
Expected Packet Advancement (EPA) and Expected One-hop Throughput (EOT) [6–10]. In
all of these metrics, the successful packet delivery ratio is the design basis, which affects the
throughput directly. Meanwhile, due to the wireless nature and the dynamic characteristic
of HWNs [1], links of HWNs are not such stable or reliable like that of the tradition wired
network [11], i.e., the path reliability pi ≤ 1, i ∈ N = {1, 2, . . . , n}. Moreover, the routing
mechanism has to repeat the route discovery process once the current path in the transition
work loses validity [4]. Therefore, the path reliability should be taken into account for an
efficient routing mechanism.

As an important branch of game theory, stochastic differential game theory [12] has been
used widely in the communication field [13–17] to solve the dynamic optimal problem among
multiple players. Players in the communication network can be nodes, links, clusters, etc.
Employing the tool of game theory, transmission optimization issue of the multipath routing
in HWNs can be transferred to utility maximization with the fairness of traffic distribution
strategy guarantee.

This paper devotes to get an optimal traffic distribution strategy for the multipath routing
of HWNs from the perspective of game theory. To solve the unreliable data transport problem
resulting from unreasonable wireless bandwidth resource competition, a stochastic differen-
tial game model is constructed to maximize the transmission utility with the constraint of
limited bandwidth resources, in which the path reliability is taken as an important factor.

The rest of this paper is organized as follows. Section 2 reviews the related methods of
effective resource utilization. Section 3 details the stochastic differential game model for the
multipath routing and obtains its solution. In Sect. 4, related multipath routing algorithms
are designed. Section 5 provides the numerical simulation results. Finally, Sect. 6 concludes
this paper.

2 Related Works

According to the challenge of the wireless resource scarcity, effective resource utilization
can be realized by scheduling mechanism [18], cross-layer optimization [19], tradeoff design
[20] and utility maximization [21]. The utility maximization method is a significant resource
allocation topic, which can be used to deal with multiple flow control, QoS routing optimiza-
tion and optimal pricing process in multipath routing. Considering multiple participants (i.e.,
paths) of multipath routing mechanism and the dynamic feature of HWNs, utility maximiza-
tion is the most proper method to response to the challenge of the multipath routing in HWNs.

The early research work of utility maximization mainly focused on single-path routing,
in which traffic distribution was not taken into consideration. As the increment of the data
traffic, especially with the limited channel capacity in the wireless multimedia network [22],
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an efficient routing algorithm should distribute traffic into multiple paths to lighten the load
on the single path with QoS guarantee.

The method proposed in [23] tried to distribute the traffic into multiple routes evenly, but it
is unreasonable and not efficient because the reliabilities of routes are not the same generally
in multiple paths. This method may lead to the resource waste of high reliable path and the
overburden of low reliable path, and result in the low successful packet delivery ratio. In this
paper, the traffic distribution strategy is based on the reliability of paths in HWNs.

Grosu et al. [24] formulated a static cooperative game model in distributed systems, which
consisted by several heterogeneous computers. And the corresponding algorithm was detailed
for solving the load balancing game. The method present in [24] realized fair load balancing
scheme efficiently. However, the state of the distributed systems is usually dynamic, and
the static premise of [24] lead to its limitation of practical applications. The noncooperative
load balancing problem was researched in [25] subsequently, and it exist the same drawback
without the consideration of the state variety as time went on. With the inconstant state
consideration, this paper employs the stochastic differential game theory to study the dynamic
traffic distribution problem in multipath routing scheme.

Xu et al. [14] presented an automatic load balancing scheme with the consideration of
the co-channel interference in the game model for LTE networks and concluded that the
differential game theory is applicable in wireless networks. Different from the LTE research
area of [14], where the channel interference is the key factor in the game model, this paper
studies the multipath routing of HWNs where path reliability is crucial for the model con-
struction. Besides, the constraint of this paper considers the limited bandwidth resource in
HWNs which was not discussed in [14].

The contributions of this paper are twofold. Firstly, a stochastic differential game model
is constructed with the goal of utility maximization for each player in the multipath routing
of HWNs. Secondly, the feedback Nash equilibrium solution is obtained and the numerical
simulation results reveal the dynamics of traffic distribution scheme in HWNs.

3 Stochastic Differential Game and Solution

3.1 Problem Statement

To facilitate the study, the simple path-disjoint case is discussed in this paper, in which there is
no common node or common link in the multipath routing, for choosing the optimal path set is
a NP-complete problem [26]. An example of the multipath routing in HWNs is shown in Fig. 1.

