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Abstract In this work we study the channel capacity from the point of view of a secondary
user that shares the bandwidth of the channel with a primary user using dynamic spectrum
access in cognitive radio.The secondary user sees bandwidth fluctuations (i.e, at any given
time the bandwidth can be available or not) that impact its channel capacity. We study the
outage capacity for the secondary user considering two scenarios in which the secondary user
uses either a single carrier modulation for the case in which bandwidth fluctuates over the
complete transmission band, and a multicarrier modulation for the case in which bandwidth
fluctuations are over various transmission subbands. We derive expressions for the outage
capacity of the secondary user for both single carrier and multicarrier. Results show that: (1)
The outage capacity for single carrier can be higher than for multicarrier, but with a higher
outage probability for single carrier than for multicarrier. In fact, a low value of outage
probability for single carrier requires a duty cycle for the secondary user close to one, but
this has the problem that it leaves a very short duty cycle for the primary user. (2) Although
for the secondary user the outage capacity for multicarrier is smaller than for single carrier,
for multicarrier lower values of the outage probability can be achieved even for short values
of the duty cycle of the secondary user, allowing larger duty cycle values of the primary user.
(3) For multicarrier, the outage capacity is more sensitive to changes in the duty cycle than to
changes in the outage probability. To obtain a larger outage capacity with low values of both
the outage probability and the duty cycle, it requires the use of a large number of subbands.
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916 F. Ramírez-Mireles

1 Introduction

Recently, several communication systems have been proposed in which two groups of users
with two different priorities share the channel bandwidth in a random fashion. One example
of this situation is in dynamic spectrum access for cognitive radio (DSA-CR), in which the set
of primary users (PUs) use the channel bandwidth at will, but the set of secondary users (SUs)
must wait until the channel bandwidth is available [1,2]. From the point of view of the SUs,
the bandwidth is shared with the PUs in a random fashion. Hence, the channel seen by the
SUs is a channel with random fluctuations in the available bandwidth. Operation in additive
white Gaussian noise (AWGN) but under random fluctuations in the available bandwidth
results in a capacity that is a random process. Studying the channel capacity and the outage
capacity under this operating conditions can provide insight on the design of communications
system working in this regime.

In this work we study the outage capacity from the point of view of a SU that share
the bandwidth of the channel with a PU using DSA-CR (for specific mechanisms to sense
and share the channel see for example [3] [4]). We explore two scenarios in which the SU
uses either a single carrier (SC) modulation for the case where bandwidth fluctuations is
over the complete band, and a multicarrier (MC) modulation for the case where bandwidth
fluctuations are over various subbands. We derive expressions for the outage capacity due
to bandwidth fluctuations for both SC and MC and proceed to make a comparison between
them. For the MC case the expression for the outage capacity is a function of the outage
probability, the number of carriers and the duty cycle of the SU.

The following definitions and notation are used through the paper:

– Capacity C: The information-theoretical channel capacity.
– Random capacity Crand(t): The instantaneous capacity of a channel with random fluctua-

tions in the available bandwidth.
– Averaged capacity Cavg: The Crand(t) averaged over the random bandwidth effects.
– Outage capacity Cout: The Crand(t) falls below Cout with a given outage probability Pout.

In Sect. 2 we provide the expressions for Crand(t), its mean value Cavg, its correlation function
RCrand(τ ), and its variance σ 2

Crand
. In Sect. 2 we also provide the expressions for Cout. In Sect. 3

we study the differences in terms of Cout when the SU uses either SC or MC, and provide
some numerical results. Section 4 provides the conclusions.

2 Capacity Expressions

2.1 Channel Capacity

Following the Shannon-Hartley theorem [5], the capacity of a Gaussian channel can be written
as

C (P,W, No) = W log2

(
1 + P

No W

)
, (1)

in bits per second (bps),where W is the channel bandwidth, P is the average signal power,
and No/2 is the (two-sided) power spectrum density of the noise. Equation (1) indicates
that a noiseless Gaussian channel (No− > 0) offers infinite capacity, but in a real situation
(No > 0) we have a finite capacity. Then, we can compare two arbitrary channels with
capacities C (P1,W1, No) and C (P2,W2, No). For instance, if we assume two channels, 1
and 2, such that W2 = 2W1, and we expect that C (P2,W2, No) = 2C (P1,W1, No), then
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we must have:

C2 (P2,W2, No) = W2 log2

(
1 + P2

No W2

)
= 2W1 log2

(
1 + P2

No 2W1

)

= 2C (P1,W1, No) = 2W1 log2

(
1 + P1

No W1

)
(iff P2 = 2P1),

(2)

in other words, when the bandwidth of the Gaussian channel increases N times, from W1 to
WN = N W1, it make sense to expect that the new capacity be N times the original one. In
this case the average power must also be augmented with the same factor N , i.e. from P1 to
PN = N P1.

2.2 Random Capacity for SC

Let us now assume that W varies in time in a bursty fashion. In this work we model bursty
operation multiplying W by a bursty function b(t). The random process (r.p.) b(t) takes the
values 1 or 0 depending if W is available to the SU or not, respectively.1 Random capacity
is defined as

Crand(t)
�= C (Pb(t),W b(t), No) = W b(t) log2

(
1 + Pb(t)

No W b(t)

)
. (3)

We assume that the r.p. b(t) is wide sense stationary (w.s.s.), and that the fluctuation rate of
b(t) is slower than the data frame transmission rate. We denote p0 and p1 as the probabilities
that b(t) = 0 and b(t) = 1 at any random value of time t , respectively. The b(t) has mean
Eb{b(t)} = p1, autocorrelation Rb(τ ) = Eb{b(t)b(t + τ)}, and variance σ 2

b = Rb(0) −
Rb(∞), where Eb{·} is the expected value operator with respect to b.

By noticing that

Crand(t) =
{

C (P,W, No) , for b(t) = 1,
0, for b(t) = 0,

(4)

we can rewrite
Crand(t) = b(t) C (P,W, No) . (5)

The mean value of Crand(t) is

Cavg = Eb{Crand(t)} = p1 C (P,W, No) , (6)

and the autocorrelation of Crand(t) is

RCrand(τ ) = Rb(τ ) C2 (P,W, No) . (7)

The statistics of b(t) depends on the specific communication scenario we want to analyze.
For example, for a b(t) produced by a Poisson process we can use the random telegraph
waveform in [6]. Figure 1 depicts one possible realization of b(t).

When p1 = 1
2 , the probability that k transitions occur in a time interval of length T is

given by the Poisson distribution

P(kT ) = (aT )k

k! exp (−aT ), (8)

1 In this analysis we will assume that b(t) can be estimated perfectly.
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Fig. 1 One realization of the r.p. b(t)

where a is the average number of transitions per second. Hence, the autocorrelation of b(t)
is [6]

Rb(τ ) = Prob(b(t) = 1, b(t + τ) = 1) = p1Prob(k even, T =| τ |)
= p1

2
[1 + exp (−2a | τ |)]. (9)

Notice that the discontinuity points of b(t) have Poisson distribution only in the particular
case with p1 = p0 = 0.5. For other values of p1 and p0, the r.p. b(t) is modelled as a
Markov process [7]. In this general case b(t) is asymptotically stationary with mean p1 , and
autocorrelation [8]

Rb(τ ) = (p1)
2 + p1 p0 exp(−μ1(1 + μ1

μ0
)|τ |), (10)

where μ0 is the transition probability from b(t) = 0 to b(t) = 1, and μ1 is the transition
probability from b(t) = 1 to b(t) = 0.

Substituting Rb(τ ) in (10) into (7) we get

RCrand(τ ) = C2 (P,W, No)

[
(p1)

2 + p1 p0 exp(−μ1(1 + μ1

μ0
)|τ |)

]
. (11)

In particular, the variance of Crand(t) is

σ 2
Crand

= RCrand(0)− RCrand(∞) = C2 (P,W, No) (p1(1 − p1)). (12)

2.3 Random Capacity for MC

When considering N channels with bandwidth, power and power spectral density,
Wi , Pi , No,i = No, i = 1, 2, . . . , N , and each channel having its own bi (t), i = 1, 2, . . . , N ,
the aggregated random capacity is

C (N)
rand(t)

