
Wireless Pers Commun (2014) 79:1621–1634
DOI 10.1007/s11277-014-1948-z

A Provably Secure Multi-server Based Authentication
Scheme

Kuo-Hui Yeh

Published online: 25 July 2014
© Springer Science+Business Media New York 2014

Abstract With the rapid growth of electronic commerce and demand on variants of Internet
based applications, the system providing resources and business services often consists of
many servers around the world. So far, a variety of authentication schemes have been pub-
lished to achieve remote user authentication on multi-server communication environment.
Recently, Pippal et al. proposed a multi-server based authentication protocol to pursue the
system security and computation efficiency. Nevertheless, based on our analysis, the pro-
posed scheme is insecure against user impersonation attack, server counterfeit attack, and
man-in-the-middle attack. In this study, we first demonstrate how these malicious attacks can
be invoked by an adversary. Then, a security enhanced authentication protocol is developed
to eliminate all identified weaknesses. Meanwhile, the proposed protocol can achieve the
same order of computation complexity as Pippal et al.’s protocol does.

Keywords Authentication · Multi-server · Privacy · Security · Smart card

1 Introduction

Following the advances in network technologies and the widespread distribution of remote
system backup, lots of multi-server based applications have been deployed to make legitimate
user access network service more conveniently and efficiently. As password based authenti-
cation scheme provides an efficient and accurate way to identify valid remote user and at the
same time preserves the secrecy of communication, a lot of password based authentication
mechanisms have been investigated in these years. However, once the scale of the networks

The author gratefully acknowledges the support from Taiwan Information Security Center (TWISC) and
Ministry of Science and Technology, Taiwan, under the Grants Numbers MOST 103-2221-E-259-016-MY2
and MOST 103-2221-E-011-090-MY2.

K.-H. Yeh (B)
Department of Information Management, National Dong Hwa University, Hualien 974, Taiwan
e-mail: khyeh@mail.ndhu.edu.tw

123



1622 K.-H. Yeh

becomes larger, the authentication scheme which supports the circumstance of single-server
architecture does not suffice for users’ need anymore. This may limit the future development
and pervasive usage of existing Internet based applications. For example, to pursue the relia-
bility and efficiency in a resource acquiring process, the remote service system often consists
of many servers located at different places. The single-server based authentication protocols
will be in-efficient on multi-server communication architecture. In addition, a legal user,
who intends to access distinct network services, must register with the services providers (or
servers) in advance and memorize all corresponding identities and passwords. This incon-
venience will impede the pervasive usage of such multi-server based application systems.
Hence, providing a secure and efficient authentication mechanism compatible to multi-server
architecture will be crucial for future service systems.

Due to the difficult tradeoff between security robustness and computation complexity, it
is a particular challenge to design an authentication scheme which simultaneously possesses
system reliability and performance efficiency. The research community has promptly focused
on this research area in these years. In 2004, Juang [9] developed a key agreement based
authentication protocol which allows legal remote user to register only once and then access
network services from distinct servers efficiently. Later, Chang and Lee [4] presented an
improved version of Juang’s protocol to pursue better system efficiency without losing any
security robustness. Next year, Ku et al. [10] showed that Juang’s protocol cannot withstand
insider attack and provide forward secrecy. Later, Liao and Wang [13] proposed a dynamic
ID based remote user authentication scheme. However, Hsiang and Shih [8] demonstrated
that Liao–Wang’s scheme is insecure against insider attack, impersonation attack, server
spoofing attack and cannot provide mutual authentication. Later, Sood et al. [15] pointed out
that Hsiang–Shih’s scheme cannot resist to replay attack, impersonation attack and stolen
smart card attack. In addition, the authors proposed a security enhanced scheme. Nevertheless,
this scheme is vulnerable to stolen smart card attack and leak of verifier attack [6,12]. In
2012, Wang and Ma [17] presented a smart card based authentication scheme for multi-
server architecture. The authors claimed that their scheme is able to resist replay attack,
offline dictionary attack, server spoofing attack and impersonation attack. Unfortunately, the
proposed scheme cannot withstand server spoofing attack, impersonation attack, privileged
insider attack and off-line password guessing attack [7]. At the same year, Tsai et al. [16]
introduced a multi-server based authentication scheme to withstand password guessing attack.
The authors claimed that the proposed scheme can resist to undetectable on-line password
guessing attack. However, the undetectable on-line password guessing attack is a natural
weakness in password based authentication scheme [18]. Recently, Pippal et al. [14] proposed
a smart card based authentication scheme for multi-server architecture. The authors claimed
that their scheme can withstand various attacks such as user impersonation attack, server
spoofing attack, replay attack, reflection and parallel session attacks, password guessing
attack, insider attack, smart card loss attack, stolen verifier attack and known session key
attack. Nevertheless, we find that Pippal et al.’s scheme is vulnerable to server counterfeit
attack, user impersonation attack and man-in-the-middle attack. All of these weaknesses will
be presented in the following sections.

