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Abstract Efficient radio spectrum utilization can be improved using cognitive radio tech-
nology. In this work, we consider a spectrum underlay cognitive radio system operating in
a fading environment. We propose an efficient power control scheme that maximizes the
effective capacity of the secondary user, provisioning quality of service while on the same
time the communication of the primary user is guaranteed through interference constraints.
The specific power allocation scheme uses a policy in which the outage events of the primary
user are exploited leading to a significant increase of the secondary user’s effective capac-
ity. Moreover, the interference of the primary link to the secondary is taken into account so
as to study a more realistic scenario. In order to safeguard primary user’s communication,
two types of restrictions are considered: the traditional interference power constraint and
the proposed inverse signal to interference plus noise ratio constraint. Different scenarios
depending on the nature of the constraints (peak/average) are studied and their impact on
the performance of the primary and secondary users is investigated. The superiority of the
proposed schemes is demonstrated through their comparison with two reference power con-
trol schemes. Finally, numerical calculations, validated with simulation results, confirm the
theoretical analysis and evaluate the performance of the proposed scheme for all the different
scenarios.
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1 Introduction

The main characteristic of next generation wireless networks is the increasing spectral require-
ments. The satisfaction of these demands may induce congestion in the scarce spectral
resource, whereas on the same time its utilization through the traditional allocation tech-
niques remains inefficient [1,2]. Considering these problems, the researchers have introduced
the revealing concept of Cognitive Radio (CR) [3]. CR can be defined as a radio platform
that is able to adjust its operating parameters in real-time, based on varying requirements
and environment’s conditions through a process of cognition. Typically, a CR-based system
consists of two types of users: the licensed users (Primary Users, PUs) and the unlicensed
users (Secondary or Cognitive Users, SUs). PUs can communicate being unaware of SUs’
presence, while SUs use the wireless spectrum in a more intelligent and flexible way, without
interrupting PUs’ communication [4,5]. More specifically, the opportunistic spectrum access
of SUs can exploit the unused licensed in-band segments without causing interference to the
active PUs. This allocation of the licensed spectrum can be accomplished through overlay
or underlay techniques. In spectrum overlay techniques, the SUs are not allowed to transmit
their data with the presence of PUs. On the other hand, the spectrum underlay techniques
allow the SUs to transmit simultaneously with the PUs as long as they do not affect their com-
munication. Any of these techniques can be used in cognitive radio network design having
corresponding advantages and disadvantages.

In this paper, we consider a spectrum underlay CR system that suffers from fading. We
analyze the communication quality both from SU’s and PU’s perspective and we propose
a power allocation scheme so as to maximize SU’s throughput for specific quality of ser-
vice (QoS) requirements. Since different services demand different QoS constraints [6,7],
the wireless users are expected to tolerate different levels of delay for each service. Thus,
especially for real time applications, it is important to take into consideration the impact
of the QoS provisioning metric in the system’s analysis. A suitable tool that can integrate
the rate performance of a wireless link and the key metric of delay QoS requirements is the
effective capacity that has recently started to draw the attention of researchers [8,9]. There-
fore, in the proposed work we focus on the maximization of SU’s effective capacity, while
guaranteeing the communication quality of PU’s link. Specifically, in order to preserve PU’s
communication, we employ two types of constraints. The first one refers to the traditional
underlay systems’ technique, which restricts the transmission power of the SU in order to
maintain the interference at primary receiver below a specific value. Regarding the other
constraint, we propose the novel limitation of the inverse signal to interference plus noise
ratio (SINR) at PU’s receiver. This metric is significant for the performance of the PU as
apart from the interference power from the SU, it considers the PU’s channel variations and
also their relative behavior. Moreover, in our analysis we consider the long-term (average)
as well as the short-term (peak) nature of these constraints [10]. Consequently, depending
on the type and the nature of the interference constraint imposed to the SU, we describe
four different scenarios and we find the optimal power allocation and the corresponding
effective capacity for each scenario. Assuming perfect channel state information (CSI) of all
links, we also include in our analysis the significant impact of PU’s interference to SU’s link
quality [11].

Apart from the above considerations, the novelty of this work is additionally based on
the fact that PU’s channel variations can be used beneficially for improving the effective
capacity of the SU in terms of opportunistically exploiting bad PU’s channel conditions that
lead to outage events. Particularly, in the proposed work, it is considered that the SU can
transmit with its maximum power when the PU experiences an outage event and with the
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optimal power, otherwise. Finally, numerical calculations, validated with simulation results,
evaluate the theoretical analysis for various system parameters (QoS requirements, values of
constraints and channels characteristics) and the different scenarios are compared both from
PU’s and SU’s side. The expected system behavior is verified and the necessity of the QoS
factor is proven.

The rest of the paper is organized as follows. Section 2, presents the system model under
consideration and the concept of effective capacity, while Sect. 3 describes briefly previous
work in the same research area and highlights our contribution points. In Sect. 4, we analyze
the QoS-driven power allocation problem and we present the constraints that should be
satisfied by the SU. The solutions of this problem for all the different scenarios are analyzed in
Sect. 5 where the expression for the SU’s optimal transmission power and the corresponding
effective capacity for each scenario are presented. In Sect. 6, we study the impact of the
different interference costraints on the communication of the PU whereas in Sect. 7, we
evaluate the proposed scheme through numerical calculations and discuss the results. Finally,
Sect. 8 concludes the paper.

2 System Model: Effective Capacity

In our system model, a secondary transmitter attempts to send data to a secondary receiver
in the presence of a PU. Specifically, as we can see in Fig. 1, a pair of primary transmitter
(PUTx) and receiver (PURx) coexists with a pair of secondary transmitter (SUTx) and receiver
(SURx). The specific system model is a basic reference model for the theoretical analysis
of CR networks [12], which takes into account the interference from/to the PU. However, it
should be noted that the proposed mechanism can also be employed in case of a CR network
with multiple SUs considering an additional scheduling scheme that allows only to one SU
to transmit during each timeslot [13].

