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Abstract In this paper, closed-form expressions for capacities per unit bandwidth for fading
channels with impairments due to Branch Correlation are derived for optimal power and rate
adaptation, constant transmit power, channel inversion with fixed rate, and truncated chan-
nel inversion policies for maximal ratio combining diversity reception case. Closed-form
expressions for system spectrum efficiency when employing different adaptation policies are
derived. Analytical results show accurately that optimal power and rate adaptation policy
provides the highest capacity over other adaptation policies. In the case of errors due to
branch correlation, optimal power and rate adaptation policy provides the best results. All
adaptation policies suffer no improvement in channel capacity as the branch correlation is
increased. This fact is verified using various plots for different policies. With increase in
branch correlation, capacity gains are significantly larger for optimal power and rate adapta-
tion policy as compared to the other policies. The outage probability for branch correlation
is also derived and analyzed using plots for the same.

Keywords Optimal power and rate adaptation · Constant transmit power · Channel
inversion with fixed rate · Truncated channel inversion · Outage probability · Branch
correlation and Combining errors

1 Introduction

The purpose of any communication system is to reliably transfer information between the
source and the destination [1]. The wireless communication channel is dynamic and random,
and at times, the received signal is not strong enough for a dependable link to exist between
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the transmitter and the receiver. The average signal strength received by an antenna element
over local area in the propagation environment can be quite large, but during some instances,
it is not uncommon for the instantaneous signal level in a multipath environment to fall 30 dB
or more below its mean level. It is during these abrupt drops in local signal level, that the
message is most likely to be received incorrectly. In order to compensate for fading brought
upon by the channel, and to ensure that data is not erroneously decoded, the transmit power
can be increased during the times a low signal strength is received by the antenna.

Most wireless communications systems, however, have low power and do not have the
dynamic range available to counter the effects introduced by the propagation environment. An
increase in reliability in a multipath fading environment without increasing transmit power
can be efficiently achieved using a receive antenna diversity system. Multiple antennas at
the receiver have been used successfully in operational systems to diminish the variance
of local signal strength fluctuations using the signals on all antenna elements to reduce the
incidence of severe signal degradations that occur during a fade. Using multiple antennas,
the probability that one or more of the elements will receive signals with adequate signal
strength increases. Reducing the occurrence of fading improves the overall reliability of the
received information, and therefore allows for greater coverage distance.

Diversity is an effective method for increasing the received Signal-to-Noise Ratio (SNR)
in a flat fading environment (i.e. nearly constant fading over the bandwidth of interest). The
mobile radio channel varies with time, and at times a receiver might receive a signal that is
indistinguishable from noise. Diversity is meant to provide the receiver with alternative paths
to the transmitted signal to ensure that the signal is reliably received. When identical elements
are closely spaced, the signal envelopes received by both antennae can exhibit a large degree
of correlation, or similarity. A large correlation implies that when one antenna receives a low
signal level, the second antenna most likely also attains a similar degraded signal level. It is
also not uncommon for an antenna diversity system to use different antennas at each diversity
branch. Using non-identical elements at the receiver (e.g. antennas with different polariza-
tions or patterns) could lead to average power imbalances between the different branches
of a diversity system. Antennas that are different usually receive unequal average signal
levels, depending on which antenna is better matched to the received signal environment.
The performance of any diversity system also depends on the combining technique used to
merge the signals received by the antenna elements. The most popular combining schemes
are Selection Combining, Equal Gain Combining, and Maximal Ratio Combining. Maximal
Ratio Combining technique outperforms other combining schemes under certain conditions
and implementation issues.

1.1 Overview

In general, the analysis of mean SNR of the combined signal is based on the assumption that
faded signals in the various branches are uncorrelated. In some cases, the antennas in the
diversity array could be improperly positioned, or frequency separation between diversity
signals could be too small [2]. It is thus important to examine possible deterioration in the
performance of a diversity system when diversity branch signals are correlated to a certain
extent. It remains to be seen if a moderate amount of correlation among diversity branches is
not too damaging. Owing to the rarity of deep fades in any event, it would require a very high
degree of correlation between the two faded signals to bring about a higher correspondence
between the deep fades [2].

Most of the diversity combining schemes assume that combining mechanisms operate
perfectly. Since information needed to operate a combiner is extracted in some way from the
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signals themselves, there is a possibility of making an error, thus not completely achieving the
expected performance. This effect has been studied in detail in [3] for the particular case of
the MRC combiner. The quantity, ε, is the correlation measure for the magnitude of complex
cross-covariance of the two faded Gaussian signals (assumed also to be jointly Gaussian)
[3]; Here, ε2 is very nearly equal to the normalized envelope covariance of the two signals.