2 Review of PTJ Scheme

In this section, we review the authentication process of Pippal et al.’s scheme [14].

123



Authentication Scheme 1623

2.1 Initialization Phase

The registration center RC selects two 1,024-bits prime numbers p and q and a generator
g ∈ Z∗

N and computes N = p × q , where Z∗
N = (g|1 ≤ g ≤ N − 1, gcd(g, N ) = 1).

Next, RC generates k random numbers (r1, r2, …, rk) for k servers, respectively. Note that
gcd(ri , r j ) = 1, gcd(ri ,∅(N )) = 1 , where 1 ≤ i, j ≤ k, i �= j . After that, RC computes

secret key S j = g�K
i=1,i �= j r j mod N and t = 1

g
∏k

i=1 ri mod N
for every server S j .

2.2 Server Registration Phase

In this phase, the server S j submits SID j to RC over a secure channel. Once receiving the
registration request from S j , RC assigns r j to S j and sends {r j , t, g, N , h(.)} to S j via a
secure channel.

2.3 User Registration Phase

In this phase, the user Ui submits {UIDi , PWi } to RC which then computes P =
h(UIDi‖PWi‖t) and issues a smart card to Ui . Note that {(s1, s2, …, sk), t, g, N , P, h(.)} is
stored in this smart card’s memory.

2.4 Login and Authentication Phase (Fig. 1)

When Ui wants to access S j , Ui inserts his/her smart card into the card reader and
inputs his/her identity UID′

i and password PW′
i . The smart card then calculates P ′ =

h(UID′
i‖PW′

i‖t) and checks whether P ′ equals to stored P or not. If it holds, Ui is authen-
ticated. Next, the smart card generates a random nonce a, computes, A = gamod N , M1 =
(s

UIDi ×SID j
j × A) mod N , and sends {UIDi , M1} to S j . Upon receiving {UIDi , M1}, S j

Fig. 1 PTJ scheme

123



1624 K.-H. Yeh

verifies UIDi . If it is valid, S j generates a random nonce b, performs the computations of
B, K , SKey(i, j), and M2. After that, S j sends the response {B, M2} to Ui .

B = gb×r j mod N ;
K =

((
M(r j)

1 × t(UIDi ×SID j )
)

mod N
)b

= g(a×b×r j )mod N ;
SKey(i, j) = h(K‖UIDi‖SID j );

M2 = h
(
K‖UIDi‖SID j‖B‖SKey(i, j)

)
.

Once Ui receives {B, M2}, Ui first performs the following computations and then checks
whether computed M2

′ equals to received M2 or not. If it holds, S j is authenticated.

K = (B)a mod N =
(

gb×r j
)a

mod N = g(a×b×r j )mod N ;
SKey(i, j) = h(K‖UIDi‖SID j );

M ′
2 = h

(
K‖UIDi‖SID j‖B‖SKey(i, j)

)

Subsequently, Ui computes M3 and sends it to S j . Finally, S j calculates M ′
3 and checks

whether computed M ′
3 is equal to received M3 or not. If it holds, mutal authentication is

achieved. Both Ui and S j agree upon a common session key SKey(i, j).

M3 = h
(
K‖UIDi‖SID j‖A‖B‖SKey(i, j)

) ;
M ′

3 = h
(
K‖UIDi‖SID j‖A‖B‖SKey(i, j)

)

2.5 Password Change Phase

When Ui wants to change the password. Ui inserts the smart card into the card reader and
keys in UID′

i and PW′
i . The smart card computes P ′ = h(UID′

i‖PW′
i‖t) and checks whether

P ′ equals to stored P or not. If it holds, Ui is legitimate. After that, Ui is allowed to enter a
new password PWinew, and the card reader computes Pnew = h(UIDi‖PWinew‖t) and stores
Pnew in the smart card’s memory.

3 Vulnerabilities of PTJ Scheme

3.1 Server Counterfeit Attack

Suppose there exists a legal but malicious user Uk possessing a smart card with {(s1, s2, …,
sk), t, g, N , Pk , h(.)}, where Pk = h(UIDk‖PWk‖t). Once Uk intends to launch a server
counterfeit attack, Uk can perform the following steps to cheat Ui that he/she is S j .

Step 1: During a normal authentication session betweenUi and S j , Uk interrupts {UIDi , M1},
where M1 = (s

UIDi ×SID j
j × A)mod N and A = gamod N .

Step 2: Uk computes the following values.