In our approach, discrete-time, uncorrelated Nakagami fading channels are considered
for the wireless links. The corresponding received signals for the primary and the secondary
receiver, at a specific time n, are:

yp[n] = √
h p[n]x p[n] +√hsp[n]xs[n] + z p[n] (1)

ys[n] = √
hs[n]xs[n] +√h ps[n]x p[n] + zs[n] (2)

where x p and xs represent the transmitted signals from the primary and the secondary trans-
mitter respectively, while z p and zs represent the additive white Gaussian noise for each
corresponding link. Moreover, hs, hsp, h p and h ps denote the channel power gains between
the secondary/primary transmitter and the secondary/primary receiver, according to Fig. 1.
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We must note here that for simplicity reasons, the time index n has been ignored in the rest
of the paper.

Due to the fact that the amplitude gains of the fading channels are modeled according
to unit-mean Nakagami distribution [14], the probability density function (pdf) of channel
power gains is given by the following Gamma distribution:

fh j (h j ) = m
m j
j h j

m j −1

�(m j )
e−m j h j (3)

where Γ (·) is the Gamma function [15] and the parameter m j denotes the ratio of the line
of sight (LoS) signal power to that of the multi-path component. More specifically, this
parameter models the severity of fading with m j = 1 leading to Rayleigh fading conditions,
m j = 0.5 reflecting more severe fading conditions such as one-sided Gaussian fading and
m j > 1 resulting in approximations of Rician and lognormal fading channels. Furthermore,
we have considered that the noise power spectral density and the system’s spectral bandwidth
are correspondingly N0 and B and that data-link layer packets of the secondary link are
organized into frames with duration T f .

In this paper, it is assumed that the primary transmitter is not able to sense the presence of a
SU and it transmits with constant power Pp . On the contrary, the secondary nodes are cognitive
nodes meaning that they can sense their environment and adapt their power depending on
the existence of a PU and the channel conditions. Moreover, we assume that the SU is aware
of the CSI of each link. In case of the PU link’s and the interference SUTx − PURx link, the
corresponding channel gains, can be obtained either directly by listening to a feedback from
the PU as proposed in [16,17], where there is a collaboration between the PU and SU, or
indirectly through a spectrum manager which acts as a referee between the two parts [18,19].
Hence, when a PU transmits data, the SU restricts its transmission power under a specific
limit in order not to affect the primary link.

In order to be able to analyze the resource allocation problem, we define the signal-to-noise
ratio (SNR) and the SINR for the primary and the secondary receiver as follows:

Primary Receiver’s SNR : SN Rp = h p · Pp

N0 B
,

Primary Receiver’s SINR: SI N Rp = h p · Pp

hsp · Ps + N0 B
,

Secondary Receiver’s SINR: SI N Rs = hs · Ps

h ps · Pp + N0 B
.

In general, it is considered that the PU experiences an outage event when its SINR falls
below a certain threshold. However, in our theoretical analysis, when we refer that the PU is
in outage, we consider the scenario in which the SNR of the PU falls below that threshold
and the interfering power is not taken into account.

In order to guarantee that the communication quality of the PU will not be downgraded,
we force the SU to limit its transmission power to the adequate level. Depending on the
interference constraint imposed to the SU, we study four different scenarios for the power
allocation problem. In the first two scenarios, the resource management problem of the SU
subject to an average/peak interference power constraint is analyzed whereas in the following
two scenarios, we propose a novel interference constraint based on the average/peak inverse
SINR of the PU.

The goal of our work is to maximize the throughput of the secondary link considering that
the SU should meet specific QoS requirements without however affecting the communication
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of the primary link. In order to be able to study the maximum throughput for specific QoS
constraints, we employ the concept of effective capacity. The specific concept has been
introduced by Wu and Negi [8] as the dual concept of effective bandwidth [20], which
represents the minimum constant transmission rate so as to satisfy a certain QoS requirement.
Accordingly, the effective capacity function Ec(θ) refers to the maximum constant arrival
rate that the channel can sustain in order to guarantee a QoS requirement denoted by the
parameter θ known as the QoS exponent. More specifically, if {R[i], i = 1, 2, . . .} is an
uncorrelated discrete-time stationary and ergodic stochastic service process, then the formal
definition of the effective capacity is given by:

Ec(θ) = − 1

θ
ln
(

E
[
e−θ R[i]]) . (4)

The QoS parameter θ is a positive constant that represents the decaying rate of the QoS
violation probability. In particular, when the delay bound is the QoS metric of interest, the
parameter θ can be defined from the relationship Pr {Delay > Dmax } ≈ e−θδDmax , where
Dmax denotes the delay bound and δ is jointly determined by both arrival and service processes
[8]. It should be noted that a greater θ indicates more strict QoS requirements, whereas smaller
values of θ denote more flexible QoS constraints.

3 Related Work and Contributions

Recently, the concept of effective capacity has been employed in order to study resource
allocation techniques that incorporate the QoS metric for various terrestrial wireless networks
[9,21,22] and satellite networks [23]. However, the research on the analysis of the effective
capacity for cognitive radio networks is limited. In [24,25] the authors investigate the effective
capacity of the secondary link that can be achieved in Nakagami channels under spectrum
sharing constraints assuming an average interference power constraint for the protection of the
PU. In [26], the authors study the QoS constrained capacity in Rayleigh fading channels under
the peak interference constraint with single and multiple primary receivers. Similarly, Akin
and Gursoy [27] study the effective capacity of cognitive radio channels in order to identify
the performance of the system in the presence of statistical delay constraints. Specifically,
the authors consider that the cognitive radio initially performs channel sensing to detect the
activity of PUs and then transmits the data at two different average power levels depending
on the presence of active PUs. Finally, in [28], the authors investigate the optimization
of effective capacity from SU’s perspective in Rayleigh fading environment considering
an average interference power constraint so as to protect the communication of the PU.
However, in all the referred papers, the authors study the corresponding resource allocation
problem, considering either the average or the peak interference power constraint, only from
SU’s perspective without analyzing each scheme’s effect to the primary link communication.
Furthermore, they neglect the impact of the PU’s interference to the SU which is an important
factor in order to design a realistic power allocation scheme.