1.2 Literature Review

Kong and Milstein [4] derived the closed-form expression for the average SNR of a General-
ized Selection Combining scheme (GSC), which is upper bounded by that of MRC and lower
bounded by conventional SC. Digham and Alouini [5] presented closed form expression for
average Probability of Packet Error (PPE) for a MRC diversity scheme which encompassed
arbitrarily correlated Nakagami and Rician fading channels. Novel exact expressions involv-
ing hyper-geometric functions were derived [6] for the Symbol Error Rate (SER) of M-ary
Quadrature Amplitude Modulation (MQAM) for L-branch diversity reception in Rayleigh
fading and Additive White Gaussian Noise (AWGN) for MRC and SC combining. In fur-
ther work [7], error rate performance of coherent M-ary phase shift keyed signals in slow
non selective Nakagami fading and AWGN channel was analysed. For real values of the
Nakagami fading parameter, m, a simple formula was presented for the SER.

Bit error rate (BER) was analyzed theoretically [8] for diversity reception in a Nakagami
fading environment using an M-branch MRC combiner. Coherent and non-coherent reception
of Frequency Shift Keying (FSK), Coherent Phase Shift Keying (CPSK), and Differential
Phase Shift Keying (DPSK) was considered using the multiple branch diversity system for
both identical and different diversity branch fading parameters. Calculation of equivalent
number of uncorrelated branches with equal average SNRs for a system with correlated,
unequal average SNR branches was studied [9]. The technique uses eigen-decomposition of
a correlation matrix estimate and calculation of diversity gain using MRC combining with
unequal average SNRs.

In further work [10], using a simple finite integral representation for bivariate Rayleigh
Cumulative Distribution Function (CDF) expressions for outage probability and average
error probability of a dual selective diversity system with correlated slow Rayleigh fading
either in closed form (in particular for binary differential phase-shift keying) or in terms of a
single integral with finite limits, and an integrand composed of elementary (exponential and
trigonometric) functions was presented. Simon and Alouini [11] showed that by employing
alternate forms of Gaussian and Marcum functions, it is possible to unify error-probability
performance of coherent, differentially coherent, and non-coherent communications in the
presence of generalized fading. Bhaskar [12] presented a comprehensive closed-form expres-
sion for the evaluation of error performance in a 2-branch EGC diversity system over Gener-
alized Rayleigh fading channels. The authors analyzed [13] the error probability performance
of MRC, EGC, and SC diversity schemes with coherent BPSK signalling on Rayleigh fading
channels with Gaussian channel estimation errors. It was shown that with weighting errors,
the conditional probability of error is not an explicit function of SNR at the output of the
diversity combiner.

Goldfield and Wulich [14] considered a diversity reception system with majority decoding
and Optimal Adaptive Power Loading (ADRM) applied to a Rayleigh fading channel. It was
shown that the proposed system has a lower average Bit Error Rate (BER) than Optimal
Diversity Reception (ODR) with uniform power distribution for the same redundancy. Malik
et al. [15] derived closed-form expressions for single-user capacity of MRC diversity systems,
taking into account the effect of correlation between the different branches. A Rayleigh fading
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channel with two kinds of correlation: 1) equal branch SNRs and the same correlation between
any pair of branches, and 2) unequal branch SNRs and arbitrary correlation between branches
for the three adaptive transmission schemes were analyzed: 1) optimal simultaneous power
and rate adaptation; 2) optimal rate adaptation with constant transmit power; and 3) channel
inversion with fixed rate.

Dietrich [16] derived BER for binary modulation and multiple correlated Rayleigh fading
diversity branches. The results provide new analytical insights into performance, design, and
optimization of some known communication receivers. Bhaskar [17] derived closed-form
expressions for the capacities per unit bandwidth for Generalized Rayleigh fading channels
for Optimal Power and Rate Adaptation (OPRA), Optimal Rate Adaptation (ORA) with
constant transmit power, Channel Inversion with Fixed Rate (CIFR), and Truncated channel
Inversion with Fixed Rate (TIFR) policies. OPRA policy provides the highest capacity over
other adaptation policies both with and without diversity combining. CIFR policy suffers a
large capacity penalty relative to the other policies.

1.3 Organization of the Paper

Novel ergodic channel capacity expressions are derived and plotted for different adaptation
policies like OPRA (where power and rate changes with channel quality) and ORA (where
rate alone changes with channel quality) for branch correlation errors under (i) Low SNR
Regime I (ii) Low SNR Regime II, (iii) High SNR Regime, (iv) Asymptotic Approximation,
and (v) Upper Bound Case. This is the motivation of this paper. Computation of optimum
cut-off SNR [18] γ0 is also performed in this paper without fixing Pout as constant. Simulation
results for above five cases are also presented in this paper. The remainder of the paper is
organized as follows: In Sect. 2, we derive closed-form expressions for spectral efficiencies
of the MRC combiner with branch correlation errors for different adaptation policies. Section
3 presents the capacity statistics for branch correlation impairments. Numerical results are
given in Sect. 4. Finally, Sect. 5 contains some concluding remarks.

2 Impairments Due to Branch Correlation

A base station with two receiver antennas is considered for analysis as shown in Fig. 1. The
Power Controller adapts power in case of OPRA policy and Encoder/Modulator adapts rate
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Fig. 1 Block diagram of two branch MRC transceiver-Rayleigh fading
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depending on the channel feedback from channel estimator for OPRA and ORA policy. The
diversity combiner is MRC type for two branches at the receiver.

