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Abstract Densely deployment of sensors is generally employed in wireless sensor networks
to ensure complete target coverage for a long period of time. Many sensors scheduling
techniques have been recently proposed for prolonging the network lifetime. Scheduling
sensors into a maximum number of disjoint sets has been modeled, in the literature, as
disjoint set covers (DSC) problem which is a well-known NP-hard optimization problem.
Unlike other attempts which considers only a simple disk sensing model, this paper addresses
the problem of finding the maximum number of set covers while considering a more realistic
sensing model to handle uncertainty into the sensors’ target-coverage reliability. The paper
investigates the development of a simple multi-layer genetic algorithm (GA) whose main
ingredient is to support selection of a minimum number of sensors to be assigned to maximum
number of set covers. With the aid of the remaining unassigned sensors, the reliability of
DSCs provided by the GA, can further be enhanced by a post-heuristic step. By identifying
the upper bound of number of disjoint set covers, the GA can successively construct covers,
each of which is of minimal sensor cost. Performance evaluations on solution quality in terms
of both number of set covers and coverage reliability are measured and compared through
extensive simulations, showing the effectiveness of the proposed GA.
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1 Introduction

Recently, many applications, ranging from remote harsh field monitoring to surveillance and
smart homes, have been directed towards studying and building their backbones based on
Wireless sensor networks (WSNs). The dense ad-hoc deployment of such sensors from an
aircraft into the monitoring area can results in network configurations with adequate targets
coverage level. However, recharging or replacing a sensor’s battery is generally infeasible.
Hence, efficient utilization of the limited energy is one of the critical design considerations in
WSNs. Energy-aware mechanism has been substantially pursued by the research community
in order to form long lived WSNs. Energy saving techniques can generally be classified in
the following categories:

1. Energy-efficient data aggregation, gathering and routing;
2. Power management by adjusting the transmission and/or sensing range of sensor nodes;

and
3. Sensor wake-up scheduling to alternate between active and idle state.

In this paper, we will consider the third approach to prolong the WSN lifetime while com-
pletely monitoring the targets set. In this class of techniques, sensor activities are scheduled
into disjoint sensor subsets, or set covers, and each set cover (hereinafter, interchangeably
called, sensor cover) needs to satisfy the coverage constraints. At each interval of the whole
WSN’s lifetime, only one sensor cover (active sensor cover) is working to provide the required
sensing functionality while the remaining sensor covers, with their sensors, are in the low-
energy sleep mode. Once the active sensor cover runs out of energy, another sensor cover
will be selected to enter the active mode and provide the functionality continuously. Thus,
the more sensor covers we can find, the longer sensor network lifetime will be prolonged. It
has been proven that this problem is a generalization of the minimum set cover problem [1]
and proves its NP-completeness [2,3].

Many attempts in the literature have been proposed for solving DSC problem in WSNs
using either heuristic or meta-heuristic (like genetic algorithms) approaches. Different
scheduling rules determine when sensors change to be active or sleep. In localized and dis-
tributed realizations, sensors periodically investigate their neighborhood and decide whether
to change their operation modes [4–11].

In [2], a heuristic approach called the “most constrained–minimally constraining covering
(MCMCC)” is proposed to select and successively activate mutually exclusive sets of covers,
where every set completely covers the entire area. Their method gives priority to sensors
which cover a high number of uncovered fields, cover sparsely covered fields and do not
cover fields redundantly. This method achieves energy savings by increasing the number
of disjoint covers. The DSC problem has been solved in [12] using integer programming.
The DSC problem is reduced to a maximum flow problem and solved using mixed integer
programming. By a branch and bound method, the maximum covers based on mixed integer
programming algorithm (MC-MIP) acts as an implicit exhaustive search to guarantees finding
the optimal solution.

The definition of DSC problem has been re-formulated in [3,13], and [14] to include
additional coverage constraints. The definition of DSC problem has been generalized in [3] to
a maximum non-disjoint set covers (MSC) problem and solved it using, linear programming,
and greedy heuristics. The extended problem in MSC lets the sensors to participate in multiple
sets. In [13], the DSC problem has been extended to include connectivity constraint as well.
Then, the Connected Set Covers (CSC) problem has as objective finding a maximum number
of set covers such that each sensor to be activated should be connected to the base station.
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In [14], DSC problem has been extended to include sensor coverage-failure probability.
Each sensor is associated with sensor’s failure probability (comes from several facts, e.g.,
manufacture, weather in the monitoring area, interferences to the sensors, or unexpected
accidents). The proposed Maximum Reliability Sensor Covers (MRSC) problem has been
solved in [14] using a heuristic greedy algorithm to compute the maximal number of set
covers that satisfy a user specified coverage-reliability threshold.

The work in [15–17] also provides solutions to the DSC problem in WSNs but using
the meta-heuristic framework of evolutionary and genetic algorithms. Like the previous
mentioned heuristic methods, the genetic algorithms (GAs) proposed in [15–17] assume
simple and common isotropic (i.e., disc) sensing model. Each sensor in this definite range
law approximation model is associated with a sensing area which is represented by a circle
and it successfully detects anything falling only within its sensing range. In a more realistic
scenario, the sensing region of a sensor could be irregular, resulting in imperfect sensor
approximation model. The coverage in this case could be expressed in probabilistic terms
[18–20]. In probabilistic sensing model, there is a measure of uncertainty in sensor signal-
detection being expressed by a value from 0 to 1. For reliable coverage with certainty threshold
cth , the detection uncertainty of each target should not exceed 1 − cth .