1. B = gbmod N with a random nonce b.

2. K =
((

M1 × 1
s j

(UIDi ×SID j)
)

mod N
)b

= g(a×b)mod N .

3. SKey(i, j) = h(K‖UIDi‖SID j ). Note that SID j is a public value.
4. M2 = h

(
K‖UIDi‖SID j‖B‖SKey(i, j)

)

After that, Uk pretends that he/she is S j and sends the response {B, M2} to Ui .

123



Authentication Scheme 1625

Step 3: With {B, M2}, Ui performs the following verification.

1. K = (B)a mod N = (
gb

)a
mod N = g(a×b)mod N

2. SKey(i, j) = h
(
K‖UIDi‖SID j

)

3. M ′
2 = h

(
K‖UIDi‖SID j‖B‖SKey(i, j)

)

4. Check M ′
2 = M2?

It is obvious that this verification will be passed. Next, Ui sends M3 to S j .
Step 4: Uk interrupts M3. So far, Ui misunderstands that he/she is communicating with S j

(actually it is Uk). In addition, Ui believes that he/she and S j share a session key
SKey(i, j) = h

(
K‖UIDi‖SID j

)
, where K = g(a×b)mod N . However, this session

key is shared between Ui and Uk . Hence, we conclude that the server counterfeit
attack can successfully be launched on PTJ scheme.

3.2 User Impersonation Attack

Suppose there exists a legal but malicious user Uk possessing a smart card with {(s1, s2,
…, sk), t, g, N , Pk, h(.)}, where Pk = h(UIDk‖PWk‖t). It is obvious that Uk can easily
cheat S j that he/she is Ui with eavesdropped UIDi . This is because Uk possesses all the
parameters {(s1, s2, …, sk), t, g, N , Pk , h(.)}. With the eavesdropped UIDi , Uk has the ability
to create any legal message involved with Ui . Note that as UIDi is transmitted in public,
UIDi is easily to obtain. In more details, Uk can choose a random nonce a, and compute

A = gamod N , M1 = (s
UIDi ×SID j
j × A)mod N , and impersonates Ui to send {UIDi , M1}

to S j . This cheating can easily be achieved as {(s1, s2, …, sk), t, g, N , P, h(.)} is also stored
in the memory of Uk’s smart card. Hence, we can conclude that the user impersonation attack
cannot be avoided in PTJ scheme.

3.3 Man-in-the-Middle Attack

Suppose there exists a legal but malicious user Uk possessing a smart card with {(s1, s2, …,
sk), t, g, N , Pk, h(.)}, where Pk = h(UIDk‖PWk‖t). Now we utilize the following steps to
demonstrate a man-in-the-middle attack. That is, Uk can exploit its man-in-the-middle status
to cheat Ui and S j at the same time (Fig. 2).

Step 1: The smart card at Ui side generates a random nonce a, computes A =
gamod N , M1 = (s

UIDi ×SID j
j × A)mod N , and sends {UIDi , M1} to S j .

Step 2: Uk interrupts {UIDi , M1}, and generates a random nonce a′, computes A′ =
ga′

mod N , M ′
1 = (s

UIDi ×SID j
j × A′)mod N , and sends {UIDi , M ′

1} to S j .
Step 3: S j verifies UIDi , and generates a random nonce b, computates values B, K , SKey(i, j),

and M2. Next, S j sends the response {B, M2} back to Ui .

B = gb×r j mod N ;
K =

((
M

′(r j)
1 × t(UIDi ×SID j)

)
mod N

)b
= g(a′×b×r j )mod N ;

SKey(i, j) = h(K‖UIDi‖SID j );
M2 = h

(
K‖UIDi‖SID j‖B‖SKey(i, j)

)
.

123



1626 K.-H. Yeh

Fig. 2 Man-in-the-middle attack on PTJ scheme

Step 4: Uk interrupts {B, M2}, and computes values K , SKey(i, j), and M ′
3. Then, Uk sends

M ′
3 to S j . Obviously, the verification of M ′

3 will be passed at the S j side.

K = (B)a′
mod N =

(
gb×r j

)a′
mod N = g(a′×b×r j )mod N ;

SKey(i, j) = h(K‖UIDi‖SID j );
M ′

3 = h
(
K‖UIDi‖SID j‖A‖B‖SKey(i, j)

)

Now, Uk and S j share a session key SKey(i, j) = h(K‖UIDi‖SID j ), where K =
g(a′×b×r j )mod N .

Step 5: Uk computes values B ′, K ′, SKey(i, j)
′, and M ′

2. After that, Uk sends {B ′, M ′
2} to Ui .

B ′ = gb′
mod N with a random nonce b′;

K ′ =
((

M1 × 1

s j

(UIDi ×SID j)
)

mod N

)b′

= g(a×b′)mod N ;

SKey(i, j)
′ = h(K ′‖UIDi‖SID j );

123



Authentication Scheme 1627

M ′
2 = h

(
K ′‖UIDi‖SID j‖B ′‖SKey(i, j)

′) .