The CDF of received instantaneous SNR, γ, at the output of a 2-branch MRC output for
the case of impairments due to branch correlation between two signals is given by [2]

F(BC)
2 (γ ) = 1 − 1

2ε

[
(1 + ε) exp

(
− γ

�(1 + ε)

)
− (1 − ε) exp

(
− γ

�(1 − ε)

)]
(1)

where ε is the magnitude of complex covariance (as fading causes change in phase and
amplitude of the transmitted signal at the receiver antennas Rx1 and Rx2 as shown in Fig. 1)
of two fading Gaussian signals given by ε = E[(Rx1,ηRx1),(Rx2,ηRx2], where Rx1, Rx2

are the received signals from the two branches of MRC, BC stands for Branch Correlation,

and � is the individual branch SNR defined as � = E
(∑2

i=1

∣∣R2
i

∣∣)
E(N )

. The PDF of the received
instantaneous SNR, γ, at the output of a 2-branch MRC output is given by

f (BC)
2 (γ ) = 1

2�ε

[
exp

(
− γ

�(1 + ε)

)
− exp

(
− γ

�(1 − ε)

)]
. (2)

2.1 Optimal Simultaneous Power and Rate Adaptation Policy

Under this condition known as OPRA policy, the power and rate of the transmitted signal is
altered above the cut-off SNR depending on the channel. The optimal cut off must satisfy
[19]

∞∫
γ0

(
1

γ0
− 1

γ

)
1

2�ε

[
exp

(
− γ

�(1 + ε)

)
− (1 − ε) exp

(
− γ

�(1 − ε)

)]
dγ = 1. (3)

2.2 Lemma

Given ε and � there exists an optimum cut-off SNR, γ0 ∈ (0, 1) such that (4) is satisfied.
Substituting (2) into (3) and simplifying, we find that γ0 must satisfy

�

γ0

[
(1 + ε) exp

(
−

γ0
�

�(1 + ε)

)
− (1 − ε) exp

(
−

γ0
�

�(1 − ε)

)]
+ Ei

( − γ0
�

1 + ε

)

−Ei

( − γ0
�

1 − ε

)
= 2ε�, (4)

where Ei (−u) = − ∫ ∞
u

e−t

t dt is the exponential integral function, as given on p. xxxv,
(Exponential and Related Integrals section) of [20]. Define

f (x) = 1

x

[
(1 + ε) exp

(
− x

�(1 + ε)

)
− (1 − ε) exp

(
− x

�(1 − ε)

)]
+ Ei

( −x

1 + ε

)

−Ei

( −x

1 − ε

)
− 2ε�. (5)

Note that ∂ f (x)
∂x =

(
�
γ0

− 1
x

) (
exp

(
− x

1−ε

)
− exp

(
− x

1+ε

))
< 0 ∀ x >

γ0
�

. Moreover,

from (5), limx→0+ f (x) = 2ε�
γ0

> 0 and limx→∞ f (x) < 0. Thus, we conclude that there is
a unique γ0 for which f (γ0) = 0 satisfies (6). Numerical results using MATLAB show that
γ0 ∈ [0, 1] as � → ∞. Simplifying the spectrum efficiency for OPRA policy under branch
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correlation is given by

〈C〉(BC)
OPRA

B
= log2(e)

2ε

[
(1 + ε)E1

(
−

γ0
�

(1 + ε)

)
− (1 − ε)E1

(
−

γ0
�

(1 − ε)

)]
, (6)

where E1(x) = ∫ ∞
1

e−xt

t dt [20]. The proof of (6) is shown in Appendix 1. Simplifying the
outage probability for the case of Branch Correlation (BC), we have

P(BC)
out = 1 − 1

2ε

[
(1 + ε) exp

(
−

γ0
�

(1 + ε)

)
− (1 − ε) exp

(
−

γ0
�

(1 − ε)

)]
. (7)

The proof of (7) is shown in Appendix 1.

2.3 Optimal Rate Adaptation with Constant Transmit Power Policy

Under this condition known as ORA policy, the rate of the transmitted signal alone is altered
depending on the quality of the channel but the transmitted power is kept a constant. Simpli-
fying the spectrum efficiency for ORA policy under branch correlation, we have

〈C〉(BC)
ORA

B
= log 2(e)

2ε

[
(1 − ε)

(
exp

(
1

�(1 − ε)

)
Ei

(
− 1

�(1 − ε)

))

−(1 + ε)

(
exp

(
1

�(1 + ε)

)
Ei

(
− 1

�(1 + ε)

))]
. (8)

The proof of (8) is shown in Appendix 1.

2.4 Channel Inversion with Fixed Rate policy

Under this condition known as CIFR policy, the channel characteristics are inverted
(Equalised) depending on the quality of the channel. Simplifying the spectrum efficiency
of CIFR policy under branch correlation, we have

〈C〉(BC)
CIFR

B
= log2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 + 2ε�⎛
⎝ exp

(
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�(1−ε)

)
Ei

( −γmax
�(1−ε)

)
− exp

(
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�(1−ε)

)
Ei

( −γmin
�(1−ε)

)
+

exp
(

γmin
�(1+ε)

)
Ei

( −γmin
�(1+ε)

)
− exp

(
γmax

�(1+ε)

)
Ei

( −γmax
�(1+ε)

)
⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(9)
The proof of (9) is shown in Appendix 1.