According to [21], the upper bound, ub, of the maximum number of disjoint complete
set covers depends on the size of the target area, the total number of sensors, the sensors’
locations, and their sensing ranges. ub can be estimated as the minimum number of sensors
covering the most sparsely covered target, and thus can be computed by polynomial-time
algorithms. It has been shown that for the same deployment of sensors and targets, ub can
be increased by enlarging the sensing radius of each sensor [15–17,21]. However, under
probabilistic sensing models, the certainty threshold cth should also effect on the number
of sensors reliably covering the most sparsely covered target. As more reliability degree to
cover a target is required, ub becomes smaller.

Unlike other related works, this paper concerns with the applicability of the genetic algo-
rithm for solving the DSC problem while assuming a probabilistic sensing model to reflect
the uncertainty in sensor readings. The main contributions of this paper are as follows:

1. With the de-facto definition of the simple genetic algorithm, up to ub covers can be
identified gradually, each of which should maintain low cost in terms of number of
sensors to completely cover the targets within the specified certainty threshold.

2. With the incorporation of unassigned sensors, the coverage reliability of each set cover,
and hence, the total network’s coverage reliability can be further improved. A post-
heuristic operator weighs each assigned and/or unassigned sensor to the membership of
each set cover.

In what follow we first briefly describe the DSC problem in WSNs and its related system
model. Then, in Sect. 3, we introduce the proposed multi-layered genetic algorithm and
a post-heuristic operator tailored for solving DSC problem in WSNs. The results of the
proposed genetic algorithm are then compared with a related work in Sect. 4. Finally, Sect. 5
concludes the current work and hints some further ramifications.

2 DSC Problem in WSNs

In order to model the system, we will assume that the investigated WSNs have 2D sensing area
A with known size (Xmax , Ymax ). We will also assume that A has a set T (i.e., target set)
of n targets with known locations, i.e., T = {(xt1, yt1) , (xt2, yt2) , . . . , (xtn, ytn)}. There
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Fig. 1 Probabilistic sensing
model

are m homogenous sensors S = {(xs1, ys1) , (xs2, ys2) , . . . , (xsm, ysm)} having the same
sensing range Rs . All the sensors are dropped randomly in A (1 ≤ ∀i ≤ m| (xsi , ysi ) =
([0, Xmax ], [0, Ymax ])). Depending on the sensing range Rs , each sensor will be responsible
for sensing and covering a part of A. We will consider a probabilistic sensing model [19,20]
to define the notion of the probabilistic coverage of a target T j = (

xt j , yt j
)

by a sensor si .

Coverage
(
si , t j

) =
⎧
⎨

⎩

0 i f Rs + Ru ≤ d(si , t j )

e−λaβ
i f Rs − Ru < d(si , t j )

1 i f Rs − Ru ≥ d(si , t j )

< Rs + Ru (1)

where Ru is a measure of the uncertainty in sensor detection. d
(
si , t j

)
is the Euclidean dis-

tance
√

(xsi − xt j )2 + (ysi − yt j )2 between sensor si and target t j . a = d(si , t j )− (rs −ru),
and λ and β are probabilistic detection parameters to measure detection strength when a target
point lies within the interval {Rs − Ru, Rs + Ru}. It causes coverage value to exponentially
decrease as the distance increase. All points that lie within a distance of Rs − Ru from the
sensor are said to be 1-covered. Beyond the distance Rs + Ru , all the points have 0-coverage
by this sensor (see Fig. 1).

To save energy and prolong WSN’s lifetime, sensors in the sensor set S should be divided
into duty-cycling sensor cover subsets, each of which can cover all the interested targets in
T . In the literature and under the traditional Boolean sensing model (Eq. 2),

Coverage
(
si , t j

) =
{

1 i f d
(
si , t j

) ≤ Rs

0 otherwise
(2)

the definition of the sensor cover could be formulated as:

Definition 1 (Sensor Cover). Given a WSN consists of target set T and sensor set S, where
each sensor si ∈ S can be represented as a subset Ti ⊂ T , such that t j ∈ Ti if and only if
Coverage

(
si , t j

) = 1. Any subset Si ⊂ S that can completely cover all the target set T is
termed as a sensor cover.

According to the above definition, the disjoint (sensor/set) cover problem (DSC) can be
formulated as:

Definition 2 (Disjoint Sensor Covers Problem-DSC). Given a finite collection C of sub-
sets of a target set T , find the family of the maximum number of disjoint sensor covers
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S1, S2, . . . , Smax for T . Every sensor cover Ci is a subset of C , Ci ⊆ C , such that every
target element tk of T belongs to at least one sensor member of Ci , and for any two sensor
covers Ci and C j , Ci ∩ C j = ∅.

However, considering probabilistic sensing model, the definition of the traditional sensor
cover needs to be re-formulated, here, as:

Definition 3 (Reliable Sensor Cover). Given a WSN consists of target set T and sensor set
S, where each sensor si ∈ S can be represented as a subset Ti ⊂ T , such that t j ∈ Ti if
and only if Coverage

(
si , t j

) ≥ cth . Any subset Si ⊂ S that can satisfy a user coverage
constraint cth to cover all the targets in T is termed as a reliable sensor cover or reliable set
cover. Formally speaking:

Cover (Si , T ) =
{

1 i f ∀t ∈ T → ∃s ∈ Si |Coverage (s, t) ≥ cth

0 otherwise
(3)

Now, the problem of finding the maximum number of disjoint set covers (DSC) could be
turned into the problem of finding the maximum number of disjoint reliable sensor covers
(DRSC), and can be formulated as:

Definition 4 (Disjoint Reliable Sensor Covers Problem-DRSC). Given a collection S of
reliable subsets of a finite set T , find the maximum number of disjoint reliable covers for T .
Every cover Si is a subset of S, Si ⊆ S, such that every element t j of T belongs to at least
one member of Si , and for any two covers Si and S j , Si ∩S

j = ∅. Now, the upper bound
ub of the maximum number of disjoint reliable covers is determined by the most sparsely
covered target and can be calculated as:

ub = |CS| = arg min
i=1,2,...,n

(|Si |) (4)

where CS denotes the set of sensors (called Critical sensors Set) covering target ti with
certainty equal to or larger than a user specified threshold cth . As the most sparsely covered
target only covered by ub sensors, the maximum number of disjoint reliable covers N is no
larger than ub (i.e., N ≤ ub).

3 The Proposed Multi-layer Genetic Algorithm

The GA simulates the biological processes of natural selection, reproduction, and mutation
to iteratively evolve species of individual solutions to become more and more adapted to the
problem environment. The proposed GA can be described as a process formulated in multi-
layered fashion. Let S0

sleep = S, S0
active = ∅ and G Ai : S i−1

sleep → {S i
sleep, S i

active}, i =
1, 2, . . . , ub be the i th GA process that iteratively evolves a population ρ of solutions, using
genetic operators, toward the i th best set cover solution in terms of minimum number of
sensors that reliably cover all targets. Thus, the objective function � of the i th GA can be
defined as:

�i : Minimize
∣∣∣S i

active

∣∣∣ (5)

where S i
sleep denotes the set of alive sensors that has no sensing functionality in the i th

interval of the network’s lifetime.
Since no more than ub set covers can be generated, then we have no more than ub GA-

layers (see Eq. 6). The i th layer (also called the i th GA) only explores the solution space
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of the unassigned (i.e., sleep) sensors set resulted from the i − 1th GA. For the 1st GA, the
number of unassigned sensors is the whole set of sensors S.

GA = G A1◦G A2◦ . . .◦ G Al |l ≤ ub (6)

where:

l =
{

ub i f
∣
∣
∣Sub−1

sleep

∣
∣
∣ > 0 ∧ Cover

(
Sub−1

sleep , T
)

= 1

< ub otherwise
(7)

3.1 Space and Solution Configurations

The choice of a good solution representation is a critical issue for the applicability and
performance of evolutionary algorithm. Solution representation is highly problem dependent
and related to the evolution operations. In our algorithm design, each individual solutionPi of

G Ai is represented as a fixed-length vector of size mi =
∣
∣
∣S i−1

sleep

∣
∣
∣, where each gene j controls

the active/sleep scheduling of the corresponding j th sensor in S i−1
sleep . Formally speaking, for

population i of K individuals, each of mi genes,

∀k ∈ {1, . . . , K } and ∀ j ∈ {1, . . . , mi } :
Pi

k =
(
Pi

k,1,P
i
k,2, . . . ,P

i
k,mi

)
s.t. :

Pi
k, j =

{
1, i f s j is active
0, i f s j is sleep

}
(8)

Then, the whole configuration space δi for the i th GA can be created by the Cartesian product
of activation/inactivation of all mi unassigned sensors being resulted from in the i −1th GA:

δi =
mi∏

i=1

({0, 1}) = 2mi
(9)

where 0 means inactive (i.e., unassigned) sensor, while 1 means active (i.e., assigned) sensor.
Let us to consider that G Ai,1≤i≤ub handles only K � δi different individual solutions at
a time. It starts with an initial random population ρ0 ⊂ δi , |ρ0| = K and continues until a
maximum number of generations maxgen has been reached. Each generation � i : ρ → ρ′
consists of four main operators: individual repair, parent selection, crossover, and mutation.
Thus, � can be decomposed into:

� i = � i
rep ◦ � i

sel ◦ � i
x ◦ � i

mu (10)

3.2 Repair Operator and the Fitness Function

Before evaluating each individual, infeasible set cover solutions should be transformed into
feasible ones by means of a problem-specific repair operator. Infeasible solutions are those
which suffer from either the existence of coverage-holes or let the targets to be over-covered
by more than need sensors. The main idea of the repair operator is to make hole-free targets
coverage with as less number of sensors as possible. The process of the proposed repair
operator � i

rep of the i th GA is presented next (see Algorithm 1).

� i
rep : Pi

k → Pi
k ′ (11)
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It takes as input the individualPi
k , 1 ≤ k ≤ K and the set of unassigned sensors S i−1

sleep resulted

from the previous GA layer. First, it check whether the active sensors set Sk selected by Pi
k

(i.e.,Sk = {s j | Pi
k j = 1}) forms coverage-hole or dense-coverage under the user-specified

reliability threshold. In case of coverage-hole, � i
rep will randomly draw from S i−1

sleep set one

sensor at a time and collect it with Sk (i.e., Sk = Sk∪s|s ∈ S i−1
sleep and S i−1

sleep = S i−1
sleep−s) until

the new set form hole-free set cover. On the other hand, if Sk forms dense-coverage, � i
rep will

randomly deactivate one sensor at a time (i.e., Sk = Sk − s|s ∈ Sk and S i−1
sleep = S i−1

sleep + s)
until it can form complete coverage with less number of sensors.

Then, to evaluate each individual solution Pi
k , the fitness function � simply sums the

number of active sensors being selected by the corresponding solution.