In Fig. 1, the source node (SN) broadcasts Route REQuest (RREQ) messages in multi-
path routing discovery phase, and finds n paths are available from SN to Destination Node
(DN) with the reception of Route REPly (RREP) messages. Here, n = 3, wireless link
r1,1, r1,2, r1,3, r1,4 constitute valid path l1, r2,1, r2,2, r2,3 constitute path l2, and r3,1, r3,2, r3,3

constitute path l3. Path l3 will take more traffic than path l2 since p3 > p2, although path
l2 has the minimal hop counts and is the shortest path from SN to DN. According to [6],
the reliability pi of path li is related to the successful packet delivery ratio, which can be
measured and calculated by using dedicated link probe packets.

In parallel multipath routing mechanism, n valid paths share the common transmission
mission. Because paths constituted by heterogeneous nodes in HWNs are characterized by
selfish rationality, each path desires to pursue its own profit by competing limited wireless
resources, which leads to the unreliable data transport problem. Thus, multipath routing
optimization is a challenge issue in HWNs.
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Fig. 1 An example of the multipath routing mechanism

Then, the problem of multipath routing optimization discussed in this paper can be
described as following:

After routing discovery phase, SN holds n paths to DN. The load distribution begins
at time t0 and ends at time T . At time s, the traffic distributed into path li is ui (s), i ∈
N = {1, 2, . . . , n}. Let Ui be the set of admissible traffic load, and x(s) be the load at
time s. Taking the rational considering, we have Ui ∈ R+ for x > 0, and Ui = {0} for
x = 0. Then, the multipath routing optimization problem is to find the optimal strategy set
{φ∗

i (t, x) ∈ Ui ;i ∈ N } for each path li involving in the transport mission, which guarantees
the maximal profit for each path in the game process. To guarantee the fairness of the game,
the path reliability pi is the key factor to evaluate the allocation.

3.2 Stochastic Differential Game Model

By maximizing the individual profit and providing optimal behavior strategy among multiple
game participants, noncooperative stochastic differential game theory can be used to conduct
dynamic optimization for resource-limited HWNs.

In the game theory, players and their strategies are basic elements for a game process.
Then, the stochastic differential game for multipath routing in HWNs can be described as
follows:

• Players: In the multipath routing, each path constituted by wireless links and heteroge-
neous nodes which are characterized by selfish rationality is a player of the game. Each
player (i.e., path) desires to pursue its own profit by competing limited wireless resources,
which leads to the unreliable data transport problem. For example, in Fig. 1, path 1,2,3
are game players.

• Strategy: In the multipath routing, paths are mutual independent, and the transmission
rates of data adopted by paths are strategies. The goal of this paper is to obtain the optimal
rate allocation scheme by solving the game model constructed subsequently, with which
each path’s can be satisfied by Nash Equilibria.

• Profit: Paths gain their profit by transporting data packets. However, since the bandwidth
resource is limited in HWNs, each path intends to pursue individual profit for the nature of
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Table 1 Table of symbols Notation Description

ui The traffic distributed into path li
pi The reliability of path li
qi The packet loss probability of path li
λ The unit traffic profit for each path

δ The penalty factor for the unreliability cost of path li
μ The reward factor for enough packets delivery

r The game discount rate

ψ The cost factor for the traffic distribution

a The traffic load adjustment constant

T The terminal time of the traffic distribution process

Table 2 The parameter settings
in the numerical simulation

Parameter ξ λ δ a μ r

Value 0.5 800 0.2 1.5 1 0.55

selfish rationality, which may cause unreasonable competition and lead to the unreliable
data transport problem. The main contribution of this paper is to obtain the greatest profit
for each path (i.e., utility maximization) under the limitation of bandwidth.

Inspired by the contribution of [12] solving the economy problem in the resource extrac-
tion, a stochastic differential game model will be present for the multipath routing in this
section.

The major mathematical notations introduced in this paper are summarized in Table 1,
and the parameters they are notated will be simulated in Sect. 4 to analyze the load balancing
performance.