2.5 Truncated Channel Inversion Policy

Under this condition known as TIFR policy, the channel characteristics are inverted beyond
the cut-off SNR depending on the channel quality. So, outage capacity is overcome in this
policy. Simplifying the spectrum efficiency of TIFR policy under branch correlation, we have

〈C〉(BC)
TIFR

B
= log2

⎡
⎢⎢⎣1 + 2ε�

∫ ∞
γ0

(
e
− γ

�(1+ε)

γ
− e

− γ
�(1−ε)

γ

)
dγ

⎤
⎥⎥⎦

(
1 − P(BC)

out

)
(10)
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= 1

2ε
log2

⎡
⎣1 + 2ε�

Ei

( −γ0
�(1−ε)

)
− Ei

( −γ0
�(1+ε)

)
⎤
⎦

[
(1 + ε) exp

( −γ0

�(1 + ε)

)

− (1 − ε) exp

( −γ0

�(1 − ε)

)]
. (11)

The proof of (11) is shown in Appendix 1.

2.6 Asymptotic Approximation

We can obtain asymptotic approximation for 〈C〉(∞,BC)

OPRA
B using the series representation of

exponential integral of first order function [20] expressed as

E1(x) = −C − ln(x) −
∞∑

i=1

−(x)i

i.i ! , (12)

where C = 0.1566557729 is the Euler-Mascheroni constant. Then, the asymptotic approxi-
mation for OPRA policy can be shown as

〈C〉(∞,BC)
OPRA

B
= 1

2ε log 2

[
−(1 + ε)

∞∑
i=1

( −γ0

�(1 + ε)

)i 1

i i ! + (1 − ε)

∞∑
i=1

( −γ0

�(1 − ε)

)i 1

i i !

− 2Cε + ln

(
1 + ε

1 − ε

)
− ε ln

(
γ 2

0

�21 − ε2

)]
. (13)

Following the same procedure as above, the asymptotic approximation, 〈C〉(∞,BC)

ORA
B can be com-

puted as

〈C〉(∞,BC)
ORA

B
= log2 e

2ε

[{
(ν1)(κ1) + (ν1)

∞∑
i=1

(−1)i

�(1 − ε)i.i !

}

−
{

(ν2)(κ2) + (ν2)

∞∑
i=1

(−1)i

�(1 + ε)i.i !

}]
, (14)

where κ1 = C + v1 ln
(

1
�(1−ε)

)
, κ2 = C + v2 ln

(
1

�(1+ε)

)
.

2.7 Upper Bound

The channel capacity per unit bandwidth expression for OPRA policy can be upper bounded
by applying Jensen’s inequality to (2) as follows:

〈C〉(UB,BC)
OPRA

B
= ln(E[γ ]) ≤ E[ln(γ )] = 1

2ε�

∫
ln(γ )

(
exp

(
− γ

� (1 + ε)

)

− exp

(
− γ

� (1 − ε)

))
dγ. (15)

Making change of variables in (15) with t = γ
�(1+ε)

, dt = dγ
�(1+ε)

in the first integral, and

u = γ
�(1−ε)

, du = dγ
�(1−ε)

in the second integral, and using Eq. (1) of section 4.331 on p. 567
of [20], we obtain
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〈C〉(UB,BC)
OPRA

B
= −C + 1

2ε
ln

(
1 + ε

1 − ε

)
− ln

⎛
⎝ 1

�
(√

1 − ε2
)
⎞
⎠ . (16)

The channel capacity per unit bandwidth expression for ORA policy under branch correlation
can be upper bounded by applying Jensen’s inequality to (8) as follows:

〈C〉(UB,BC)
ORA

B
= 1 − C + 1

2ε
ln

(
1 + ε

1 − ε

)
+ ln

(
�

√
1 − ε

)
. (17)

2.8 Low SNR Region I

Ergodic capacity can be approximated in the low SNR region I by approximating log2(1+γ )

as
√

γ [17]. Using this approximation in (8) yields the approximated channel capacity per
unit bandwidth (in bits/sec/Hz) at Low SNR Region I as

〈C〉(LSR 1,BC)
ORA

B
=

∞∫
0

√
γ f (BC)

2 (γ )dγ

≈ 1

2ε�

∞∫
0

√
γ exp

(
− γ

�(1 + ε)

)
dγ − 1

2ε�

∞∫
0

√
γ exp

(
− γ

�(1 − ε)

)
dγ. (18)

Making change of variables in the first integral of (18), where t = γ
�

and dt = dγ
�

, and

making change of variables in the second integral of (18), where u = γ
�

and du = dγ
�

, we
have

〈C〉(LSR 1,BC)
ORA

B
= 1

2ε

[√
π

2

(√
�(1 + ε)

3
2

)
−

√
π

2

(√
�(1 − ε)

3
2

)]
=

√
�π

4ε

[
(1 + ε)

3
2

− (1 − ε)
3
2

]
. (19)