In this work, our objective is the study of an ameliorated optimal power allocation policy
which maximizes the effective capacity of the secondary link under different interference
constraints and the comparison of these scenarios both from SU’s and PU’s perspective.
More analytically, the main contributions of our work are the following:

– The proposed power allocation algorithm takes advantage of the channel variations of
the primary link. Specifically, in order to optimize the effective capacity of the SU, the
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algorithm exploits the time intervals when the PU experiences an outage event due to its
own channel state, allowing to the SU to transmit with the maximum power.

– Except from the analysis of the resource allocation problem subject to the traditional
interference power constraint, we study the power allocation problem under the proposed
novel interference constraint which is based on the inverse SINR of the primary receiver.
As it is verified in the numerical analysis section, this constraint allows the SU to exploit
the channel variations of the primary link and leads to better results in terms of the SU’s
effective capacity. Moreover, the use of the specific constraint yields to lower values of
PU’s outage probability, guaranteing a specific threshold to the communication quality of
the primary link.

– In this work, the interference of the primary transmitter to the secondary receiver is taken
into account whereas in the literature this factor was ignored. As it is verified in the
simulation’s section, the impact of the primary transmitter–secondary receiver link is
important and should be included in the analysis of the optimal effective capacity in order
to design a more realistic power allocation scheme.

– Finally, for both interference constraints (interference power and inverse SINR con-
straints), we study the outcome of the corresponding optimization problem for short-term
(peak) and long-term (average) constraints and we compare each scenario not only from
SU’s side but also from PU’s perspective. We must note that, to the authors’ best knowl-
edge, this study consists the first unified analysis in the literature for the optimization of
SU’s effective capacity that also studies how the quality constraints of the SU affect the
PU’s communication.

4 Power Allocation Problem

At first, before we proceed to describe the power allocation problem, it’s useful to denote the
constraints which must be satisfied by the SU.

4.1 Power Constraints of the SU

The first restriction, which is considered in all of the scenarios, refers to a peak power con-
straint that expresses the device power amplifier’s limit (Pmax ) of the secondary transmitter
[29]. Specifically, we consider that the peak transmit power of the SU satisfies the following
inequality:

0 ≤ Ps ≤ Pmax (5)

Regarding to the impact of the SU’s transmission on the PU’s communication, we focus on
two different types of interference constraints. The first type of constraints is the traditional
interference power constraint that represents the received power to the PU from the secondary
transmitter. Specifically, we study the case of the average interference power constraint which
can be expressed as:

E[hsp · Ps] ≤ QI,av (6)

and the case of the peak interference power constraint which is the following:

hsp · Ps ≤ QI,pk (7)

where QI,av and QI,pk denote the average and the peak interference power limits at PURx,
correspondingly.
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Concerning the second type of constraints, we propose the use of a significant metric
known as the inverse SINR in order to ensure the communication quality of the primary
link. Given the fact that the SINR is a good indicator of the performance of a particular link,
the inverse SINR (ISINR) can also be employed in order to measure the communication
quality of the link [30,31]. Our analysis is separated to the study of the average inverse SINR
constraint:

E

[
hsp · Ps + N0 · B

h p · Pp

]
≤ QI SI N R,av (8)

and the peak inverse SINR constraint:

hsp · Ps + N0 · B

h p · Pp
≤ QI SI N R,pk (9)

where QI SI N R,av and QI SI N R,pk denote the average and the peak inverse SINR limits at
PURx, correspondingly.

In both types of restrictions, the average constraints can be used in cases where the PU
provides delay-non sensitive services and thus an average limitation can guarantee a long-
term quality to the PU link, whereas the peak constraints can be employed when the PU has
to satisfy instantaneous quality requirements.

In the next section, we will study the resource allocation problem for all the possible
scenarios, which result from the combination of the peak transmit power constraint with
the four interference constraints. Specifically, the sets of the considered SU’s transmission
power, depending on the specific interference constraints’ scenarios are the following: Ω1 =
{Ps : (5), (6)},Ω2 = {Ps : (5), (7)},Ω3 = {Ps : (5), (8)} and Ω4 = {Ps : (5), (9)}.

4.2 Problem Definition

In our analysis, we employ the normalized effective capacity Ec,n(θ) (bits/s/Hz) which is
defined as the effective capacity divided by the term T f B and is given by:

Ec,n(θ) = Ec(θ)

T f B
= − 1

θT f B
ln
(

E
[
e−θ R

])
(10)

where R represents the channel capacity of the SU’s link that can be defined as:

R = T f B log2

(
1 + Ps(θ, hsp, hs, h ps, h p)hs

Pph ps + N0 B

)
. (11)

Here, we note that the unit for the rate R and the effective capacity Ec(θ) is “bits per frame”.
In order to simplify the form of equations, we define the term aSU = aSU (θ) = θT f B/ ln(2)

which represents the normalized QoS exponent. Thus, the normalized effective capacity can
be expressed as a function of aSU as follows:

Ec,n(aSU ) = − 1

aSU ln(2)
ln

(

E

[(
1 + Ps(aSU , hsp, hs, h ps, h p)hs

Pph ps + N0 B

)−aSU
])

. (12)

The main goal of our model is to maximize the effective capacity of the secondary link and
find the corresponding optimal power control policy of the SU under the restriction not to
violate PU’s communication. As it will be described, the SU chooses opportunistically its
power allocation using CSI at the SUTx. Moreover, in our work, we consider that the SU
exploits the time intervals when the PU is in outage due to its own channel conditions, in
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order to increase its achievable effective capacity. This means that when the SNR value of the
primary link falls below a certain outage threshold (Qout ), the SU transmits with its maximum
power. On the other hand, the SU transmits with the optimal power when SN Rp > Qout .
Thus, the maximization problem can be formulated as follows:

E∗
c,n = max

PsεΩi
Ec,n(aSU ) for h p > hout (13)

where i = 1, 2, 3, 4 denotes the different scenarios and hout = Qout ·N0·B
Pp

denotes the corre-
sponding outage threshold for the PU’s channel gain. As it is obvious, in our algorithm, the
optimal power allocation is given by P∗

s = Pmax for h p ≤ hout .
For simplicity and calculation purposes, we define the following function:

g(aSU , Ps(aSU , hsp, hs, h ps, h p)) = E

[(
1 + Ps(aSU , hsp, hs, h ps, h p)hs

Pph ps + N0 B

)−aSU
]

. (14)

Since ln(·) is a monotonically increasing function, the maximization problem of the normal-
ized effective capacity can be further reduced to the minimization problem of the auxiliary
function g(aSU , Ps(aSU , hsp, hs, h ps, h p)). In the following section, we present the solutions
of the resource allocation problem

min
PsεΩi

{g(aSU , Ps(aSU , hsp, hs, h ps, h p))} for h p > hout (15)

for each of the above described scenarios.

5 Optimal Power Allocation Schemes

5.1 Interference Power Constraint (Scenario A)

In the first two scenarios, we employ the interference power constraint in order to regulate
the SU’s transmission and guarantee the PU’s communication. More specifically, at first, we
study the case of the average interference power constraint whereas in the second part, we
analyze the case of the corresponding peak constraint.

5.1.1 Average Constraint (Scenario A1)

The first scenario refers to the maximization of the normalized effective capacity subject to
the peak SU’s transmit power and the average interference power constraints. Specifically,
we solve the optimization problem defined in (15) for PsεΩ1. It is proven that the optimal
strategy of the SU for the specific scenario is given by:

P∗
s (aSU , hsp, hs, h ps, h p)

=

⎧
⎪⎨

⎪⎩

Pmax for {h p ≤ hout }or{h p > hout and hsp ≤ h A
0 (hs, h ps)}

P A
opt (aSU , hsp, hs, h ps), for h p >hout and h A

0 (hs, h ps)<hsp ≤h A
1 (hs, h ps)

0 , for h p > hout and hsp > h A
1 (hs, h ps)

(16)

123



QoS-Driven Power Allocation Under Peak and Average Interference 457

where

P A
opt (aSU , hsp, hs, h ps) =

(
Pph ps + N0 B

hs

){[
λ0hsp(Pph ps + N0 B)

aSU hs

]− 1
1+aSU − 1

}

,

h A
0 (hs, h ps) = aSU hs

λ0(Pph ps +N0 B)

[
Pmaxhs

Pph ps +N0 B
+1

]−(aSU +1)

and h A
1 (hs, h ps)

= aSU hs

λ0(Pph ps + N0 B)
.

The proof of the second branch of Eq. (16) and the computation of the Lagrange multiplier
λ0 from the average interference power constraint is provided in the “Appendix”. Using (16),
we derive the effective capacity for the optimal power allocation as follows:

E∗
c,n

(aSU ) = − 1

aSU ln(2)
ln

⎧
⎨

⎩

(
1 − Γ (m p, m phout )

Γ (m p)

)
·

∞∫

0

(1 + Pmax x)−aSU fx (x)dx

+ Γ (m p, m phout )

Γ (m p)
·
⎡

⎣
∞∫

0

⎛

⎝1−
Γ
(

msp, mspλ
−1
0 aSU x (Pmax x+1)−aSU −1

)

Γ (msp)

⎞

⎠

× (1 + Pmax x)−aSU fx (x)dx + 1

Γ (msp)
·
(

aSU msp

λ0

)− aSU
aSU +1

∞∫

0

x
− aSU

aSU +1

×
(

Γ

(
msp + aSU

aSU + 1
, mspλ

−1
0 aSU x(1 + Pmax x)−aSU −1

)

− Γ

(
msp + aSU

aSU + 1
, mspλ

−1
0 aSU x

))
fx (x)dx

+ 1

Γ (msp)

∞∫

0

Γ
(

msp, mspλ
−1
0 aSU x

)
fx (x)dx

⎤

⎦

⎫
⎬

⎭
(17)

where the function fx (x) is defined in the “Appendix” [see (34)].

5.1.2 Peak Constraint (Scenario A2)

The second scenario refers to the maximization of the normalized effective capacity sub-
ject to the peak SU’s transmit power and the peak interference power constraint. Thus,
we find the solution of the optimization problem defined in (15) for PsεΩ2. From the
combination of the two peak constraints of this problem, we can easily conclude to:

Ps(hsp) ≤ min
{

Pmax ,
QI,pk
hsp

}
. Therefore, the optimal power policy of the SU for this sce-

nario can be expressed as:

P∗
s (hsp, h p) =

{
Pmax, for {h p ≤ hout } or {h p > hout and hsp ≤ QI,pk

Pmax
}

QI,pk
hsp

, for h p > hout and hsp >
QI,pk
Pmax

(18)
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Using (18) and (34), the corresponding effective capacity is given by:

E∗
c,n

(aSU )=− 1

aSU ln(2)
ln

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1 − Γ (m p, m phout )

Γ (m p)

)
·

∞∫

0

(1+Pmax x)−aSU fx (x)dx

+ Γ (m p, m phout )

Γ (m p)
·
⎡

⎣

(

1− Γ
(
msp, msp QI,pk/Pmax

)

Γ (msp)

)

·
∞∫

0

(1+Pmax x)−aSU fx (x)dx

+
∞∫

Q I,pk
Pmax

∞∫

0

(
1+ QI,pk x

hsp

)−aSU

· fx (x) fhsp (hsp)dxdhsp

⎤

⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (19)

From (16)–(19), we can observe that in the specific type of interference constraint (Scenario
A), the SU doesn’t need to be aware of the instantaneous channel conditions of the PU but
only of the time intervals when the primary link falls in outage. In the numerical results
section, Scenarios A1 and A2 are compared in terms of the achieved effective capacity and
their corresponding power allocation policy.