Assuming the paths in the multipath routing satisfy the constraint conditions of Shannon
channel capacity theory [27], the relationship between bandwidth B and capacity C can be
described as

B = C

log2 (1 + S/N )
(1)

where S/N is the signal-to-noise ratio of the Gaussian channel.
The traffic distribution cost for path li can be defined as

Pi (s) = ψBui (s) (2)

where ψ is the cost factor.
Let

ξ = ψ

log2(1 + S/N )
(3)

Then

Pi (s) = ξ

n∑

k=1

uk(s)ui (s) (4)

Let qi denote the packet loss probability of path li , and

qi = 1 − pi (5)
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Fig. 4 The impacts of μ to φ(t) for each path

Then, the unreliability cost of path li can be defined as

Qi (s) = δqi ui (s) (6)

where δ is the penalty factor.
At time T , the terminal payment can be defined as

Ri (T ) = μ[x(T )− x̄i ] (7)

where μ is the reward factor, x̄i is the threshold, and when x(T ) > x̄i , path li will be reward
for enough packet delivery.

Let λ denote the unit traffic profit for each path, and r denote the game discount rate. Then
path li seeks to maximize the expected payoff

Et0

{∫ T

t0
[λi ui (s)− ξ

n∑

k=1

uk(s)ui (s)− δqi ui (s)] exp[−r(t − t0)]ds

+ μ exp[−r(T − t0)][x(T )− x̄i ]} , f or i ∈ N (8)

where Et0 denotes the expectation operator performed at time t0.
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Fig. 5 The impacts of ξ to φ(t) for each path

Equation (8) subject to the traffic load dynamics

dx(s) = {ax(s)+
n∑

i=1

[pi ui (s)]}ds + σ x(s)dz(s), x(t0) = x0 ∈ X (9)

where a and σ are traffic load adjustment constants, z(s) is a Wiener process and the initial
state x0 is given.

3.3 Feedback Nash Equilibria

According to [12], Theorem 1 for the stochastic differential game (8)–9) can be obtained.

Theorem 1 An n-tuple of feedback strategies for n-path traffic distribution {φ∗
i (t, x) ∈

Ui ;i ∈ N } provides a Nash equilibrium solution to the game (8)–9), if there exist suitably
smooth functions V i : [t0, T ] × R → R, i ∈ N, satisfying the semilinear parabolic partial
differential equations
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Fig. 6 The impacts of δ to φ(t) for each path

−V i
t (t, x)− 1

2
σ 2x2V i

xx (t, x)

= max
ui ∈Ui

⎧
⎨

⎩

⎡

⎣λui − ξ

⎛

⎝
n∑

j=1, j �=i

φ∗
j (t, x)+ ui

⎞

⎠ ui − δqi ui

⎤

⎦ exp[−r(t − t0)]

+ V i
x

⎡

⎣ax(s)+pi

⎛

⎝
n∑

j=1, j �=i

φ∗
j (t, x)+ ui

⎞

⎠

⎤

⎦

⎫
⎬

⎭ (10)

V i (T, x) = μ exp[−r(T − t0)][x(T )− x̄i ] (11)

Corollary 1 The traffic distribution of the multipath routing realizes Nash equilibrium, if
the traffic distributed into path li has the following solution

φ∗
i (t, x) = [ξ (n + 1)]−1

⎧
⎨

⎩λ+ δ

⎛

⎝
n∑

j=1, j �=i

q j−nqi

⎞

⎠

− exp [r (t − t0)]

⎡

⎣
n∑

j=1, j �=i

p j V j
x −npi V i

x

⎤

⎦

⎫
⎬

⎭ (12)
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Fig. 7 The impacts of T to φ(t) for each path

Proof See “Appendix 1”. ��
Simplifying (12), and rewriting it, we get

φ∗
i (t, x) = fi + exp [r (t − t0)]

n∑

i=1

gi V i
x (13)

where fi and gi can be calculated by the constants ξ, λ, δ, {p1, p2, . . . , pn} and {q1, q2, . . . ,

qn}.
Corollary 2 The game (8)–9) have a solution

V i (t, x) = exp [−r (t − t0)] [�(t)x +	(t)] (14)

where �(t) and 	(t) satisfy

�̇(t) = (r + a) �(t), �(T ) = μ,

	̇(t) = r	(t)+
(t),	(T ) = −μx̄i ,

and


(t) = (λ−δqi )

(
fi+�(t)

n∑

i=1

gi

)
−
[
ξ

(
fi+�(t)

n∑

i=1

gi

)
+�(t)

]
n∑

i=1

(
fi+�(t)

n∑

i=1

gi

)
.