2.9 Low SNR Region II

Another approximation for Ergodic capacity in low SNR region II can be found by exploiting

the fact thatlog2(1+γ ) ≈ 1
ln 2

(
γ − γ 2

2

)
, which results in the approximated Ergodic capacity

in low SNR region II given as

〈C〉(LSR2,BC)
ORA

B
=

∞∫
0

1

ln 2

(
γ − γ 2

2

)
f (BC)
2 (γ ) dγ

≈ 1

2� ln 2ε

∞∫
0

(
γ − γ 2

2

)
exp

( −γ

� (1 + ε)

)
dγ

− 1

2� ln 2ε

∞∫
0

(
γ − γ 2

2

)
exp

( −γ

� (1 − ε)

)
dγ . (20)

Making change of variables in the first integral of (20), where t = γ
�

and dt = dγ
�

, and making

change of variables in the second integral of (20), where u = γ
�

and du = dγ
�

, we have
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〈C〉(LSR2, BC)
ORA

B
= 2.88539 � [1 − � + �ε] . (21)

2.10 High SNR Region

The Ergodic capacity can be approximated at high SNR region using the fact that log2(1 +
γ ) = log2(γ ) as γ → ∞,and can be expressed as

〈C〉(HSR,BC)
ORA

B
=

∞∫
0

log2 (γ )
1

2�ε

[
exp

(
− γ

�(1 + ε)

)
− (1 − ε) exp

(
− γ

�(1 − ε)

)]
dγ .

(22)
Making change of variables in the first integral of (22), where t = γ

�(1+ε)
and dt = dγ

�(1+ε)
,

and making change of variables in the second integral of (22), where u = γ
�(1−ε)

and

du = dγ
�(1−ε)

, we have

〈C〉(HSR,BC)
ORA

B
= −C

ln 2
+ ln �

ln 2
+ 1

2ε ln 2

[
ln

(
1 + ε

1 − ε

)
+ ε ln

(
1 − ε2)] , (23)

where we have used the relation
∫ ∞

0 e(−μx) ln x dx = − 1
μ
(C + ln μ) [�eμ > 0] from Sec-

tion 4.331 on p. 567 of [20].

3 Capacity Statistics

This section focuses on deriving exact analytical expressions for capacity statistics of impair-
ments due to branch correlation, assuming perfect channel knowledge at the receiver and no
channel knowledge with average input-power constraint.

3.1 Moment Generating Function (MGF)

The MGF of the capacity for impairments due to branch combining is given by

	C,BC (τ ) = 1

2�ε

∞∫
0

(1 + γ )
γ

ln 2

[
exp

(
− γ

�(1 + ε)

)
− exp

(
− γ

�(1 − ε)

)]
dγ. (24)

Making change of variables in the first integral of (51), where t = γ
�

and dt = dγ
�

, and

making change of variables in the second integral of (51), where u = γ
�

and du = dγ
�

, we
have

	C (τ ) = �1+ τ
ln 2

2�ε

[
exp

(
1

�(1 + ε)

)
(1 + ε)

τ
ln 2 �

(
1 + τ

ln 2
,

1

�(1 + ε)

)]

−�1+ τ
ln 2

2�ε

[
exp

(
− 1

�(1 − ε)

)
(1 − ε)

τ
ln 2 �

(
1 + τ

ln 2
,

1

�(1 − ε)

)]
. (25)

3.2 Complementary Cumulative Distribution Function (CCDF)

The CCDF of C = log2(1 + γ ) in the presence of impairments due to branch combining is
given as
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FC,CE = 1 −
2C −1∫
0

f (BC)
2 (γ )dγ

= 1 − 1

2ε�

2C −1∫
0

[
exp

(
− γ

�(1 + ε)

)
− exp

(
− γ

�(1 − ε)

)]
dγ

= 1

2ε

(
(1 + ε) exp

(
− 2C − 1

�(1 + ε)

)
− (1 − ε) exp

(
− 2C − 1

�(1 − ε)

))
. (26)

3.3 Probability Density Function

The PDF of the capacity is defined as the derivative of CCDF with respect to C, which can
be written as

P(BC)
C (C) = 2C ln 2

2ε�

[
exp

(
− 2C − 1

�(1 + ε)

)
− exp

(
− 2C − 1

�(1 − ε)

)]
. (27)

4 Numerical Results

Figure 2a shows channel capacity per unit bandwidth for optimal power and rate adaptation
policy as a function of the Individual Branch SNR for a fading channel with impairments due
to branch correlation for different correlation ε. Equation (6) is used to generate the numerical
results of Fig. 2a, b. Figure 2a shows that the variations in correlation is more pronounced
at high SNRs beyond 6 dB. The enhancement of capacity is prominent at high SNRs than at
low SNRs for OPRA policy. At high received SNRs, the rate of adaptation is higher which
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leads to better performance. From Fig. 2a, it is also clear that as SNR increases, capacity also
increases. Figure 2b shows channel capacity per unit bandwidth for optimal power and rate
adaptation policy as a function of correlation (ε) for a fading channel with impairments due
to branch correlation for different correlation. The graph clearly shows that capacity increase
is higher for large SNRs than at low SNRs. Also, the gap between the graphs widen at high
SNRs. The dotted line in Fig. 2a shows the simulation results for capacity at � = 5 dB. The
dotted line in Fig. 2b shows the simulation results for capacity at ε = 0.6. From Fig. 2a, b,
it is clear that the simulation results are in close agreement with the analytical results.