5.2 Inverse SINR Constraint (Scenario B)

In this subsection, we employ the novel constraint based on the concept of the inverse SINR
in order to limit the interference from the SUTx to the PURx. At first, we present the solution
of the optimization problem with the average inverse SINR constraint whereas the second
part includes the solution of the resource allocation problem under the corresponding peak
constraint.

5.2.1 Average Constraint (Scenario B1)

The specific scheme refers to the maximization of the effective capacity subject to the peak
transmit power and the average inverse SINR constraint. Thus, we study the optimization
problem in (15) where Psε	3 and we find the optimal strategy for the SU which is defined
by:

P∗
s (aSU , hsp, hs, h ps, h p)

=

⎧
⎪⎨

⎪⎩

Pmax, for {h p ≤ hout } or {h p > hout and hsp ≤ h B
0 (hs, h ps, h p)}

P B
opt (aSU ,hsp,hs,h ps,h p), for h p>hout and h B

0 (hs,h ps,h p)<hsp ≤h B
1 (hs,h ps,h p)

0 , for h p > hout and hsp > h B
1 (hs, h ps, h p)

(20)

where

P B
opt (aSU , hsp, hs, h ps, h p) =

(
Pph ps + N0 B

hs

){[
λ′

0hsp(Pph ps + N0 B)

aSU hs Pph p

]− 1
1+aSU − 1

}

,

h B
0 (hs, h ps, h p) = h A

0 (hs, h ps)h p Pp and h B
1 (hs, h ps, h p) = h A

1 (hs, h ps)h p Pp.
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For brevity reasons, we omit the proof of (20) which is similar to that of Scenario A1.
Moreover, the value of the Lagrange multiplier λ′

0 can be found from the satisfaction of the
average inverse SINR constraint. Using (20) and (34), the effective capacity for the optimal
power allocation is obtained as follows:

E∗
c,n

(aSU ) = − 1

aSU ln(2)
ln

⎧
⎨

⎩

(
1 − Γ (m p, m phout )

Γ (m p)

)
·

∞∫

0

(1 + Pmax x)−aSU fx (x)dx

+
∞∫

hout

∞∫

0

(1+Pmax x)−aSU

(

1− Γ
(
msp, msp(λ

′
0)

−1aSU x Pph p (Pmax x+1)−aSU −1)

Γ (msp)

)

× fh p (h p) fx (x)dxdh p + 1

Γ (msp)
·

∞∫

hout

∞∫

0

(
xaSU Pph pmsp

λ′
0

) −aSU
aSU +1

·
[
Γ

(
msp + aSU

aSU + 1
, msp(λ

′
0)

−1aSU x Pph p(Pmax x + 1)−aSU −1
)

−Γ

(
msp + aSU

aSU + 1
, msp(λ

′
0)

−1aSU x Pph p

)]
· fh p (h p) fx (x)dxdh p + 1

Γ (msp)

·
∞∫

hout

∞∫

0

Γ
(
msp, msp(λ

′
0)

−1aSU x Pph p
)

fh p (h p) fx (x)dxdh p

⎫
⎪⎬

⎪⎭
. (21)

5.2.2 Peak Constraint (Scenario B2)

The last scenario refers to the maximization of the effective capacity subject to the peak
SU’s transmit power and the peak inverse SINR constraint. Here, we solve the optimization
problem in (15) where PsεΩ4. The solution can be easily found from the combination of the
two peak constraints. Thus, it can be proven that the optimal policy of the SU is the following:

P∗
s (hsp, h p) =

⎧
⎪⎪⎨

⎪⎪⎩

Pmax, for {h p ≤ hout } or {h p > hqual and hsp ≤ hC
0 (h p)}

QI SI N R,pk h p Pp−N0 B
hsp

, for h p > hqual and hsp > hC
0 (h p)

0, for hout < h p ≤ hqual

(22)

where

hqual = N0 B

QI SI N R,pk Pp
and hC

0 (h p) = QI SI N R,pkh p Pp − N0 B

Pmax
.
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Correspondingly, the effective capacity for the optimal power allocation can be expressed as:

E∗
c,n

(aSU ) = − 1

aSU ln(2)
ln

⎧
⎨

⎩

(
1 − Γ (m p, m phout )

Γ (m p)

)
·

∞∫

0

(1 + Pmax x)−aSU fx (x)dx

+
∞∫

hqual

∞∫

0

(1 + Pmax x)−aSU ·
(

1 − Γ
(
msp, msp(Pmax )

−1(QI SI N R,pkh p Pp − N0 B)
)

Γ (msp)

)

· fh p (h p) fx (x) dxdh p +
(
Γ (m p, m phout ) − Γ (m p, m phqual)

)

Γ (m p)

+
∞∫

hC
0

∞∫

hqual

∞∫

0

(
1 + x(QI SI N R,pkh p Pp − N0 B)

hsp

)−aSU

× fhsp (hsp) fh p (h p) fx (x)dx dh pdhsp

⎫
⎪⎪⎬

⎪⎪⎭
. (23)

6 Effect of Interference Constraints on PU’s Communication

In this section, we study the impact of the different interference constraints and the corre-
sponding SU’s optimal power transmission schemes on the PU’s communication. In order to
evaluate which constraint (average or peak) leads to better results for the PU, we compare its
effective capacity for both the scenarios. As it has been considered above, the PU employs
constant power allocation with transmission power Pp . In the following comparative analy-
sis on the achieved values of PU’s effective capacity under the interference constraints, we
consider obviously the time period that PU is not in outage due to its own channel conditions.
That means that we refer to the effective capacity of the PU for values of the primary link’s
channel power gain greater from the outage threshold (hout ) since for lower values the SU
transmits with the same power (Pmax ) independently of the nature of the constraint.

6.1 Interference Power Constraint

For fair comparison, we have considered the same average and peak threshold values
(QI,pk = QI,av = Q). Considering that the PU transmits with power equal to Pp , its
normalized effective capacity is given by the following equation.