(15)

123



A Stochastic Differential Game Theoretic Study 981

0
2

4

0

2

4
0

5

10

x 10
6

ar

φ
(t

)

2

4

6

x 10
6

0
2

4

0

2

4
0

2000

4000

ar

φ
(t

)

500

1000

1500

2000

2500

0
2

4

0

2

4
318

320

322

φ
(t

)

ar
320

320.5

321

321.5

0
2

4

0

2

4
320

320.5

321

ar

φ
(t

)

320.1

320.2

320.3

320.4

320.5

320.6

(a) T =1 (b) T = 2

(c) T = 3 (d) T = 4

Fig. 8 The impacts of a and r to φ(t) with different T

Proof See “Appendix 2”. ��
Solving the linear differential equation (15), we get

�(t) = exp [(r + a) (t − t0)]�,

� = μexp [− (r + a) (T − t0)] ,

	(t) = exp [r (t − t0)]

(∫ t

t0

(s) · exp [−r (s − t0)] ds + 	̄

)
,

and

	̄ = −μx̄i exp [−r (T − t0)] −
∫ T

t0

(s)exp [−r (s − t0)] ds. (16)

Derivation See “Appendix 3”.
Substituting the optimal load-control strategy (13) into (9) produces, we get
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Corollary 3 The game (8)–(9) have an optimal state trajectory

x∗(s) = exp

[∫ t

t0
ads +

∫ t

t0
σdz(s)

]

×
{

x0 +
n∑

i=1

pi

(
fi+�(t)

n∑

i=1

gi

)
exp

[
−
(∫ t

t0
ads +

∫ t

t0
σdz(s)

)]}
(17)

Proof See “Appendix 4”. ��

4 Multipath Routing Algorithm of HWNs

At the routing discovery and establishment phase, SN obtains the quantity of the valid
paths to DN with RREQ sending and RREP receiving processes. Probe packets are sent
to acquire the reliability information pi for each valid path. Then, with the stochastic
differential game model we established in Sect. 3, the traffic distributed to path li is
φ∗

i (t, x).
We design Algorithm 1 for the routing discovery and establishment of the source node,

and Algorithm 2 for the traffic distribution scheme based on the feedback Nash equilibrium
solution in Sect. 3.
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5 Simulation Results and Analysis

The numerical simulation is started on MATLAB 7.0.1. Considering 4 valid paths exit in
the network from SN to DN, that is, i = 1, 2, 3, 4. The reliability of these paths pi =
[0.3, 0.5, 0.7, 0.9].

To check the impact of pi to the traffic distribution, the parameters are set as Table 2. And
the numerical simulation results are shown as Fig. 2. Here, we assume ξ has been calculated
by Eq. (3). The simulation duration t ∈ [0, 4], and T = 3.

In Fig. 2, the traffic of path-1 with the lowest reliability decreases with the simulation
time t , and delivers less packets than the other three paths with high reliability. The traffic of
path-4 with highest reliability rises more abruptly than that of path-2 and path-3 with t . The
results verify the dynamics and efficiency of the proposed traffic distribution scheme. The
more reliable path is supposed to take more delivery mission, and the unreliable path will be
eliminated in the game procedure.

The impacts of the other parameters introduced in Table 1 are shown as Figs. 3, 4, 5, 6 and
7 with λ = [790, 795, 800, 805] in Fig. 3, μ = [0, 1, 2, 3] in Fig. 4, δ = [0.1, 0.2, 0.3, 0.4]
in Fig. 5, ξ = [0.48, 0.49, 0.5, 0.51] in Fig. 6, T = [2, 3, 4, 5] in Fig. 7, respectively.

From Figs. 3, 4, 5, 6 and 7, the greater value of the simulation parameter, the less traffic
distributed into path-1, while the more traffic distributed into the other three paths. More-
over, the most reliable path, i.e. path-3 delivers the most traffic loads. All these results
are according to the design rationality. The more transmission profit, packets delivery
reward, unreliability cost penalty, traffic distribution cost and the earlier terminal payment,
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Fig. 9 The comparisons of MRA_Nash and MRA_WD

result the feedback Nash equilibrium inclines to the more reliable one. All of these results
reveal the method proposed in this paper realized dynamics of traffic distribution scheme in
HWNs.

Moreover, to analysis the impacts of a and r to φ(t) at the specified time with different
terminal time T , we set t = 3 and T = [1, 2, 3, 4], and simulate the variation tendency of
φ(t) for path-4. The simulation results are shown in Fig. 8. When t > T , shown as Fig. 8a,
b, the traffic distributed into path-4 keeps rising. Comparing the results of Fig. 8a to that
of Fig. 8b, the earlier terminal time, the more traffic are distributed into path-4, which is
accordance with the results of Fig. 7. When t = T , shown as Fig. 8c, that is, the simulation
time equals to the terminal time of the traffic distribution process, φ(t) maintains a constant
value. When t < T , shown as Fig. 8d, the traffic distributed into path-4 keeps dropping until
the stable state is achieved.