Figure 3a shows channel capacity per unit bandwidth for optimal rate adaptation policy
as a function of the Individual Branch SNR for a fading channel with impairments due to
branch correlation for different correlation ε. Equation (8) is used to generate the numerical
results of Fig. 3a, b. Figure 3a resembles Fig. 2a but for the decrease in capacity achieved at a
particular branch SNR. This decrease in capacity for ORA policy is attributed to the fact that
the policy adapts only the rate and not power due to Channel State Information not known at
the transmitter but known at the receiver alone. The characteristics of Fig. 3b are similar to
Fig. 2b except for the decrease in capacity for a particular correlation value. The dotted line
in Fig. 3a show the simulation results for capacity at � = 5dB and the dotted line in Fig. 3b
show the simulation results for capacity at ε = 0.6. From Fig. 3a, b, it is again clear that the
simulation results are in close agreement with the analytical results.

Figure 4a shows channel capacity per unit bandwidth for CIFR policy as a function of
Individual Branch SNR. Equation (9) is used to generate the numerical results of Fig. 4a,
b. The capacity difference for lower values of correlation (ε = 0.3 and ε = 0.6) is less
pronounced compared to the capacity difference for higher values of correlation (ε = 0.6
and ε = 0.9). Further, at low SNRs the capacity increase is much lower than at high SNRs
for different correlation values. Figure 4b shows the channel capacity per unit bandwidth for
CIFR policy as a function of correlation (ε) for a fading channel with impairments due to
branch correlation for individual branch SNR, � = 5dB. All these curves show that capacity
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Fig. 4 a Variation in capacity for CIFR policy with individual branch SNR � for ε = 0.3, 0.6, 0.9 and
γ0 = 0.5. b Variation in capacity for CIFR policy with correlation ε for � = 3, 5, 7 dB and γ0 = 0.5

is maximized for lower correlation, (ε = 0.3). Also from the graphs, we find that the decrease
in capacity is steeper than OPRA and ORA policies at high correlation values. The dotted
line in Fig. 4a shows the simulation results for capacity at � = 5dB and the dotted line in
Fig. 4b shows the simulation results for capacity at ε = 0.6. From Fig. 4a, b, it is obvious
that simulation results are in close agreement with the analytical results.

Figure 5a shows channel capacity per unit bandwidth for TIFR policy as a function of
Individual Branch SNR. Equation (11) is used to generate the numerical results of Fig. 5a, b.
Figure 5a resembles Fig. 4a but for the increase in capacity achieved at a particular branch
SNR. The increase in capacity is due to the subtraction of outage from the channel and
considering the branches with SNRs above the optimal cut-off SNR for combining. The
characteristics of Fig. 5b are similar to that of Fig. 4b except for the increase in capacity
for a particular correlation value. The dotted line in Fig. 5a shows the simulation results for
capacity at � = 5 dB and the dotted line in Fig. 5b shows the simulation results for capacity
at ε = 0.6. From both Fig. 5a, b, it is clear that the simulation results are in close agreement
with the analytical results.

Figure 6a shows the variation in channel capacity per unit bandwidth with Individual
Branch SNR. Figure 6b shows the variation in channel capacity per unit bandwidth with
correlation (ε) for four different adaptation policies. From Fig. 6a, we observe that at low
individual branch SNRs (�), the correlation influences all four policies in a similar manner.
But at high SNRs, the correlation (ε) has more influence on channel inversion policies like
CIFR and TIFR compared to ORA and OPRA policies. For the same bandwidth B (Hz), it
can be observed that Copra > Cora > Ctifr > Ccifr. The capacity difference between Copra

and Ccifr increases rapidly as branch SNR increases compared to the capacity difference
between Cora and Ccifr. The capacity difference between Ccifr and Ctifr depends on outage
probability, Pout and the optimal cut-off SNR, γ0. Figure 6b shows the channel capacity per
unit bandwidth versus Correlation for four various adaptation policies. The graphs show that
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capacity decreases as correlation (ε) increases which is expected. The decrease in capacity for
CIFR policy is sharper with increase in correlation compared to other three policies. Increase
in the individual branch SNR (�) leads to improvement in capacity for all four cases. Further,
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from the graphs, it is inferred that a decrease in capacity is higher for high correlation values
whereas at low correlation values, the decrease in capacity is less prominent.

Figure 7a shows outage probability for impairments due to branch correlation as a func-
tion of correlation for various values of individual branch SNR. The graph shows that outage
probability decreases as SNR increases. Equation (7) is used to generate the numerical results
of Fig. 7a, b. The outage is higher at lower SNRs but decreases drastically with increase in
received branch SNR and is almost minimal or negligible at SNRs beyond 9 dB. Figure 7b
shows the outage probability for impairments due to branch correlation as a function of corre-
lation for various values of individual branch SNR. The graph shows that outage probability
decreases as SNR increases. Further, outage probability is higher for large correlation and
reduces as correlation decreases. Thus, it is can be concluded that higher the correlation
between the two message signals, higher is the probability of error and outage probability.