�=
N∑

i=1

Crand,i (t) =
N∑

i=1

bi (t) C (Pi ,Wi , No) , (13)
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where we have assumed that Wi = W/N and (according to (2)) Pi = P/N , therefore
P = ∑N

i=1 Pi and W = ∑N
i=1 Wi ,

If the set {bi (t)} are independent and identically distributed (i.i.d.), then expression (13)
can be written as

C (N)
rand(t) =

N∑
i=1

bi (t)
W

N
log2

(
1 + P

No W

)
=

N∑
i=1

bi (t)
C (P,W, No)

N
(14)

The mean value of C (N)
rand(t) is

C (N)
avg = Eb1,b2,...,bN

{
N∑

i=1

bi (t)
C (P,W, No)

N

}
= p1 C (P,W, no) = Cavg, (15)

i.e., both SC and MC have the same Cavg, but the autocorrelation function for MC is

RC(N)
rand
(τ ) = Eb1,b2,...,bN {Crand(t)Crand(t + τ)}

= Eb1,b2,...,bN

⎧⎨
⎩

N∑
i=1

bi (t)
C (P,W, No)

N

N∑
j=1

b j (t + τ)
C (P,W, No)

N

⎫⎬
⎭

= [
N Rb(τ ) + N (N − 1) p2

1

] C2 (P,W, No)

N 2 , (16)

where for i <> j we have used Eb1,b2,...,bN {bi (t)b j (t + τ)} = (1 · 1)(p1 · p1)+ (1 · 0)(p1 ·
p0)+ (0 · 1)(p0 · p1)+ (0 · 0)(p0 · p0) = p2

1. Notice that we can write (16) as

RC(N)
rand
(τ ) = 1

N
RCrand(τ ) + N − 1

N
C2

avg (17)

In particular, the variance of C (N)
rand(t) = RC(N)

rand
(0)− RC(N)

rand
(∞) can be written as

σ 2
C(N)

rand
= σ 2

Crand

N
(18)

2.4 Outage Capacity for SC

Clearly Crand(t)fluctuates around Cavg with a varianceσ 2
Crand

. We are also interested in calculating
what is the outage probability that Crand(t) falls below a certain minimum value called outage
capacity. Following the definition of outage capacity in [9], in our case we define the outage
capacity Cout related to the outage probability Pout using the following expression:

Prob(Crand(t) < Cout) = Pout. (19)

In (19), Pout indicates the probability that the system can be in outage, i.e. the probability
that the system cannot successfully decode the transmitted symbols, and Cout is the data rate
which is successfully decoded with probability 1 − Pout [10]. In general, the probability
density function (p.d.f.) of Crand(t) is difficult to calculate, so calculation of Cout using (19)
is complicated. Similarly to the methodology used in [11], to calculate Cout we will use the
Chebyshev’s inequality [7] that establishes a bound in the probability of Crand(t) being outside
an interval (Cavg − δ, Cavg + δ)

Prob(|Crand(t) − Cavg| ≥ δ) ≤ σ 2
Crand

/ δ2. (20)
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Since we are considering both Prob(C rand(t) ≥ (Cavg + δ)) and Prob(Crand(t) ≤ (Cavg − δ))

we chose [11]
(σ 2

Crand
/ δ2) = 2Pout and δ = Cavg − Cout, (21)

From (20) and (21) the following inequality is obtained

Cout ≥ Cavg −
√
σ 2

Crand
/ (2Pout). (22)

Since (22) is an approximation, to avoid negative capacity values the following definition is
used

Cout
Δ� max

(
Cavg −

√
σ 2

Crand
/ (2Pout), 0

)
, (23)

where max(x, y) takes the maximum between x and y. An expression similar to (23) will be
used for MC.

3 Analysis SC Versus MC and Numerical Results

We are interested in studying the differences when the SU uses either SC or MC. For this
purpose, we define

CSC(t)
�= Crand(t), Cavg-SC

�= Cavg, σ 2
SC

�= σ 2
Crand

, (24)

CMC(t)
�= C (N)

rand(t), Cavg-MC

�= C (N)
avg, σ 2

MC

�= σ 2
C(N)

rand
. (25)

Figure 2 depicts an example of Cavg and realizations of CSC(t) and CMC(t).
We have found that C avg-SC = Cavg-MC. We now may ask the following questions: (1) Which

system, SC or MC, have less variance due to the bursty operation?, and (2) What are the
implications in terms of outage capacity?
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Equation (18) provides the answer for the first question, i.e., CMC(t) has a variance that is
N times smaller than the variance of C SC(t). This is illustrated in Fig. 3.