∀k ∈ [1, K ]

�
(
Pi

k

)
=

mi =
∣
∣∣Si−1

sleep

∣
∣∣

∑

j=1

Pi
k j (12)

3.3 Selection, Crossover, and Mutation Operators

The remaining genetic operators follow the de-facto standard operators found in the simple
genetic algorithms.. The binary tournament selection operator is used to choose one of two
random individuals P1 and P2. A proportion pc = 0.6 of pairs of parents are then selected
for crossover. Two cut points r1, r2 ∼ {1, . . . , mi − 1}, are randomly selected, and the
participating parent individuals, P1 and P2 are then swapped at gene j

∣∣r1 ≤ j ≤ r2. Each
gene j

∣∣1 ≤ j ≤ mi . in the new individuals is then mutated with small probability pm = 0.1.

∀k ∈ {1, . . . , K }
�sel : {Pk1,Pk2} → Pk (13)

∀k ∈ {1, . . . , K/2}
�x : {Pk1,Pk2} → {P′

k1,P
′
k2}
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P′
k1 = (

Pk1,1, . . . ,Pk1,r1,Pk2,r1+1, . . . ,Pk2,r2,Pk1,r2+1, . . . ,Pk1,mi

)

P′
k2 = (

Pk2,1, . . . ,Pk2,r1,Pk1,r1+1, . . . ,Pk1,r2,Pk2,r2+1, . . . ,Pk2,mi

)
(14)

∀k ∈ {1, . . . , K } ∧ ∀ j ∈ {1, . . . , mi }
�mu : Pk → P′

k

Pk, j =
{

Pk, j i f r > pm

1 − Pk, j i f r ≤ pm
(15)

The mechanisms of the genetic operators being defined by repair, fitness evaluation, selection,
crossover and mutation transform a complete population of solutions into another complete
population and after a specified number of generations maxgen , the best individual solution
(in terms of minimum �) will be produced. The definition of the best individual of the i th
GA can be formulated as:

BestPi :⇐⇒ �Pi ∈ ρmaxgen |�
(
Pi

)
< �(BestPi ) (16)

3.4 Post-heuristic Operator

The best solution set BestP = {BestPi |i = 1, . . . , l} provided by GA can further be
improved in terms of coverage reliability by forwarding it to a post-heuristic operator dedi-
cated for this purpose. Algorithm 2 presents the steps of this heuristic. It operates iteratively
layer followed by layer (line 1), improving the reliability of each layer i by exploiting the
existing unassigned sensors (being gathered in Sl

sleep) and/or replacing the existing active

sensors (being gathered in BestPi ).

4 Performance Evaluations

In this section we will measure the performance of the proposed multi-layer GA (denoted
hereinafter as mlGA) for solving DRSC problem. The evaluation is presented in terms of
number of set covers obtained, set covers’ coverage reliability, and sensors cost. The results
are obtained after setting WSNs and algorithm parameters into the following. The simulation
area is square-shaped with side length Xmax = 1,000 m of 10 randomly distributed targets.
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The simulation is mainly divided into nine groups according to nine different settings of sensor
density: 25, 50, 75, . . . , 225. For each group, we will vary the sensing range of the sensor
nodes Rs to five different values {400, 500, 600, 700, 800}, to get a different test instance
(i.e., we have 45 different test instances). Each test instance T I i , i = 1, . . . , 45 includes 10
random WSNs with different configurations. Thus the overall simulation examines a total of
450 random network configurations. As we have random WSN configurations, we may get
different value for the upper bound of set covers ub, for the same parameter settings. Thus in
each test instance, the presented results also indicate the average number of upper bound of
set covers (denoted by ub). In other words, ub is used to represents the maximum network’s
lifetime. Uncertainty level Ru is set to Rs ∗ 0.5 units, both λ and β are set to 0.5, and cth is
set to 0.001. The setting of the probabilistic coverage parameters also influences the overall
network’s coverage reliability. As studying the impact of varying these parameters is out of
the scope of this paper, we fixed these parameters to one setting and evaluate the average
coverage reliability r (i.e., the average signal strength being detected from all the targets)
of all network configurations in each test instance. Population size is set to 50 and will be
allowed to evolve 500 times.

The performance of the proposed mlGA has been compared with the performance of
Genetic Algorithm for Maximum Disjoint Set Covers (GAMDSC). GAMDSC has been
proposed in [15] to extend the lifetime of WSNs. GAMDSC also is simple genetic algorithm
but uses integer representation for chromosome representation (like all GA related work in
the literature, e.g., [16] and [17]), traditional uniform crossover, traditional creep mutation,
and a proposed scatter operator to evolve their chromosome solutions. The fitness function of
GAMDSC has been devoted to maximize number of complete set covers in each chromosome.
The performance of GAMDSC has been compared in [15] against the most constrained-
minimum constraining heuristic (MCMCC) [2] and the exhaustive heuristic of Maximum
Covers using Mixed Integer Programming (MCMIP) [12] for solving the DSC problem in
WSNs. Simulation results in [15] show that GAMDSC can get near-optimal solutions and
improve the performance of MCMCC by 16 % in terms of the obtained sensor covers. As
compared with the exhaustive search of MCMIP, GAMDSC can get results with acceptable
computation time.