Ec,n,PU = − 1

aPU ln(2)
ln

(

E

[(
1 + h p Pp

hsp Ps(aSU , hsp, hs, h ps) + N0 B

)−aPU
])

(24)

where aPU is the normalized QoS exponent of the PU.
In case of the peak interference constraint, the corresponding effective capacity is

expressed as:

E pk
c,n,PU = − 1

aPU ln(2)
ln

(

Ehp

[(
1 + h p Pp

Q + N0 B

)−aPU
])

(25)
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where Ex( f (x)) denotes the expected value of f (x) with respect to the random variable x.
Regarding the the effective capacity under the average interference constraint, we have

Eav
c,n,PU = − 1

aPU ln(2)
ln

(

Ehp,hsp,hs,hps

[(
1 + h p Pp

hsp Ps + N0 B

)−aPU
])

aPU <1≥ − 1

aPU ln(2)
ln

(

Ehp

[(

1 + h p Pp

Ehsp,hs,hps

[
hsp Ps

]+ N0 B

)−aPU
])

= − 1

aPU ln(2)
ln

(

Ehp

[(
1 + h p Pp

Q + N0 B

)−aPU
])

= E pk
c,n,PU (26)

The inequality in the (26) is proven as follows: Defining the function f (x) =(
1 + h p Pp

x+N0 B

)−aPU
and taking the second derivative of this function, it is easy to prove that its

convexity depends on the value of the parameter aPU . More specifically, when aPU < 1, f (x)

is strictly concave. Combining Jensen inequality [32] and the fact that f (x) is concave for
these values of aPU , the inequality E [ f (x)] ≤ f (E[x]) holds and consequently, the above
expression (26) has been proven. Thus, when the PU has looser QoS constraints (aPU < 1),
the average interference constraint leads to better effective capacity. However, the opposite is
true when there are stricter quality constraints to the PU as it can be verified in the simulations
section.

6.2 Inverse SINR Constraint

In this case, we have also considered the same average and peak threshold values
(QI SI N R,pk = QI SI N R,av = Q). The effective capacity, in case of the peak ISINR con-
straint, can be expressed as:

E pk
c,n,PU = − 1

aPU ln(2)
ln

[(
1 + 1

Q

)−aPU
]

(27)

Therefore,

Eav
c,n,PU = − 1

aPU ln(2)
ln

(

Ehp,hsp,hs,hps

[(
1 + h p Pp

hsp Ps + N0 B

)−aPU
])

aPU <1≥ − 1

aPU ln(2)
ln

[(
1 + 1

Q

)−aPU
]

= E pk
c,n,PU (28)

Similarly to (26), it can be proven that the inequality in (28) holds also for aPU < 1. Con-
clusively, the superiority in terms of PUs effective capacity of the average/peak constraints
depends on PUs quality requirements.

7 Numerical Results and Discussion

In order to study the outcome of the resource allocation policy both from SU’s and PU’s
perspective, we separate this section in two parts. In the first part, we present numerical
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Fig. 2 Normalized effective capacity versus the normalized QoS exponenent αSU: verification of numerical
results and comparison of the proposed scheme with reference power allocation techniques

results regarding the optimal power allocation and the corresponding effective capacity of
the SU for each of the above scenarios whereas in the second part, we focus on the impact
of these constraints on the PU’s communication quality. Moreover, at this point, we have to
note that the numerical calculations have been validated with extended simulation results.

Without loss of generality, we consider N0 B = 10−2 W and T f B = 1. Also, we have
assumed that the transmission power limit of the SU is equal to Pmax = Pp = 1 W, the
SNR outage threshold of PU is Qout = 5 dB and the inverse SINR limits to the PURx are
QI SI N R,av = QI SI N R,pk = −5 dB unless it is otherwise stated. We must note that the values
of the interference power constraints (QI,av = QI,pk) in Scenario A have been computed so
as to lead to the same average inverse SINR of the PU compared to Scenario B. Moreover,
the values of the Nakagami parameters are considered as msp = ms = m ps = 1 whereas
m p = 1.5 except from Figs. 2, 3, 4 and 5 in which different values are referred.

7.1 SU’s Perspective

At first, Fig. 2 presents the secondary link’s normalized effective capacity using the proposed
scheme, as it is computed though numerical calculations and Monte–Carlo simulations in
order to verify the accuracy of the computations. Furthermore, for comparison purposes,
this figure also presents the SU’s normalized effective capacity using two reference power
allocation schemes. In this case, we have considered that the Nakagami parameters are equal
for all the links (msp = ms = m ps = m p = 1). It should be noted that due to limited
space, for the comparison of numerical and simulation results, we have considered only the
cases of average constraints’ scenarios (Scenario A1 and B1). As it can be seen from Fig. 2,
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Fig. 5 Normalized effective capacity versus the interference limit for different values of m ps . The solid curves
represent the average constraints’ scenario whereas the dashed curves refer to the peak constraints’ scenario

the simulation results for 5 × 103 realizations of Nakagami-m fading channels lead to small
deviation of the computed normalized effective capacity compared to the numerical results.
However, as the number of realizations increases, the computation of the effective capacity
becomes more accurate and the simulation results match very well with the corresponding
numerical results.

This figure presents also the comparison of the proposed mechanism with two well-
known power allocation schemes. The first scheme refers to the water-filling approach for CR
networks which optimizes the SU’s ergodic capacity under an average interference constraint
[29]. Regarding the second scheme, it refers to the channel inversion mechanism [33], the
objective of which is to inverse the channel fading so as to provide a constant rate given
the average interference constraint. As it can be seen, the proposed mechanism outperforms
significantly the two other schemes for all the values of QoS exponent aSU . More specifically,
we can observe that the total channel inversion mechanism leads to worse performance
compared to the proposed mechanism even for higher values of parameter aSU where the
inversion mechanism outperforms the water-filling scheme. Furthermore, it can be seen that
the proposed mechanism is also better than the water-filling approach (even for lower values
of QoS exponent aSU ) due to the exploitation technique of PUs’ outage events.