Step 6: With {B ′, M ′
2}, Ui performs the following verification.

• K ′ = (
B ′)a

mod N =
(

gb′)a
mod N = g(a×b′)mod N

• SKey(i, j)
′ = h(K ′‖UIDi‖SID j )

• M ′′
2 = h

(
K ′‖UIDi‖SID j‖B ′‖SKey(i, j)′

)

• Check M ′′
2 = M ′

2?

It is obvious that all the verifications will be passed. Ui then computes M3 and sends
it back to S j .

M3 = h
(
K ′‖UIDi‖SID j‖A‖B ′‖SKey(i, j)

′)

Step 7: Uk interrupts M3. NowUk andUi share a session key SKey′
(i, j) = h(K ′‖UIDi‖SID j ),

where K ′ = g(a×b′)mod N . Since Uk shares two different session keys with Ui and
S j , respectively, the man-in-the-middle attack is successfully performed.

4 The Proposed Scheme

In this section, we propose a novel protocol for multi-server architecture, where a trusted
registration center RC exists. First, RC chooses two 1024-bits prime numbers p and q and a
generator g ∈ Z∗

N and computes N = p ×q , where Z∗
N = (g|1 ≤ g ≤ N −1, gcd (g, N ) =

1). Next, RC generates k random numbers (r1, r2, …, rk) for k servers, respectively. Note
that gcd

(
ri , r j

) = 1, gcd (ri , φ(N )) = 1, where 1 ≤ i, j ≤ k, i �= j .

4.1 Server Registration Phase

In this phase, the server S j submits SID j to RC over a secure channel. Once RC receives the
request from S j , RC assigns r j to S j and computes h(r j‖yRC ), where yRC is a secret value
chosen by RC. Next, RC sends {r j , t, h(r j‖yRC ), g, N , h(.)} to S j via a secure channel. Note
that t = 1

g
∏k

i=1 ri mod N
.

4.2 User Registration Phase

In this phase, the user Ui submits {UIDi , PWi } to RC which then generates a ran-
dom number ri and computes P = h(UIDi‖PWi‖ri ). Next, RC issues a smart card
storing parameters {(s1_i , s2_i , …, sk_i ), ri , g, N , P, h(.)} to Ui . Note that s j_i =
gh(SID j ‖UIDi ‖h(r j ‖yRC ))×∏k

i=1,i �= j r j mod N , where yRC is a secret value chosen by RC.

4.3 Login and Authentication Phase (Fig. 3)

When Ui wants to login S j , Ui inserts his/her smart card into the card reader and inputs his/her
identity UID′

i and password PW′
i . The smart card then calculates P ′ = h(UID′

i‖PW′
i‖ri ) and

checks whether P ′ equals to Por not. If it holds, Ui is legal. Next, the smart card generates
a random nonce a, computes M1 = (s j_i × ga)mod N , and sends {UIDi , M1} to S j . Once
S j receives {UIDi , M1}, S j verifies UIDi . If UIDi is valid, S j generates a random nonce b,
and computes B, K , SKey(i, j) and M2. After that, S j sends {B, M2} to Ui .

123



1628 K.-H. Yeh

Fig. 3 Login and authentication phase of the proposed scheme

B = gb×h(r j ‖yRC )mod N ;
K =

(
M(r j)

1 × th(SID j ‖UIDi ‖h(r j ‖yRC ))
)b×h(r j ‖yRC )

= ga×b×h(r j ‖yRC )mod N ;
SKey(i, j) = h(K‖UIDi‖SID j );

M2 = h
(
K‖UIDi‖SID j‖B‖SKey(i, j)

)
.

Once receiving {B, M2}, Ui calculates K , SKey(i, j) and M ′
2, and checks whether M ′

2 equals
to M2 or not. If it holds, S j is authenticated.

K = (B)a mod N =
(

gb×h(r j ‖yRC )
)a

mod N = ga×b×h(r j ‖yRC )mod N ;
SKey(i, j) = h(K‖UIDi‖SID j );

M ′
2 = h

(
K‖UIDi‖SID j‖B‖SKey(i, j)

)

After that, Ui computes M3 and sends M3 to S j . Upon getting M3, S j calculates M ′
3 and

checks whether M ′
3 is equal to M3 or not. If it holds, mutal authentication is achieved. Both

Ui andS j agree upon a common session key SKey(i, j).