4.1 Solution Quality of Multi-layer GA Versus GAMDSC

First, results are presented in Tables 1, 2 and 3 to compare the quality of results obtained by
GAMDSC, and our algorithm. Tables 1, 2 and 3 quantitatively present the number of set covers
(denoted by ub) being obtained by both algorithms. To examine the quality of solutions,
we present ub as reference value. Unlike work in [15], which evaluates the performance
of GAMDSC for small values of ub ranged from 5 to 39, the results here evaluate both
GAMDSC and mlGA for larger setting of ub ranges from 3.7 to 92.1. In the tables, the
solution providing the closest value to ub in each test instance has been bolded. Figures 2,
3 and 4 qualitatively depict the performance of GAMDSC and mlGA. Moreover, Figs. 5, 6
and 7 depict the accuracy percentage of obtained number of set covers of each algorithm. For
further qualitative comparison, Fig. 8 depicts the obtained ub for three different settings of
sensor density, i.e., m = 25, 125 and 225 and the five settings of sensing range. Additionally,
Fig. 9 depicts ub for the two extremes of sensing range Rs = {400, 800}, and the nine
different settings of sensor density.

Results in Tables 1, 2, 3 and Figs. 2, 3, 4, 5, 6, 7 reveal that the proposed ml GA significantly
outperforms GAMDSC in terms of finding near optimal number of set covers. For ub > 8.8
(i.e., in T I 7 to T I 45), the performance of GAMDSC deteriorates, while mlGA continues
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Table 1 Comparison of the
maximum number of the
generated Set Covers for 10
WSNs in each test instance with
number of sensors =
{25, 50, 75} and Rs =
{400, 500, . . . , 800}

T I m Rs ub GAMDSC mlGA

T I 1 25 400 3.7 3.7 3.7

T I 2 500 4.3 4.3 4.3

T I 3 600 5.7 5.7 5.7

T I 4 700 7.5 7.4 7.2

T I 5 800 9.1 9.1 8.9

T I 6 50 400 8.8 8.5 8.4

T I 7 500 11.0 10.7 10.8

T I 8 600 13.1 12.9 13.0

T I 9 700 16.5 15.5 15.6

T I 10 800 19.2 17.9 18.4

T I 11 75 400 13.8 13.0 13.6

T I 12 500 18.0 16.6 17.7

T I 13 600 21.5 19.5 21.2

T I 14 700 24.9 22.6 24.7

T I 15 800 30.8 26.6 29.8

Table 2 Comparison of the
maximum number of the
generated Set Covers for 10
WSNs in each test instance with
number of sensors=
{100, 125, 150} and Rs =
{400, 500, . . . , 800}

T I m Rs ub GAMDSC mlGA

T I 16 100 400 21.0 15.9 20.2

T I 17 500 25.4 19.6 24.4

T I 18 600 30.7 23.8 29.6

T I 19 700 36.0 28.5 34.6

T I 20 800 42.0 34.4 39.1

T I 21 125 400 22.4 18.2 22.2

T I 22 500 27.9 22.0 27.4

T I 23 600 33.7 26.4 32.9

T I 24 700 39.7 31.9 38.7

T I 25 800 46.8 38.1 45.4

T I 26 150 400 24.2 20.0 24.2

T I 27 500 30.7 24.7 30.5

T I 28 600 37.4 29.8 37.4

T I 29 700 45.2 35.0 45.0

T I 30 800 53.4 42.3 52.5

in getting solutions very slightly less than the optimal values. In almost all of the network
configurations of these test instances, mlGA reaches the optimal solution. In other words, we
can say that increasing ub restricts the ability of GAMDSC and constraints the usefulness
of its components (mainly characterized by the integer-based chromosome representation
and the scatter operator) to find optimal or near optimal ub solutions. On the other hand, the
characteristic components of the proposed mlGA (being specified mainly by the chromosome
binary representation and the proposed repair operator) is found to be more robust to find
very near optimal or even optimal ub solutions.
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Table 3 Comparison of the
maximum number of the
generated set covers for 10 WSNs
in each test instance with number
of sensors=
{175, 200, 225} and Rs =
{400, 500, . . . , 800}

T I m Rs ub GAMDSC mlGA

T I 31 175 400 35.2 25.4 35.0

T I 32 500 43.5 30.5 42.7

T I 33 600 51.4 37.9 50.9

T I 34 700 60.6 45.2 59.5

T I 35 800 69.7 53.6 67.7

T I 36 200 400 35.4 27.4 35.3

T I 37 500 42.2 33.2 41.9

T I 38 600 49.0 39.5 48.5

T I 39 700 58.7 47.0 57.4

T I 40 800 70.5 56.9 69.0

T I 41 225 400 46.8 31.5 46.8

T I 42 500 57.4 39.8 57.2

T I 43 600 68.2 48.1 67.3

T I 44 700 81.6 58.5 80.3

T I 45 800 92.1 68.7 89.0

For small values of set covers (i.e. ub ≤ 8.8), both GAMDSC and mlGA attained nearly
an equal number of set covers. In test instances T I 1 to T I 3 both GAMDSC and mlGA get
optimal number of set covers, while in T I 4 to T I 6 GAMDSC finds slightly more covers
than mlGA. However, in all these test instances (i.e., T I 1 to T I 6), we cannot say that both
algorithm have an equal performance. As will be seen in Table 4 of the next section, the
active sensors cost percentage SC% used by GAMDSC is more than that of mlGA. While
mlGA (in T I 1 to T I 6) costs only 47.6–68.8 % of the total number of sensors, GAMDSC
costs more than 99.0 % of the total number of sensors.

As expected from the qualitative results depicted in Figs. 8 and 9, increasing sensor density
and/or sensing range provides algorithms with more alternatives for constructing complete
and reliable set covers. Moreover, as evident from the figures that increasing sensor density
and/or sensing range further discriminates between the performance of both algorithms in
terms of finding maximum number of set covers. The full results of both GAMDSC and
mlGA are projected in 3D space in Figs. 10 and 11, respectively.