The simulation results indicate that the impacts of the traffic load adjustment constant
and the game discount rate to the traffic distribution are coincident. The earlier terminal time
payment, the more traffic is distributed into the reliable path. And when the terminal time is
exceeded, the load distribution achieves a stable state.

As the network throughput is measured by the number of successfully delivered packets
per unit time, we compare the performance of the throughput of the proposed multipath
routing algorithm based on the feedback Nash equilibrium solution (MRA_Nash) with the
one based on the traffic well-distributed (MRA_WD). The comparison is shown in Fig. 9.
From Fig. 9, we can see MRA_Nash outputs MRA_WD in the throughput performance,
and the longer simulation time, the better throughput performance. When t ∈ [0, 4], the
advantage of MRA_Nash is not obviously. With the increase of time, and when t = 6, the
number of successfully delivered packets of MRA_Nash is more than 15 % that of MRA_WD.
Therefore, the multipath routing algorithm proposed in this paper improves the network
throughput performance efficiently.
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6 Conclusions

Using the stochastic differential game theory is a new trend to solve the communication
problem recently. Based on the path reliability, this paper studies the multipath routing from
the perspective of game theory. With the obtained feedback Nash equilibrium solution of
the stochastic differential game model, the utility maximization is realized with the limited
bandwidth constraint. The numerical simulation results show that the method proposed in
this paper realizes the dynamic traffic distribution scheme for multipath routing of HWNs
and improves the throughput performance efficiently. The method proposed in this paper can
be used in time-critical application [28], where reliability is required strongly.
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Appendix 1: Proof of Corollary 1

Proof Maximizing the right-hand-side of (10) for path-i , and arranging the equation we get

n∑

j=1, j �=i

φ∗
j (t, x)+2φ∗

i
(t, x) = ξ−1

{
λ− δqi+ exp[r(t − t0)]pi V i

x

}
(18)

For i = 1, 2, . . . , n, there is an system of linear equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2φ∗
1 (t, x)+φ∗

2 (t, x)+ · · · +φ∗
n (t, x) = ξ−1

{
λ− δq1 + exp[r(t − t0)]p1V 1

x

}

φ∗
1 (t, x)+2φ∗

2 (t, x)+ · · · +φ∗
n (t, x) = ξ−1

{
λ− δq2 + exp[r(t − t0)]p2V 2

x

}

...

φ∗
1 (t, x)+φ∗

2 (t, x)+ · · · +2φ∗
n (t, x) = ξ−1

{
λ− δqn + exp[r(t − t0)]pn V n

x

}
(19)

Summing over the right-hand-side and the left-hand-side respectively in (18), we get

φ∗
1 (t, x)+ φ∗

2 (t, x)+ · · · + φ∗
n (t, x)

= [ξ (n + 1)]−1

⎧
⎨

⎩nλ− δ

n∑

j=1

q j + exp [r (t − t0)]
n∑

j=1

p j V j
x

⎫
⎬

⎭ (20)

There, we have two methods to obtain the solution of φ∗
i (t, x). ��

Solution 1 Substituting (20) into (18), we get

[ξ (n + 1)]−1
n∑

j=1

{
λ− δq j − exp[r(t − t0)]p j V j

x

}
+ φ∗

i (t, x)

= ξ−1
{
λ− δqi+ exp[r(t − t0)]pi V i

x

}
(21)
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Arranging (21), then

φ∗
i (t, x) = [ξ (n + 1)]−1

⎧
⎨

⎩λ+ δ

⎛

⎝
n∑

j=1, j �=i

q j−nqi

⎞

⎠

− exp [r (t − t0)]

⎡

⎣
n∑

j=1, j �=i

p j V j
x −npi V i

x

⎤

⎦

⎫
⎬

⎭

Solution 2 Letting (18) minus (20), we directly get

φ∗
i (t, x) = [ξ (n + 1)]−1

⎧
⎨

⎩λ+ δ

⎛

⎝
n∑

j=1, j �=i

q j−nqi

⎞

⎠

− exp [r (t − t0)]

⎡

⎣
n∑

j=1, j �=i

p j V j
x −npi V i

x

⎤

⎦

⎫
⎬

⎭

This completes the proof of Corollary 1.