Figure 8a, b show the asymptotic approximation for OPRA and ORA policies respectively.
The closed-form expressions for OPRA and ORA capacity have the term, E1(x), which can
be expanded into an infinite series. Equations (6) and (13) are used to generate the numerical
results of Fig. 8a. Equations (8) and (14) are used to generate the numerical results of Fig.
8b. Asymptotic approximation gives an idea about the particular branch SNR above which
analytical capacity converges with the asymptotic capacity. Beyond that particular SNR,
analytical and asymptotic capacities converge. From Fig. 8a, b, we observe that convergence
takes place for low SNRs in the case of ORA policy (i.e., around 8 dB), but in the case of
OPRA policy, the asymptotic capacity converges with the analytical capacity at higher SNRs
(i.e., around 10 dB).

Figure 9a, b show the Upper bound capacity for OPRA and ORA policies, respectively.
Equations (6) and (16) are used to generate the numerical results of Fig. 9a. Equations (8)
and (17) are used to generate the numerical results of Fig. 9b. From these results, it is obvious
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that upper bounds for both policies are much tighter. The upper bound for OPRA capacity is
tighter at lower SNRs than at higher SNRs. But the upper bound for ORA capacity is tighter
and uniform for all SNRs.

Figure 10 shows the Low SNR region I approximation of capacity for ORA policy. Equa-
tions (8) and (19) are used to generate the numerical results of Fig. 10. This approximation
provides the lower bound to the branch SNR beyond which efficient transmission and adapta-
tion is not accountable. In the case of two branch correlation, the lower bound is approximately
−3 dB beyond which analytical capacity exceeds the LSR I capacity approximation.

Figure 11 shows the Low SNR region II approximation of capacity for ORA policy. Equa-
tions (8) and (21) are used to generate the numerical results of Fig. 11. This approximation
provides minimum branch SNR required for adaptation to be effective. In the case of two
branch correlation, the minimum branch SNR required is approximately 2 dB, beyond which
the analytical capacity exceeds the LSR II capacity approximation.

Figure 12 shows the High SNR region approximation of capacity for ORA policy. Equa-
tions (8) and (23) are used to generate the numerical results of Fig. 12. This approximation
helps to determine the upper bound branch SNR beyond which adaptation becomes unnec-
essary as the channel is good and performance of the system is at its peak. In the case of two
branch correlation, the upper bound Branch SNR is approximately 16 dB beyond which the
analytical capacity converges with the HSR capacity approximation.

5 Conclusions

The channel capacities per unit bandwidth for various adaptation policies over fading channels
with impairments due to branch correlation for two branch case have been computed in this
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paper. Closed-form expressions for spectral efficiencies for the four adaptation policies are
derived for the MRC diversity reception case.

The main contribution of the paper includes the derivation of LSR I, LSR II, HSR, Asymp-
totic Approximation and Upper bound capacity expressions for OPRA and ORA policies for
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two branch correlation impairments. The numerical results provide an insight on performance
improvement of two branch MIMO system with impairments due to constant branch correla-
tion with four types of adaptation policies. Different wireless platforms have different upper
and lower bound SNR regimes with which they work on. The numerical results in our two
branch MIMO wireless system provides the upper and lower bounds of SNR region suitable
for our system, based on the SNR feedback from the channel to decide on the nature of the
channel and which adaptation policy to be adopted. Depending upon the type of channel
available any one of two optimal policies namely OPRA or ORA can be chosen. Suboptimal
policies like CIFR or TIFR also provide better results for the above system. Further work
would be to extend these results to an M-branch MIMO system for (i) constant correlation
and (ii) Distinct eigenvalue case.

Appendix 1

The Spectrum Efficiency for OPRA policy is obtained by substituting (2) into (7) of [18] as

〈C〉(BC)
OPRA

B
= 1

2�ε

∞∫
γ0

log2

(
γ

γ0

)[
exp

(
− γ

�(1 + ε)

)
− exp

(
− γ

�(1 − ε)

)]
dγ (28)

= γ0 log2(e)

2�ε

∞∫
1

loge (t) exp

(
− γ0

�(1 + ε)
t

)
dt

−γ0 log2(e)

2ε�

∞∫
1

loge(t) exp

(
− γ0

�(1 − ε)
t

)
dt. (29)

Substituting μ1 = γ0
�(1+ε)

and μ2 = γ0
�(1−ε)

, t = γ
γ0

and dt = dγ
γ0

in (29), we have

〈C〉(BC)
OPRA

B
= γ0

2�ε log(2)

∞∫
1

log2 (t)
[
exp (−μ1t) − exp (−μ2t)

]
dt. (30)

From Eq. (2) of section 4.331 on p. 567 in [20], we have
∫ ∞

1 e−μt ln tdt = − 1
μ

Ei (−μ),

[�eμ > 0]. Substituting this expression in (30), we obtain the capacity for OPRA policy in
(6). The optimal policy suffers a probability of outage, P(BC)

out given by

P(BC)
out =

γ0∫
0

f (BC)
2 (γ )dγ = 1 −

∞∫
γ0

f (BC)
2 (γ )dγ . (31)