4.2 Comparison of Sensors Cost of Multi-layer GA Versus GAMDSC

In this section, we want to compare the performance of the proposed mlGA and GAMDSC
in terms of active sensors cost used in the generated DSCs (see Tables 4, 5, 6). The goal is to
achieve the highest number of set covers possible with the fewest number of active sensors.
Here, sensors cost percentage SC% is defined as the ratio between the number of active
sensors used in the generated best individual solution BestP and the total number of sensor
nodes m, i.e.,:

SC =
∣∣⋃

s∈BestP s = 1
∣∣

m
∗ 100 % (17)
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Fig. 2 Maximum number of the generated Set Covers for GAMDSC: left versus mlGA: right where
number of sensors m = {25, 50, 75} and Rs = {400, 500, . . . , 800}
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Fig. 3 Maximum number of the generated Set Covers for GAMDSC: left versus mlGA: right where
number of sensors m = {100, 125, 150} and Rs = {400, 500, . . . , 800}

Also, here in the tables, the solution providing the smallest SC% in each test instance has
been bolded. Figures 12, 13 and 14 qualitatively depict the sensors cost percentage SC% for
GAMDSC and mlG A.

The results presented in Tables 4, 5, 6 and Figs. 12, 13, 14 clearly signify the superiority
of mlGA over GAMDSC for activating less number of sensors for a large number of set
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Fig. 4 Maximum number of the generated Set Covers for GAMDSC: left versus mlGA: right where
number of sensors m = {175, 200, 225} and Rs = {400, 500, . . . , 800}
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Fig. 5 Accuracy percentage of the generated Set Covers for GAMDSC: left versus mlGA: right where
number of sensors m = {25, 50, 75} and Rs = {400, 500, . . . , 800}

covers (i.e., for a longer lived networks). In almost all of the 45 test instances (i.e., in 450
different network configurations), GAMDSC consumes more than 80 % of the total number
of sensors to achieve networks’ lifetime less than that achieved by mlGA. For the purpose
of a detailed comparison between the performance of the proposed mlGA versus GAMDSC
under various sensor density and range settings, we will also here refer to the results depicted
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Fig. 6 Accuracy percentage of the generated Set Covers for GAMDSC: left versus mlGA: right where
number of sensors m = {100, 125, 150} and Rs = {400, 500, . . . , 800}
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Fig. 7 Accuracy percentage of the generated Set Covers for GAMDSC: left versus mlGA: right where
number of sensors m = {175, 200, 225} and Rs = {400, 500, . . . , 800}

in Figs. 5, 6, 7 and ub values presented in Tables 1, 2 and 3. For small lived network instances
of T 1 −T 15 in Table 4 (where average lifetime, i.e., upper bound of set covers ub ranges from
3.7 to 30.8 as presented in Table 1), GAMDSC consumes more than 90 % of the total sensors
to achieve network’s lifetime accuracy above 85 % (as shown in Fig. 5). On the other hand,
mlGA sacrifices no more than 77 % sensors to achieve lifetime very near to the expected
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Fig. 8 Average number of set covers of G AM DSC (+ sign) and mlG A (filled circle). The simulation is exper-
imented under 150 networks with number of sensors = {25, 125, 225} and Rs = {400, 500, 600, 700, 800}
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Fig. 9 Average number of set covers of G AM DSC (+ sign) and mlG A (filled circle). The simulation is
experimented under 180 networks with number of sensors = {25, 50, . . . , 225} and Rs = {400, 800}

ub value (with accuracy more than 94.5 % as shown in Fig. 5). For small to moderate lived
networks of instances T 16 − T 30 in Table 5, the expected ub value, in Table 2, ranges from
21.0 to 53.4. In these instances, more than 85 % of the total sensor density is activated by
GAMDSC to extend the network’s lifetime to no more than 82 % of its upper bound (as shown
in Fig. 6). However, for the same instance cases, mlGA continues to perform very properly,
activating no more than 74 % of the total sensor density to achieve lifetime bound accuracy
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Fig. 10 3D projection of the results of G AM DSC (x-coordinate: sensing range, y-coordinate: number of
sensors, z-coordinate: average number of set covers). The simulation is experimented under 450 networks
with number of sensors = {25, 50, . . . , 225} and Rs = {400, 500, . . . , 800}
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Fig. 11 3D projection of the results of mlGA (x-coordinate: sensing range, y-coordinate: number of sen-
sors, z-coordinate: average number of set covers). The simulation is experimented under 450 networks with
number of sensors = {25, 50, . . . , 225} and Rs = {400, 500, . . . , 800}

no less than 93 %. Finally, for the moderate to long lived networks of instances T 31 − T 45 in
Table 6, we can see that the upper bound of network lifetime ub (as shown in Table 3) should
range from 35.2 to 92.1. In these instances, GAMDSC costs more than 75.7 % sensors to get
no more than 80.7 % of ub accuracy. On the other hand, mlGA is once again sufficient. It
costs up to 77 % sensors to get quite accurate number of set covers with 96.6 % accuracy.