Appendix 2: Proof of Corollary 2

Proof From (14), we get
⎧
⎨

⎩

V i
x (t, x) = exp [−r (t − t0)]�(t)

V i
xx (t, x) = 0

V i
t (t, x) = exp [−r (t − t0)]

{−r [�(t)x +	(t)] + [
�̇(t)x + 	̇(t)

]} (22)

Substituting (22) into (11) produces

−r [�(t)x +	(t)] + [
�̇(t)x + 	̇(t)

]

=
⎡

⎣λφ∗
i (t, x)− ξ

⎛

⎝
n∑

j=1

φ∗
j (t, x)

⎞

⎠φ∗
i (t, x)− δqiφ

∗
i (t, x)

⎤

⎦

+�(t)
⎡

⎣ax −
⎛

⎝
n∑

j=1

φ∗
j (t, x)

⎞

⎠

⎤

⎦

=
⎡

⎣(λ− δqi ) φ
∗
i (t, x)− ξ

⎛

⎝
n∑

j=1

φ∗
j (t, x)

⎞

⎠φ∗
i (t, x)

⎤

⎦

+�(t)
⎡

⎣ax −
⎛

⎝
n∑

j=1

φ∗
j (t, x)

⎞

⎠

⎤

⎦ (23)

Meanwhile, substituting (22) into (13) produces

φ∗
i (t, x) = fi + exp [r (t − t0)]

n∑

i=1

gi V i
x = fi+�(t)

n∑

i=1

gi (24)
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Thus

�̇(t)x + 	̇(t) = r [�(t)x +	(t)] +
⎡

⎣λ−δqi − ξ

⎛

⎝
n∑

j=1

φ∗
j (t, x)

⎞

⎠

⎤

⎦
(

fi+�(t)
n∑

i=1

gi

)

+�(t)
⎡

⎣ax −
⎛

⎝
n∑

j=1

φ∗
j (t, x)

⎞

⎠

⎤

⎦

= (r + a) �(t)x + r	(t)+
[
λ−δqi − ξ

(
n∑

i=1

(
fi+�(t)

n∑

i=1

gi

))]

(
fi + �(t)

n∑

i=1

gi

)
− �(t)

n∑

i=1

(
fi+�(t)

n∑

i=1

gi

)

= (r + a) �(t)x + r	(t)+ (λ− δqi )

(
fi+�(t)

n∑

i=1

gi

)

−
[
ξ

(
fi+�(t)

n∑

i=1

gi

)
+�(t)

]
n∑

i=1

(
fi+�(t)

n∑

i=1

gi

)
(25)

Let 
(t) = (λ−δqi )
(

fi+�(t)∑n
i=1 gi

) − [
ξ
(

fi+�(t)∑n
i=1 gi

)+�(t)]∑n
i=1(

fi+�(t)∑n
i=1 gi

)
,

Then

�̇(t) = (r + a) �(t), �(T ) = μ,

	̇(t) = r	(t)+
(t),	(T ) = −μx̄i .

This completes the proof of Corollary 2. ��

Appendix 3: Derivation of (16)

Derivation Equation (15) is constituted by

�̇(t) = (r + a) �(t), (15-1)

�(T ) = μ, (15-2)

	̇(t) = r	(t)+
(t), (15-3)

	(T ) = −μx̄i , (15-4)

and


(t) = (λ−δqi )

(
fi+�(t)

n∑

i=1

gi

)
−
[
ξ

(
fi+�(t)

n∑

i=1

gi

)
+�(t)

]
n∑

i=1

(
fi+�(t)

n∑

i=1

gi

)
.

(15-5)

It is noted that (15-1) is a homogeneous linear differential equation, while (15-3) is a
nonhomogeneous linear differential equation, and both of them have their general solutions.
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The derivation of (16) is related to the solution process of linear differential equation. The
derivation process is detailed as following:

Separate the variable of (15-1), we get

d�(t)

�(t)
= (r + a) t. (26)

Integrate both sides of (26), we get

ln�(t) = −
∫ t

t0
(r + a) t + ln�, � is a constant. (27)

Then,

�(t) = � · exp

[∫ t

t0
(r + a) t

]
(16-1)

= exp [(r + a) (t − t0)]�.