M3 = h
(
K‖UIDi‖SID j‖A‖B‖SKey(i, j)

) ;
M ′

3 = h
(
K‖UIDi‖SID j‖A‖B‖SKey(i, j)

)

4.4 Password Change Phase

When Ui wants to change the password. Ui inserts the smart card into the card reader and
keys in UID′

i and PW′
i . The smart card computes P ′ = h(UID′

i‖PW′
i‖ri ) and checks whether

P ′ equals to stored P or not. It holds, Ui is legitimate. After that, Ui is allowed to enter a
new password PWinew, and the card reader generates a new random number r ′

i and computes
Pnew = h(UIDi‖PWinew‖r ′

i ) and stores Pnew and r ′
i in the smart card’s memory.

123



Authentication Scheme 1629

5 Security Analysis

In this section, we present the formal analysis of our proposed authentication scheme based
on [1–3,5].

5.1 Communication Model

In the communication model, we assume that a user Ui , intends to establish a session key
SKey(i, j) with a service provider S j . Therefore, some definitions must be presented.

• Protocol Participants: there exists a non-empty set of users, called Client, and a non-empty
set of service providers, i.e.Server, in the protocol P in which the participant is either a
user or a service provider. Each participant may possess several instances, called oracles,
which are involved in distinctly concurrent executions of P . Here, �i

U is denoted as the
instance i of a participant U .

• Long-term Secret Keys: For each S j ∈ Server , it owns a secret value r j as its long-
term secret key, and yRC is RC’s long-term secret key trusted by all Ui ∈ Client and all
S j ∈ Server .

• Accepting and Terminating: There exists two states, ACC_�i
U and TERM_�i

U , for oracle
�i

U . ACC_�i
U is set to true when �i

U is able to compute a valid session key, while
TERM_�i

U will be set to true when �i
U sends (or receives) the last message of the

protocol, receives an unexpected message, or misses an expected message.
• Session and Partner Identities: the session identity (sid) is utilized for representating each

unique session. We define sid for oracles �i
UA

and �i
UB

in the execution of a proto-

col as sid_�i
UA

= sid_�i
UB

={FlowsUAUB |all flows that �i
UA

exchanges with �i
UB

in

the execution of a protocol}. In addition, pid_�i
UA

= UB is defined as that the oracle

�i
UA

believes that it has just exchanged a session key with an oracle of participant UB .

5.2 Adversary Model

In this paper, we assume that the adversary is able to interact with the participants via oracles
queries. The following major queries model the capabilities of the adversary.

• Send(�i
U , m): This query sends a message m to an oracle �i

U , and gets the corresponding
results.

• Reveal(�i
U ): This query returns the session key of the oracle �i

U .
• Corrupt(U ): This query returns the long-term secret key of U .
• Execute(�i

UA
, �i

UB
): This query models passive attacks in which the adversary can obtain

the messages exchanged during the honest execution of the protocol between two oracles
�i

UA
and �i

UB
.

• Hash(m): The one-way hash function can be viewed as random functions with the appro-
priate range in the ideal hash model. Note that, if m has never been queried before, it returns
a truly random number r to the adversary and stores (r, m) in the hash table. Otherwise,
it returns the previously generated result to the adversary.

• Test(�i
U ): This query models the security of the session key, i.e., whether the real session

key can be distinguished from a random string or not. For answering this question, a
unbiased coin b is flipped by the oracle �i

U . When the adversary issues a single Test query
to �i

U , the adversary either obtains the real session key SKey(i, j) if b= 1 or a random string
if b= 0.

123



1630 K.-H. Yeh

5.3 Security Properties

This subsection describes the security required in the proposed authentication.

• Freshness: An oracle �i
U is fresh if the following conditions hold.

1. ACC_�i
U is set to true.

2. No Corrupt query has been issued by the adversary before ACC_�i
U is set to true.

3. Neither �i
U nor its partner has been issued a Reveal query.

In general, a session key is fresh if, and only if, all oracles participated in current session
were fresh.

• Partnering: In the protocol P , two oracles �i
Ui

and �
j
S j

are partnered if the following
conditions hold.

1. Both ACC_�i
Ui

and ACC_�
j
S j

have been set to true.

2. A session key SKey(i, j) has been agreed by �i
Ui

and �
j
S j

.

3. sid_�i
Ui

= sid_�i
U j

.

4. pid_�i
Ui

= S j .

5. pid_�i
S j

= Ui .

• AKE Security (Session Key Security): The adversary tries to guess the hidden bit b involved
in a Test query via a guess b′. We say that the adversary wins the game of breaking session
key security of an AKE (Authenticated Key Exchange) protocol P if the adversary issues
Test queries to a fresh oracle �i

U and guesses the hidden bit b successfully. The probability
that the adversary wins the game is Pr[b′ = b]. In brief, the advantage of an adversary A
in attacking protocol P can be defined as AdvAKE

P (A) = |2 × Pr
[
b′ = b

] − 1|. In brief,
P is AKE-secure if AdvAKE

P (A) is negligible.