On overall, the results reflect that many sensors are redundantly scheduled by GAMDSC
to form complete set covers. On the other hand, mlGA has the ability to correctly schedule
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Table 4 Comparison of sensors
cost percentage for 10 WSNs in
each test instance with
number of sensors =
{25, 50, 75} and Rs =
{400, 500, . . . , 800}

T I m Rs GAMDSC mlG A

T I 1 25 400 100.0 47.6

T I 2 500 100.0 48.0

T I 3 600 100.0 54.8

T I 4 700 99.2 60.4

T I 5 800 100.0 68.8

T I 6 50 400 99.0 51.8

T I 7 500 98.6 56.4

T I 8 600 99.0 60.6

T I 9 700 97.2 65.2

T I 10 800 96.2 70.6

T I 11 75 400 96.8 53.46

T I 12 500 95.2 61.2

T I 13 600 94.66 66.13

T I 14 700 93.73 69.06

T I 15 800 91.73 76.8

Table 5 Comparison of sensors
cost percentage for 10 WSNs in
each test instance with
number of sensors =
{100, 125, 150} and Rs =
{400, 500, . . . , 800}

T I m Rs GAMDSC mlG A

T I 16 100 400 85.8 61.4

T I 17 500 87.5 65.9

T I 18 600 87.9 69.8

T I 19 700 86.7 72.3

T I 20 800 89.3 73.4

T I 21 125 400 88.48 56.48

T I 22 500 86.48 63.28

T I 23 600 86.08 67.52

T I 24 700 87.52 69.28

T I 25 800 88.72 72.4

T I 26 150 400 89.6 53.2

T I 27 500 88.0 60.0

T I 28 600 87.8 64.93

T I 29 700 85.6 69.46

T I 30 800 86.6 72.6

as less number of sensors as necessary to form as more as possible number of complete set
covers.

4.3 Impact of Post-heuristic Operator

The performance of the proposed mlGA is presented, here, before and after performing the
post-heuristic operator with names mlG A− and mlG A+, respectively. Tables 7, 8 and 9
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Table 6 Comparison of sensors
cost percentage for 10 WSNs in
each test instance with
number of sensors =
{175, 200, 225} and Rs =
{400, 500, . . . , 800}

T I m Rs GAMDSC mlG A

T I 31 175 400 80.85 63.02

T I 32 500 80.17 67.94

T I 33 600 82.34 71.65

T I 34 700 83.88 74.51

T I 35 800 85.25 76.85

T I 36 200 400 85.75 55.05

T I 37 500 86.85 57.6

T I 38 600 87.55 58.7

T I 39 700 87.30 62.35

T I 40 800 88.50 67.45

T I 41 225 400 75.77 63.64

T I 42 500 80.00 68.08

T I 43 600 80.48 71.73

T I 44 700 81.42 76.48

T I 45 800 83.37 77.02
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Fig. 12 Sensors Cost percentage for the generated Set Covers for GAMDSC: left versus mlGA: right where
number of sensors m = {25, 50, 75} and Rs = {400, 500, . . . , 800}

present the average covers reliability r of the whole set covers solution of GAMDSC,
mlG A− and mlG A+. Here, r is presented as reference value. The solution providing the
closest value to r in each test instance has been bolded. Moreover, Figs. 15, 16 and 17 depict
the sensors cost percentage SC% being resulted from GAMDSC and mlG A+.

r =
∑l

i=1 r DSCi

l
(18)
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Fig. 13 Sensors Cost percentage for the generated Set Covers for GAMDSC: left versus mlGA: right where
number of sensors m = {100, 125, 150} and Rs = {400, 500, . . . , 800}

400 500 600 700 800 400 500 600 700 800 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

Sensing Range for m = 175; 200; 225

%
Se

ns
or

s 
C

os
t

Fig. 14 Sensors Cost percentage for the generated Set Covers for GAMDSC: left versus mlGA: right where
number of sensors m = {175, 200, 225} andRs = {400, 500, . . . , 800}

where l is the maximum number of set covers and the coverage reliability of the i th set cover,
r DSCi , can be formulated as:

r DSCi =
∑n

j=1 k=1,2,...,m arg max
sk∈DSCi

(Coverage(sk, t j ))

n
(19)
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Table 7 Comparison of covers
reliability for 10 WSNs in each
test instance with
number of sensors =
{25, 50, 75} and Rs =
{400, 500, . . . , 800}

T I r GAMDSC mlG A− mlG A+
T I 1 0.3426 0.5995 0.4380 0.6121

T I 2 0.4228 0.6869 0.5357 0.7477

T I 3 0.4747 0.7320 0.6073 0.7574

T I 4 0.5262 0.7312 0.6612 0.7758

T I 5 0.5742 0.7578 0.7076 0.7828

T I 6 0.3310 0.5358 0.4026 0.5745

T I 7 0.4003 0.6096 0.4775 0.6312

T I 8 0.4655 0.6794 0.5846 0.7029

T I 9 0.5145 0.7045 0.6278 0.7419

T I 10 0.5812 0.7642 0.7071 0.7742

T I 11 0.3458 0.5202 0.3847 0.5491

T I 12 0.4159 0.6100 0.4803 0.5986

T I 13 0.4846 0.6711 0.5981 0.6850

T I 14 0.5379 0.7283 0.6562 0.7369

T I 15 0.5848 0.7536 0.7138 0.7659

Table 8 Comparison of covers
reliability for 10 WSNs in each
test instance with
number of sensors =
{100, 125, 150} and Rs =
{400, 500, . . . , 800}