Figure 3 represents the normalized effective capacity of the secondary link versus the
normalized QoS exponent aSU , considering different values of m p . In order to highlight
the benefits from PU’s outage events’ exploitation, we also compare, in this figure, the
proposed power allocation scheme with the corresponding one that does not take advantage
of the outage events (similar to the power allocation scheme proposed in [25]). We must
note here that in all the figures from Figs. 3, 4, 5 and 6, the solid curves correspond to
the scenarios with the average interference constraints, whereas the dashed curves refer
to the corresponding peak interference constraint scenarios. Depending on the type of the
interference constraint, Fig. 3 consists of two subfigures. More specifically, Fig. 3a refers
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to the interference power scenarios, whereas Fig. 3b refers to the inverse SINR scenarios.
Observing both the subfigures, we can see that the increase of the normalized QoS exponent
leads to the decrease of the effective capacity independently of the scenario. This means
that when the system has stricter QoS constraints, the SU can achieve low values of effective
capacity, whereas when there are looser QoS requirements, the SU can get much higher values
of Ec,n .

Another comment that holds for both the subfigures is that the use of average constraints
leads to higher values of effective capacity compared to the corresponding peak constraints.
This observation can be justified considering that the average constraints provide more flex-
ibility to the SU allowing him to dynamically allocate its transmission power over different
fading states so as to achieve higher Ec,n . Furthermore, a common remark is that the pro-
posed power allocation technique, which incorporates the maximum power transmission of
SU when the PU is in outage, results in an increase of the effective capacity compared to
the simple optimal power allocation algorithm that does not use the outage policy. Conse-
quently, it is verified that the SU can benefit from the outage events of the PU ameliorating
its throughput for specific QoS requirements.

Regarding the impact of the parameter m p to the values of the effective capacity, we
can observe, that as m p decreases, the Ec,n of the SU increases in the case of the proposed
power allocation policy. This can be justified considering that a decrease in m p means that the
primary link experiences more severe fading conditions. Thus, there is a higher probability for
the PU to fall into outage due to its own channel characteristics. As the SU takes advantage
of the PU’s outage events by transmitting at maximum power, lower values of m p lead
basically to higher values of Ec,n . Regarding the simple power allocation method (without
the outage policy), we can see that the change of the value of m p does not affect at all
the effective capacity in the interference power constraint scenarios as the optimal power
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allocation doesn’t depend on the primary link channel conditions. On the contrary, this is not
true for the inverse SINR constraint scenarios where the corresponding simple optimal power
allocation depends on the PU’s channel characteristics. More specifically, we can observe
that in this case, when the primary link does not suffer from severe fading (greater values of
m p), the SU is allowed to transmit at higher power levels and thus increase its Ec,n .

Finally, comparing the two subfigures in Fig. 3, we can notice that the inverse SINR
constraint (Scenario B) leads to better results in terms of SU’s effective capacity compared
to the corresponding traditional interference power constraint (Scenario A). This outcome
can be justified considering that in Scenario B, the SU is more flexible to adapt its power as
it depends also on the primary link’s channel gain.

In Fig. 4a, b, the normalized effective capacity versus the interference constraint for
different values of the SUTx −PURx link fading parameter, msp , is depicted. The first remark
here is that for increasing values of the interference constraint, the normalized effective
capacity also increases. This can be explained considering that an increase in the interference
limit basically means that the SU is allowed to transmit at higher power levels and thus
increase its Ec,n . Moreover, we can observe that the effective capacity increases for lower
values of the parameter msp . This demonstrates that as higher values of msp correspond to
less severe fading conditions of the SUTx − PURx interference link, the SU has to transmit
at lower power levels in order not to harm the communication of the PU.

Similarly, in Fig. 5, we present the normalized effective capacity versus the interference
limit for different values of the PUTx − SURx link fading parameter m ps . As we can observe
here, the effective capacity decreases for increasing values of the parameter m ps . This can be
justified taking into consideration that when the PUTx −SURx channel is good (higher values
of m ps), the PU interferes much more to the SU’s communication. Comparing Figs. 4 and 5,
we can see that the impact of the PUTx−SURx link is much more significant than the impact of
the SUTx −PURx link. More specifically, we observe that for a specific interference limit and
for the same increase of the Nakagami parameter from msp = m ps = 0.5 to msp = m ps = 1,
the decrease of the SU’ s effective capacity is almost treble for the case of the m ps parameter
compared to the msp parameter. Consequently, we confirm the fact that the interference from
the PU plays an important role to the power allocation of the SU and it should be included
in the analysis of the cognitive radio scenario in order to be more realistic.

Figure 6 represents the optimal power allocation of the SU versus the interference power
from the PU, for different values of the normalized QoS exponent and for different channel
conditions of the SUTx − PURx link. The acronyms AFCsp and H FCsp denote average
fading conditions and heavy fading conditions of the SUTx − PURx link, correspondingly.
We consider that in the average fading scenario the channel power gain is equal to its statistical
mean whereas in the heavy fading scenario, there is an additional 3 dB loss at channel power
gain. Our first remark here is that both the Scenarios A and B have the same behavior
regarding the impact of the interference from PU and the QoS exponent. More specifically,
regarding the average constraints’ scenarios (solid curves), we can observe that when the
system has looser QoS constraints (small values of aSU ), the SU transmits at higher power
levels when there is not interference from the PU so as to maximize its effective capacity. On
the contrary, when the system has strict QoS requirements, the SU has to transmit at higher
power levels when there is significant interference from the PU in order to eliminate its impact
and guarantee a specific communication quality to the secondary link. As far as it concerns the
peak constraints’ scenarios (dashed curves), we can observe that the corresponding optimal
power allocation is independent both from the PU’s interference and the QoS exponent
(see (18) and (22)). Another observation is that depending on the channel conditions of the
interference SUTx − PURx link, the SU is allowed to transmit at different power levels. In
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SU’s QoS exponent (aSU )

particular, when the specific channel experiences heavy fading conditions, the SU is allowed
to transmit at much higher power levels considering that he will not affect the communication
of the PU, due to the advantage of the higher signal’s attenuation.