5.4 Formal Security Analysis

In this subsection, we formally analyze the security of our proposed authentication protocol.
Notations and definition will be presented first, and the formal security analysis is then
demonstrated. We define TA be the adversary’s total running time, and qs , qr , qc, qe and qh

are the number of Send, Reveal, Corrupt, Execute, and Hash queries, respectively.

Definition 1 (Computational Diffie-Hellman (CDH) Assumption) Let G = 〈g〉 be a mul-
tiplicative cyclic group of order N , and two random numbers t and k, are chosen in Z∗

N .
Given g, gt , and gk , the adversary A has a negligible success probability SuccC DH

G (A) for
obtaining an element z ∈ G, such that z = gtk within polynomial time.

Theorem 1 Let A be an adversary against the AKE security of our proposed authentication
protocol within a time bound TA, with less than qs Send queries with the communication
entities, and asking qh times Hash queries. Then, AdvAKE

P (A, qs, qh) ≤ qhqs×SuccCDH
G

(
T ′

A

)
,

where T ′
A denotes the computational time for SuccCDH

G and qs = ∑4
i=1 qs_i is the sum of

number of Send1, Send2, Send3, and Send4.

Proof Let A be an adversary which is able to get an advantage ε to break an AKE-secure
protocol within time TA. We can construct a CDH attacker B from A to respond all of A’s

123



Authentication Scheme 1631

queries and deal with the CDH problem, where B is given a challenge � = (gt , gk) and
outputs an element z such that z = gtk .

First, when A issues Send1 query as a start command, B responds {UIDi , M1} to A.
Second, when A issues Send2 query, B randomly chooses two integers c1 and c2 from [1,
qs_2]. If c1 �= c2, B responds {B, M2} to A. Otherwise, B replaces the corresponding
parameters of {B, M2} with the element gk from � to generate a new and random message
{B, M2}′, and then responds the message {B, M2}′ to A. Third, once B receives the Send3

query from A, B answers the message {M3} as the protocol. If the input of the query is from
�, B generates a new message {M3}′, and then responds {M3}′ to A. Fourth, when A issues
the Send4 query, B answers a null string and then sets ACC_�i

Ui
, ACC_�

j
S j

, TERM_�i
Ui

and TERM_�
j
S j

to true.

On the other hand, when A issues a Reveal(�i
Ui

) or a Reveal(� j
S j

) query, B checks whether
the oracle has been accepted and is fresh or not. If the result is true, B answers the session
key SKey(i, j) to A. Otherwise, if the session key has been constructed from the challenge

�, B terminates. When A issues Corrupt(Ui ), Corrupt(S j ), Execute(�i
Ui

, �
j
S j

), Hash(m)

queries, B answers in a straightforward way. When A issues a Test query, B answers in a
straightforward way. Otherwise, if the session key has been constructed from the challenge
�, B answers A with a random string with the length of the session key SKey(i, j).

The above simulation is indistinguishable from any execution of the proposed protocol P
except for one execution which the challenge � is involved with. The probability γ that B
correctly guesses the session key that A will make a Test query on is equal to the probability
of c1 = c2. Hence, we have

γ = 1

qs_2
≥ 1

qs

Assume that A issues a Test query to output b′, where b′ = b. This means that A knows
the session key, so there must be at least one Hash query that returns the session key. The
probability λ that B will choose the hash query correctly is

λ ≥ 1

qh

The successful probability SuccCDH
G (B) that B will expose gkt from the challenge � is thus

SuccC DH
G (B) = ε × γ × λ ≥ ε × 1

qs
× 1

qh

Finally, the advantage of A to break the AKE-security of the protocol P is derived as
follows.

ε = AdvAKE
P (A, qs, qh) ≤ qhqs × SuccCDH

G

(
T ′

A

)

�


6 Security and Performance Comparison

To further investigate the advantage of our proposed authentication protocol, we compare the
proposed scheme with five relevant multi-server authentication schemes [11,12,14,15,17] in
terms of major security features. From the viewpoint of robustness (Table 1), our proposed
authentication scheme is superior to all of these five protocols by supporting all the major

123



1632 K.-H. Yeh

Table 1 Security comparison among our proposed protocol and other schemes

The proposed
scheme

PTJ Scheme
[14]

WM scheme
[17]

LXMW
scheme
[12]

SSS
scheme
[15]

LLC
Scheme
[11]