When t = T ,
�(T ) = � · exp [(r + a) (T − t0)] . (28)

Combining (28) and (15-2), we get

� = μexp [− (r + a) (T − t0)] . (16-2)

Let

	(t) = Q(t) · exp

[∫ t

t0
rds

]

= Q(t) · exp [r (t − t0)] (29)

be the solution of the nonhomogeneous linear differential equation (15-3).
Substitute 	̇(t) and 	(t) into (15-3), then

Q̇(t) · exp [r (s − t0)] +Q(t) · exp [r (t − t0)] · r=r · Q(t) · exp [r (t − t0)] +
(t). (30)

Arrange (30), we get
Q̇(t) = 
(t) · exp [−r (s − t0)] . (31)

Integrate both sides of (31), we get

Q(t) =
∫ t

t0

(s) · exp [−r (s − t0)] ds + 	̄, 	̄ is a constant. (32)

Substitute (32) into (29), we get

	(t)= exp [r (t − t0)]

(∫ t

t0

(s) · exp [−r (s − t0)] ds + 	̄

)
. (16-3)

When t = T ,

	(T )=
(∫ T

t0

(t) · exp [−r (s − t0)] ds + 	̄

)
· exp [r (T − t0)] . (33)

Combining (33) and (15-4), we get

	̄= − μx̄i exp [−r (T − t0)] −
∫ T

t0

(s)exp [−r (s − t0)] ds. (16-4)
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Equations (16-1), (16-2), (16-3) and (16-4) constitute (16).
This completes the derivation of (16).

Appendix 4: Proof of Corollary 3

Proof Solving the linear differential equation (9), we get

x∗(s) = exp

[∫ t

t0
ads +

∫ t

t0
σdz(s)

]
×
{

x0 +
n∑

i=1

(
piφ

∗
i (t, x)

) [∫ t

t0
ads +

∫ t

t0
σdz(s)

]}
.

(34)
Substituting the optimal load-control strategy (24) into (34) produces

x∗(s) = exp

[∫ t

t0
ads +

∫ t

t0
σdz(s)

]

×
{

x0 +
n∑

i=1

pi

(
fi+�(t)

n∑

i=1

gi

)
exp

[
−
(∫ t

t0
ads +

∫ t

t0
σdz(s)

)]}
.

This completes the proof of Corollary 3. ��

References

1. Niyato, D., & Hossain, E. (2009). Dynamics of network selection in heterogeneous wireless networks:
An evolutionary game approach. IEEE Transaction on Vehicular Technology, 58(4), 2008–2017.

2. Xu, C., Liu, T., Guan, J., Zhang, H., Zhang, H., & Muntean, G. (2013). CMT-QA: Quality-aware adaptive
concurrent multipath data transfer in heterogeneous wireless networks. IEEE Transaction on Mobile
Computing, 12(11), 2193–2205.

3. Chebrolu, K., & Rao, R. R. (2006). Bandwidth aggregation for real-time applications in heterogeneous
wireless networks. IEEE Transaction on Mobile Computing, 5(4), 388–403.

4. Marina, M. K., & Das, S. R. (2001). On-demand multipath distance vector routing in ad hoc networks.
In Proceedings of the 9th international conference on network protocols, pp. 14–23.

5. Sha, K., Gehlot, J., & Greve, R. (2013). Multipath routing techniques in wireless sensor networks: A
survey. Wireless Personal Communications, 70(2), 807–829.

6. De Couto, D. S. J., Aguayo, D., et al. (2005). A high-throughput path metric for multi-hop wireless
routing. Wireless Networks, 11(4), 419–434.

7. Roy, S., Koutsonikolas, D., Das, S., et al. (2008). High-throughput multicast routing metrics in wireless
mesh networks. Ad Hoc Networks, 6(6), 878–899.

8. Draves, R., Padhye, J., & Zill, B. (2004). Routing in multi-radio, multi-hop wireless mesh networks.
In Proceedings of the 10th annual international conference on mobile computing and networking, pp.
114–128.

9. Zorzi, M., & Rao, R. R. (2003). Geographic random forwarding (GeRaF) for ad hoc and sensor networks:
Energy and latency performance. IEEE Transactions on Mobile Computing, 2(4), 349–365.

10. Zeng, K., Lou, W., Yang, J., & III Brown, D. R. (2007). On throughput efficiency of geographic oppor-
tunistic routing in multihop wireless networks. Mobile Networks and Applications, 12(5), 347–357.

11. Radi, M., Dezfouli, B., Abu Bakar, K., Abd Razaka, S., & Nematbakhshb, M. A. (2011). Interference-
aware multipath routing protocol for QoS improvement in event-driven wireless sensor networks.
Tsinghua Science and Technology, 16(5), 475–490.

12. Yeung, D. W. K., & Petrosyan, L. A. (2005). Cooperative stochastic differential games. New York:
Springer.

13. Zhou, X., Cheng, Z., Ding, Y., et al. (2012). A optimal power control strategy based on network wisdom
in wireless networks. Operations Research Letters, 40(6), 475–477.