Next, we investigate the difference in outage capacity produced by this difference in
variances. Using (23) as a baseline, let us define

Cout-SC
Δ� max

(
Cavg-SC −

√
σ 2

SC / (2Pout), 0

)
, (26)

Cout-MC
Δ� max

(
Cavg-MC −

√
σ 2

MC / (2Pout), 0

)
. (27)
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We recall that (26) and (27) were derived using the Chebyshev’s inequality. From the defini-
tion in (13) we can see that the p.d.f. of C (N)

MC(t) is approximately symmetric and take a variety
of values (see Fig. 4b), but from the definition in (5) we see that the p.d.f. of C (N)

SC(t) takes
only two values (see Fig. 4a). Hence, we expect (26) to be a poor approximation for Cout-SC

and (27) to be a good approximation for Cout-MC.
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To find an “exact” value for Cout-SC, consider the expression

Prob(CSC(t) < Cout-SC) = Pout, (28)

however, for the SC case it is clear that

CSC(t) =
⎧⎨
⎩

C (P,W, No) , with probability p1,

ψ ∈ ( 0 , C (P,W, No) ), with probability zero,
0, with probability 1 − p1,

(29)

From (28) and (29) we conclude that

Cout-SC

�=
{
α C (P,W, No) , for Pout = (1 − p1) and 0 < α ≤ 1,
not defined, for Pout <> (1 − p1)

. (30)

From (30) we conclude that a low Pout requires a value of p1 close to one, i.e., a duty cycle
of the SU close to one, but this has the problem that it leaves a very short duty cycle for the
PU. Figure 5 shows an example of C (P,W, No) , Cavg and Cout-SC using both the “exact” value
in (30) with α = 1 (i.e. Cout-SC = C (P, W, No)), and the approximation in (26).
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For the MC case we can investigate the relation between Cout-MC and Pout for different p1

using the relations in (21) to write the expression

Prob(CMC(t) < Cout-MC) ≤ σ 2
MC

(Cavg-MC − Cout-MC)2
. (31)

Recall that Cavg = p1 C (P,W, No), and that if N >> 1 then σ 2
MC << 0. Hence, low values

of Pout can be achieved for both large and small values of the duty cycle p1. A small value of
the duty cycle of the SU allows a larger duty cycle values of the PU, but it may require the
estimation of a large number N of {bi (t)}. Figure 6 depicts an example of C (P,W, No) , Cavg

and the approximation for Cout-MC in (27).
To further investigate the effect of p1,Pout and N in Cout-MC, Fig. 7 plot Cout-MC in (27)

for different conditions. As expected, increasing N increases Cout-MC. However, there is a
diminishing return, i.e., the benefit of increasing N diminishes as N grows. Moreover, the
Cout-MC is more sensitive to changes in p1 than in Pout. Besides, for low values of both p1 and
Pout large values of N need to be considered.

4 Conclusion

In this work we have studied the outage capacity from the point of view of a SU that shares
the bandwidth of the channel with a PU using DSA-CR. We have derived expressions for the
outage capacity due to bandwidth fluctuations for both SC and MC and proceeded to make
a comparison between them. Our analysis indicated the following:

– The CMC(t) has a variance that is N times smaller than the variance of CSC(t).
– The Cout-SC can be high but with a high Pout. A low value of Pout requires a value of p1 close

to one, but this has the problem that it leaves a very short duty cycle for the PU.
– The Cout-MC is lower than Cout-SC, but low values of Pout can be achieved even for large duty

cycle values of the primary user. However, it may require the estimation of a large number
of {bi (t)}.

– For low values of both Pout and p1, large values of N need to be considered to get a
reasonable value of Cout-MC However, the benefit of increasing N diminishes as N grows.

– The Cout-MC is more sensitive to changes in p1 than in Pout .

For future work more studies with other types of channels and other distributions of b(t)
can be considered.
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