No verification table Yes Yes No Yes No Yes

Freely to choose and
change password

Yes Yes Yes Yes Yes Yes

No involvement of
RC during password
change phase

Yes Yes No Yes Yes No

Provide mutual
authentication without
the support of RC

Yes Yes Yes No No Yes

Resistance to known
key attack

Yes Yes Yes Yes Yes Yes

Resistance to user
impersonation attack

Yes No No Yes Yes No

Resistance to server
counterfeit attack

Yes No No Yes Yes No

Resistance to man-in-
the middle attack

Yes No No Yes Yes No

Resistance to
replay attack

Yes Yes Yes Yes Yes Yes

Resistance to
parallel session attack

Yes Yes Yes Yes Yes Yes

Provide validity proof Yes Yes Yes No No No

security features. In particular, our protocol inherits the merit from PTJ scheme, i.e. providing
mutual authentication without the support of RC. This design significantly improves the
efficiency of the protocol round. In brief, it is clearly seen that our proposed authentication
scheme keeps all the advantages and achieves the security requirements.

Performance evaluation is an important issue while designing a robust and efficient authen-
tication schemes. This evaluation reflects the practicability of implementing the proposed
authentication protocol in the real world. As study [14] had demonstrated the computa-
tion efficiency of their proposed authentication scheme is better than other related studies
[11,12,15,17]. Hence, here we only compare our proposed protocol with two most-relevant
proposals, i.e. PTJ scheme [14] and WM scheme [17] in terms of protocol efficiency. The per-
formance comparison among our proposed scheme and other two schemes has been listed
in Table 2. The metrics are Hash Function (HF), Modular Multiplication (MM), Modular
Exponentiation (ME), ECC Point Multiplication (PM) and Encryption/Decryption (E/D).
Although our proposed scheme requires extra 2 one-way hash functions than PTJ scheme,
our scheme is efficient. This is as the cost of performing one-way hash functions can be almost
ignored in comparison with other heavy computation modules such as Modular Exponenti-
ation, ECC Point Multiplication or E/D. Moreover, compared to PTJ scheme, as one ME is
reduced, the efficiency is improved. It is obvious that our scheme can achieve the same order
of computation complexity as PTJ scheme does.

7 Conclusion

To efficiently protect a multi-server based service system is a particular challenge owing to
the difficult tradeoff between system security and computation efficiency. One of the most

123



Authentication Scheme 1633

Table 2 Performance comparison among our proposed protocol and other schemes

Type of operations The proposed scheme PTJ scheme [14] WM scheme [17]

Registration Phase HF 2 1 2

MM 0 0 0

ME 0 0 0

PM 0 0 2

E/D 0 0 0

Login and
Authentication
Phase

HF 8 7 11

MM 2 2 0

ME 6 7 0

PM 0 0 4

E/D 0 0 0

Password Phase HF 2 2 12

MM 0 0 0

ME 0 0 0

PM 0 0 12

E/D 0 0 4

Total number of
operations

12 HF+ 10 HF+ 25 HF+
2 MM+ 2 MM+ 0MM+

6 ME+ 7 ME+ 0 ME+

0 PM+ 0 PM+ 18 PM+

0 E/D 0 E/D 4 E/D

promising directions is to implement an efficient authentication mechanism for multi-server
architecture. A recent study proposed by Pippal et al. is one of the pioneers on this interesting
research area. However, it has space for improvement. In this paper, we have demonstrated
that Pippal et al.’s multi-server based authentication scheme fails to provide adequate security
and is subject to user impersonation attack, server counterfeit attack, and man-in-the-middle
attack. A novel authentication protocol is thus introduced for security enhancement. With the
formal analysis and performance comparison, the security robustness and computation effi-
ciency of our proposed protocol can be guaranteed. Therefore, we believe that our proposed
authentication protocol is practical and secure for multi-server communication environment.

References

1. Bellare, M., Pointcheval, D., & Rogaway, P. (2000). Authenticated key exchange secure against dictionary
attacks. In Proceedings of EUROCRYPT (Vol. 1807, pp. 140–156). LNCS 2000.

2. Bellare, M., & Rogaway, P. (1993). Entity authentication and key distribution. In Proceedings of CRYPTO
(Vol. 773, pp. 232–249) LNCS.

3. Blake-Wilson, S., Johnson, D., & Menezes, A. (1997). Key agreement protocols and their security analysis.
In Proceedings of th 6th IMA international conference on cryptography and coding (Vol. 1355, pp. 30–45).
LNCS.

4. Chang, C. C., & Lee, J. S. (2004). An efficient and secure multi-server password authentication scheme
using smart card. In Proceedings of international conference on cyberworlds (pp. 417–422).

5. Chang, C. C., & Lee, C. Y. (2012). A secure single sign-on mechanism for distributed computer networks.
IEEE Transactions on Industrial Electronics, 59(1), 629–637.