14. Xu, H., Zhou, X., & Chen, Y. (2013). A differential game model of automatic load balancing in LTE
networks. Wireless Personal Communications, 71(1), 165–180.

123



990 J. Hu, Y. Xie

15. Wang, X., Zhou, X., & Song, J. (2012). Transmission power control and routing strategy based on
differential games in deep space exploration. Wireless Personal Communications, 67, 895–912.

16. Miao, X., Zhou, X., & Huayi, W. (2010). A cooperative differential game model based on transmission
rate in wireless networks. Operations Research Letters, 38(4), 292–295.

17. Lin, L., Xianwei, Z., Liping, D., et al. (2009). Differential game model with coupling constraint for
routing in ad hoc networks. In Proceedings of the 5th international conference on wireless communication,
networking and mobile computing, pp. 3042–3045.

18. Tao, M., Lu, D., & Yang, J. (2012). An adaptive energy-aware multi-path routing protocol with load
balance for wireless sensor networks. Wireless Personal Communications, 63(4), 823–846.

19. Weeraddana, P. C., Codreanu, M., & Latva-aho, M. (2011). Resource allocation for cross-layer utility
maximization in wireless networks. IEEE Transactions on Vehicular Technology, 60(6), 2790–2809.

20. Abdur Razzaque, M., & Mamun-Or-Rashid, M. (2009). Aggregated traffic flow weight controlled hierar-
chical MAC protocol for wireless sensor networks. Annals of Telecommunications, 64(11–12), 705–721.

21. Kelly, F. P., Maulloo, A. K., & Tan, D. K. H. (1998). Rate control for communication networks: Shadow
prices, proportional fairness and stability. Journal of the Operational Research Society, 49(3), 237–252.

22. Li, Z., & Wang, R. (2010). Load balancing-based hierarchical routing algorithm for wireless multimedia
sensor networks. The Journal of China Universities of Posts and Telecommunications, 17(Suppl. 2),
51–59.

23. Pham, P. P., & Perreau, S. (2004). Increasing the network performance using multi-path routing mechanism
with load balance. Ad Hoc Networks, 2, 433–459.

24. Grosu, D., Chronopoulos, A. T., & Ming-Ying, L. (2002). Load Balancing in distributed systems: An
approach using cooperative games. In Proceedings of international parallel and distributed processing
symposium (IPDPS 2002), Ft. Lauderdale, FL, USA.

25. Grosu, D., & Chronopoulos, A. T. (2005). Noncooperative load balancing in distributed systems. Journal
of Parallel and Distributed Computing, 65(9), 1022–1034.

26. Bodlaender, H. L., Thomassé, S., & Yeo, A. (2011). Kernel bounds for disjoint cycles and disjoint paths.
Theoretical Computer Science, 412(35), 4570–4578.

27. Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing
and Communications Review, 5(1), 3–55.

28. Razzaque, M. A., Alam, M. M., Mamun-or-Rashid, M., & Hong, C. S. (2008). Multi-constrained QoS
geographic routing for heterogeneous traffic in sensor networks. IEICE Transaction on Communications,
E91–B(8), 2589–2601.

Jiahui Hu received Ph.D. degree in communication and information
system from University of Science and Technology Beijing, Beijing, P.
R. China, in 2014. She is a research associate in Institute of Medical
Information, Chinese Academy of Medical Sciences, P. R. China. Her
main research interests include quality-oriented issue of resource allo-
cation and routing mechanism in the wireless networks.

123



A Stochastic Differential Game Theoretic Study 991

Yi Xie is the vice president of Academy of Telecommunication
Research of MIT (Ministry of Industry and Information Technology),
P. R. China. He is responsible for the OTA (Over the Air) testing
research project, and the wireless local area network equipment OTA
testing laboratory he established is authorized by CTIA and Wi-Fi
Alliance. He is interested in the research of electromagnetism and
microwave.

123


	A Stochastic Differential Game Theoretic Study of Multipath Routing in Heterogeneous Wireless Networks
	Abstract
	1 Introduction
	2 Related Works
	3 Stochastic Differential Game and Solution
	3.1 Problem Statement
	3.2 Stochastic Differential Game Model
	3.3 Feedback Nash Equilibria

	4 Multipath Routing Algorithm of HWNs
	5 Simulation Results and Analysis
	6 Conclusions
	Acknowledgments
	Appendix 1: Proof of Corollary 1
	Appendix 2: Proof of Corollary 2
	Appendix 3: Derivation of (16)
	Appendix 4: Proof of Corollary 3
	References