Making change of variables in the integral of (31), where η1 = 1
�(1+ε)

and η2 = 1
�(1−ε)

, we
have

P(BC)
out =

γ0∫
0

1

2�ε

[
exp (−η1γ ) − exp (−η2γ )

]
dγ . (32)
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Substituting
∫ γ0

0 exp(−μx) = 1−exp(−γ0μ)
μ

into (32) and simplifying, we have the outage
probability expression as in (7). Substituting (2) into Eq. (29) of [18], we have

〈C〉(BC)
ORA

B
= log2 e

2ε�

∞∫
0

loge(1 + γ )

(
exp

(
− γ

�(1 + ε)

)
− exp

(
− γ

�(1 − ε)

))
dγ. (33)

From Eq. (1) of section 4.337 on p. 568 in [20], we have
∫ ∞

0 exp(−μx) loge(β + x)dx = 1
μ

[loge(β) − e(μβ)Ei (−βμ)], ∀ [|arg β| < π,�eμ > 0].
Substituting β = 1, η1 = 1

�(1+ε)
, and η2 = 1

�(1−ε)
in (33), we have

〈C〉(BC)
ORA

B
= log2 e

2ε�

∞∫
0

loge(1 + γ ) (exp (−η1γ ) − exp (−η2γ ))dγ. (34)

Integrating the above equation, we obtain the expression for capacity for ORA policy as in
(8).

Substituting (2) into Equation (46) of [18], we have

〈C〉(BC)
CIFR

B
= log2

⎡
⎢⎢⎣1 + 2�ε

∫ ∞
0

[
exp

(
− γ

�(1+ε)

)
−exp

(
− γ

�(1−ε)

)]
γ

dγ

⎤
⎥⎥⎦ . (35)

Since the closed-form expression is not possible for
∫ ∞

0
exp(−γ )

γ
dγ , we find the numerical

limits for γ through simulation, and substitute the minimum and maximum values as limits
to give

〈C〉(BC)
CIFR

B
= log2

⎡
⎣1 + 2�ε∫ γmax

γmin

[exp(−η1γ )−exp(−η2γ )]
γ

dγ

⎤
⎦ . (36)

Using Eq. (3) of Section 3.352 in [20], we obtain the expression for capacity of CIFR policy
as in (9). Substituting (35) into Eq. (47) of [18], we have

〈C〉(BC)
TIFR

B
= log2

⎡
⎢⎢⎣1 + 2�ε

∫ ∞
γ0

[
exp

(
− γ

�(1+ε)

)
−exp

(
− γ

�(1−ε)

)]
γ

dγ

⎤
⎥⎥⎦ . (37)

Making change of variables in the integral of (37), we have

〈C〉(BC)
TIFR

B
= log2

⎡
⎣1 + 2�ε∫ ∞

γ0

[exp(−η1γ )−exp(−η2γ )]
γ

dγ

⎤
⎦ . (38)

From Eq. (2) of section 3.352 on p. 343 in [20], we obtain the expression for capacity of
TIFR policy as in (10).

Appendix 2

Figure 2a, b through Fig. 5a, b show the simulation of the system through the steps discussed
below.
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Step 1: The base for the simulation is to find out numerical instantaneous SNRs (γ). This
is obtained from the CDF of the received instantaneous SNR (γ) for branch correlation at the
output of two branch system given in (2), i.e.

F(BC)
2 (γ ) = 1 − 1

2ε

[
(1 + ε) exp

(
− γ

�(1 + ε)

)
− (1 − ε) exp

(
− γ

�(1 − ε)

)]
. (39)

Step 2: The CDF is equated to a uniform random number. Then, 106 Uniform random
numbers are generated using rand command in MATLAB.

Step 3: The maximum and minimum values of U are found out.
Step 4: The maximum value of received SNR (γmax) and the minimum value of received

SNR (γmin) are found for different values of Individual Branch SNRs (�), different values
of Correlation (ε) and different number of diversity orders (M) as tabulated below.

M = 2; γ̄ = 5 dB M = 2; ε = 0.5

E γmax γmin Range γ̄ γmax γmin Range

0.1 37 0.0375 36.9625 1 18 0.0135 17.9865

0.2 38 0.037 37.963 2 22 0.0165 21.9835

0.3 40 0.036 39.964 3 28 0.0207 27.9793

0.4 42 0.0354 41.9646 4 35 0.026 34.974

Step 5: Using the maximum and minimum values of instantaneous SNRs (γ), the capacity
for all four policies is obtained for different values of �, ε and M by approximating the integral
as a numerical summation from γmin to γmax in steps of 0.001.

Step 6: The simulated capacity values for all four policies for different values of corre-
lation, ε, at � = 5dB are compared with the corresponding analytical results for the above
four cases. Figure 1a, b through Fig. 4a, b show the analytical versus simulated graphs for
capacity for the case of impairments due to branch correlation errors.
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