123



1634 K.-H. Yeh

6. Chen, B. L., Kuo, W. C., & Wu, L. C. (2012). Cryptanalysis of Sood et al.’s dynamic identity based
authentication protocol for multi-server architecture. International Journal of Digital Content Technology
and its Applications (JDCTA), 6(4), 180–187.

7. He, D., & Wu, S. (2012). Security flaws in a smart card based authentication scheme for multi-server
environment. Wireless Personal Communications,. doi:10.1007/s11277-012-0696-1.

8. Hsiang, C., & Shih, W. K. (2009). Improvement of the secure dynamic ID based remote user authentication
scheme for multi-server environment. Computer Standards & Interfaces, 31(6), 1118–1123.

9. Juang, W. S. (2004). Efficient multi-server password authenticated key agreement using smart cards. IEEE
Transaction on Consumer Electronics, 50(1), 251–255.

10. Ku, W. C., Chuang, H. M., Chiang, M. H., & Chang, K. T. (2005). Weaknesses of a multi-server password
authenticated key agreement scheme. In Proceedings of 2005 national computer symposium (pp. 1–5).

11. Lee, C. C., Lin, T. H., & Chang, R. X. (2011). A secure dynamic ID based remote user authentication
scheme for multi-server environment using smart cards. Expert Systems with Applications, 38(11), 13863–
13870.

12. Li, X., Xiong, Y., Ma, J., & Wang, W. (2012). An efficient and security dynamic identity based authenti-
cation protocol for multi-server architecture using smart cards. Journal of Network and Computer Appli-
cations, 35(2), 763–769.

13. Liao, Y. P., & Wang, S. S. (2009). A secure dynamic ID based remote user authentication scheme for
multi-server environment. Computer Standards & Interfaces, 31(1), 24–29.

14. Pippal, R. S., Jaidhar, C. D., & Tapaswi, S. (2013). Robust smart card authentication scheme for multi-
server architecture. Wireless Personal Communications. doi:10.1007/s11277-013-1039-6.

15. Sood, S. K., Sarje, A. K., & Singh, K. (2011). A secure dynamic identity based authentication protocol
for multi-server architecture. Journal of Network and Computer Applications, 34(2), 609–618.

16. Tsai, J.-L., Lo, N.-W., & Wu, T.-C. (2012). A new password-based multi-server authentica-
tion scheme robust to password guessing attacks. Wireless Personal Communications. doi:10.1007/
s11277-012-0918-6.

17. Wang, B., & Ma, M. (2012). A smart card based efficient and secured multi-server authentication scheme.
Wireless Personal Communications. doi:10.1007/s11277-011-0456-7.

18. Yeh, K.-H., Lo, N. W., Hsiang, T.-R., Wei, Y.-C., & Hsieh, H.-Y. (2013). Chaos between password-based
authentication protocol and dictionary attacks. Advanced Science Letters, 19(3), 1048–1051(4).

Kuo-Hui Yeh received his B.S. degree in Mathematics from the Fu
Jen Catholic University, Taipei County, Taiwan, in 2000, and the M.S.
and Ph.D. degrees in Information Management from the National
Taiwan University of Science and Technology, Taipei, Taiwan, in 2005
and 2010, respectively. He is currently an assistant professor of Depart-
ment of Information Management at the National Dong Hwa Univer-
sity, Hualien, Taiwan. His research interests include cloud computing,
RFID applications and security, wireless network protocol, and anony-
mous authentication.

123

http://dx.doi.org/10.1007/s11277-012-0696-1
http://dx.doi.org/10.1007/s11277-013-1039-6
http://dx.doi.org/10.1007/s11277-012-0918-6
http://dx.doi.org/10.1007/s11277-012-0918-6
http://dx.doi.org/10.1007/s11277-011-0456-7

	A Provably Secure Multi-server Based Authentication Scheme
	Abstract
	1 Introduction
	2 Review of PTJ Scheme
	2.1 Initialization Phase 
	2.2 Server Registration Phase
	2.3 User Registration Phase
	2.4 Login and Authentication Phase (Fig. 1)
	2.5 Password Change Phase

	3 Vulnerabilities of PTJ Scheme
	3.1 Server Counterfeit Attack
	3.2 User Impersonation Attack
	3.3 Man-in-the-Middle Attack

	4 The Proposed Scheme
	4.1 Server Registration Phase
	4.2 User Registration Phase
	4.3 Login and Authentication Phase (Fig. 3)
	4.4 Password Change Phase

	5 Security Analysis
	5.1 Communication Model
	5.2 Adversary Model
	5.3 Security Properties
	5.4 Formal Security Analysis

	6 Security and Performance Comparison
	7 Conclusion
	References