T I r GAMDSC mlG A− mlG A+
T I 16 0.3538 0.5244 0.4298 0.5369

T I 17 0.4306 0.6219 0.5047 0.6199

T I 18 0.4886 0.6694 0.5777 0.6647

T I 19 0.5367 0.7084 0.6540 0.7195

T I 20 0.5762 0.7579 0.7006 0.7593

T I 21 0.3575 0.5590 0.4028 0.5564

T I 22 0.4261 0.6382 0.5127 0.6359

T I 23 0.4832 0.6861 0.5936 0.7011

T I 24 0.5321 0.7209 0.6416 0.7355

T I 25 0.5761 0.7683 0.6967 0.7601

T I 26 0.3525 0.5834 0.3975 0.5905

T I 27 0.4257 0.6433 0.4911 0.6569

T I 28 0.4808 0.6975 0.5698 0.7035

T I 29 0.5349 0.7293 0.6360 0.7336

T I 30 0.5765 0.7660 0.6862 0.7601

By comparing the results of mlG A− against mlG A+ in Tables 7, 8 and 9, we can see that
mlG A+ can exploit the existence of the redundant sensors to improve its covers reliability.
Also, the results verify that mlG A+ can achieve covers reliability more or less than that
achieved by GAMDSC. Again, this is expected as GAMDSC forms only a small number
of complete set covers with many redundant sensors (as shown in Sects. 4.1, 4.2). This also
demonstrates that there should be a tradeoff between the two contradictory criteria of getting
maximum number of complete set covers and high covers reliability.
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Table 9 Comparison of covers
reliability for 10 WSNs in each
test instance with
number of sensors =
{175, 200, 225} and Rs =
{400, 500, . . . , 800}

T I r GAMDSC mlG A− mlG A+
T I 31 0.3538 0.5324 0.4157 0.5150

T I 32 0.4306 0.6081 0.5120 0.5962

T I 33 0.4886 0.6872 0.5927 0.6663

T I 34 0.5367 0.7260 0.6525 0.7089

T I 35 0.5762 0.7671 0.7066 0.7538

T I 36 0.3575 0.5736 0.4293 0.5766

T I 37 0.4261 0.6471 0.5157 0.6527

T I 38 0.4832 0.7192 0.6011 0.7310

T I 39 0.5321 0.7553 0.6592 0.7595

T I 40 0.5761 0.7908 0.7132 0.7839

T I 41 0.3525 0.5358 0.4183 0.5055

T I 42 0.4257 0.6211 0.5091 0.5860

T I 43 0.4808 0.6827 0.5928 0.6614

T I 44 0.5349 0.7268 0.6536 0.7046

T I 45 0.5765 0.7667 0.7154 0.7608
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Fig. 15 Sensors Cost percentage for the generated Set Covers for GAMDSC: left versus mlG A+: right where
number of sensors m = {25, 50, 75} and Rs = {400, 500, . . . , 800}

4.4 Comparison of Worst Case Time Complexity

Here we will compare the worst-case computational complexity of GAMDSC algorithm
and the proposed multi-layer GA solving Disjoint Reliable Sensor Covers Problem (DRSC).
Without loss of generality, the computational complexity of any single-objective genetic
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Fig. 16 Sensors Cost percentage for the generated Set Covers for GAMDSC: left versus mlG A+: right where
number of sensors m = {100, 125, 150} and Rs = {400, 500, . . . , 800}
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Fig. 17 Sensors Cost percentage for the generated Set Covers for GAMDSC: left versus mlG A+: right where
number of sensors m = {175, 200, 225} and Rs = {400, 500, . . . , 800}

algorithms is O(maxi × K ) where K is the size of solutions to be evolved, via certain
evolution operators, for maxi iterations.

Now, let us consider the computation time needed for the most critical parts of the above
algorithms when applied for solving DRSC problem. It is stated in [15] that in each generation
of GAMDSC, the fitness function is the most critical part which represents the computation
time bottleneck. The evaluation of the fitness function is linearly related to the number of
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sensors and the number of targets. Thus, the worst-case time complexity of GAMDSC is:

O (G AM DSC) = maxi × K × |n| × |m| (20)

where |n| is the number of targets and |m| is the number of sensors. On the other hand, for
the multi-layer GA, the proposed repair operator (Algorithm 1) costs the most computation
time and in the worst-case time it linearly related to the maximum number of sensors and
targets. Also, the multi-layer GA has to repeat its whole operations for at most ub layers,
and in the worst-case time it linearly related to the upper bound of sensor covers ub. Thus,
the worst-case time complexity of the proposed multi-layer GA can be formally described in
Eq. 21. Shortly speaking, O (mlG A) = O (G AM DSC) × |ub|.

O (mlG A) = maxi × K × |n| × |m| × |ub| (21)

5 Conclusions

In this paper, we have addressed WSNs lifetime extension problem as a maximum Disjoint
Set Covers (DSC) problem while introducing the concept of probabilistic coverage as a more
realistic coverage model for constructing the set covers. A multi-layer genetic algorithm is
proposed to maximize the number of set covers, where the total number of sensors used in
each set cover is to be minimized. The result of multi-layer GA is then forwarded to a post-
heuristic operator to improve the coverage reliability of each cover set. The performance of
the proposed genetic algorithm is investigated in this paper under different simulation set-
ting. The results of the simulations reveal that the proposed genetic algorithm outperforms
GAMDSC in terms of number of disjoint set covers, covers reliability and sensors cost. The
results of this paper currently motivate us to investigate the possibility of applying multi-
objective evolutionary algorithms (like MOEA/D, NSGA-II, and MOPSO [22–25]) to the
combined optimization problem of both disjoint set covers and covers reliability and han-
dling both objective functions simultaneously instead of applying consecutive optimization
mechanisms. Also, as a scope of further work, another quality of service (QoS) merit could
be used to constraint the defined DRSC problem. For example, different targets may need
different priority of sensing quality and thus the optimization problem should reflect this
diversified QoS coverage constraint in its formulation.
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