7.2 PU’s Perspective

In this subsection, we present the impact of the different interference scenarios on the PU’s
communication. Figure 7 represents the normalized effective capacity of the PU versus its
normalized QoS exponent for different values of the SU’s QoS exponent aSU . As it is proven
in Sect. 6, we can observe that the average interference constraints lead to better results when
the PU has more flexible quality requirements, whereas the peak constraints are more suitable
when the PU has strict QoS constraints. Another interesting remark is that for higher values
of the SU’s QoS exponent, the effective capacity of the PU decreases, under the average
constraints. That shows that the quality requirements of the SU influence also the maximum
rate that the PU can achieve for specific QoS requirements. On the contrary, as it is expected,
the PU’s effective capacity for the peak interference scenarios does not depend on the aSU .

Another important metric for the PU’s communication is the outage probability. Figure 8
represents the outage probability of the PU for all the different scenarios and for two different
values of the SU’s normalized QoS exponent aSU . We must note here that in this case, the
inverse SINR and the interference power constraints have been considered so as to guarantee
a certain level of communication quality to the PU (QI SI N R = −10 dB) whereas the outage
SINR threshold varies from −5 to 8 dB. The black solid curve with circular markers represents
the probability that the PU falls in outage due to its own channel conditions, without taking
into consideration the interference from SU. An initial remark is that the peak constraints lead
to lower outage probability of the PU compared to the corresponding average constraints,
independently of aSU , which is expected considering that the peak nature of constraints is
more strict for the SU’s power allocation. Moreover, we notice that using the peak inverse
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SINR constraint, we can ensure that the PU will not experience any outage events due to
the presence of the SU. As we can observe in Fig. 8, in case where the SU has looser QoS
requirements (aSU = 0.01), the inverse SINR constraints lead to significantly smaller values
of outage probability compared to the interference power constraints, for lower values of
outage threshold. However, for greater values of outage SINR threshold, the opposite is true.
On the contrary, if the SU’s has stricter QoS constraints (aSU = 10), the outage probability
of the PU has much lower values for the scenario with the ISINR constraints independently
of the value of the outage threshold. The impact of the SU’s QoS exponent on the PU’s SINR
can be justified considering that the average allocated power of the SU changes according to
the parameter aSU . More specifically, as we can see in Fig. 9, the SU’s average power for the
scenarios with the average constraints decreases as the QoS exponent increases. Thus, for
greater values of aSU , the interference from the SU to the PU gets lower values, leading also
to lower values of outage probability. As it is expected, in case of the peak constraints, the
average power of the SU remains stable independently of aSU , which verifies the fact that the
outage probability in these cases is not affected by this parameter.

8 Conclusion

In this paper, we have studied an efficient optimal power allocation policy of the SU, in order
to maximize its effective capacity, in an underlay cognitive radio network. Considering Nak-
agami fading conditions for the communication links, the proposed policy takes into account
the QoS provisioning metric of SU, while on the same time it guarantees the communication
quality of the PU’s link through four different interference constraint scenarios: the tradi-
tional peak/average interference power constraint and the novel peak/average inverse SINR
constraint. Moreover, the proposed power allocation scheme improves the SU’s effective
capacity including an additional policy that exploits the PU’s outage events. In order to study
the proposed power allocation also from PU’s perspective, we present the impact of different
constraints on the PU’s communication. Numerical calculations evaluate the performance of
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Fig. 9 SU’s Average Power versus normalized QoS exponent αSU

the proposed scheme for the different scenarios and confirm that the outage policy actually
improves significantly the SU’s effective capacity and that the interference caused by the PU
to the SU’s communication plays a major role in order to study a more realistic analysis.
Moreover, comparing the different schemes in terms of SU’s effective capacity, we conclude
that the average constraints lead to better results than the peak constraints and also that the
inverse SINR constraints outperform the interference power constraints. From the PU’s per-
spective, the peak constraints yield to better results in terms of effective capacity when the
PU has strict QoS requirements whereas the opposite is true for looser quality constraints.
Also, in most cases, the inverse SINR constraints result in lower outage probability of the
PU compared to the interference power constraints.
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Appendix

The solution of (15) for PsεΩ1 can be found by using the Lagrange function that is defined
as:

L =
∞∫

hout

∞∫

0

∞∫

0

∞∫

0

(
1 + Ps(aSU , hsp, hs , h ps , h p)hs

Pph ps + N0 B

)−aSU

fch(hs , h ps , hsp, h p)dhsdh psdhspdh p

+ λ0

⎧
⎪⎨

⎪⎩

∞∫

hout

∞∫

0

∞∫

0

∞∫

0

hsp Ps(aSU , hsp, hs , h ps , h p) fch(hs , h ps , hsp, h p)dhsdh psdhspdh p −QI,av

⎫
⎪⎬

⎪⎭

(29)
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where fch(hs, h ps, hsp, h p) = fhs (hs) fh ps (h ps) fhsp (hsp) fh p (h p) denotes the joint pdf of
the uncorrelated fading channel power gains. Giving the fact that the optimal solution should
satisfy the Lagrange–Euler equation [34,35] we get the following equation:

− aSU hs

Pph ps + N0 B

(
1 + Ps(aSU , hsp, hs, h ps, h p)hs

Pph ps + N0 B

)−aSU −1

+ λ0hsp = 0 (30)

Solving the above with respect to Ps , we found the optimal power allocation defined in (16).
The value of the parameter λ0 can be found from the satisfaction of the average interference
power constraint:

∞∫

hout

∞∫

0

∞∫

0

∞∫

0

hsp · P∗
s (hs, hsp, h ps, h p) · fch(hs, h ps, hsp, h p)dhsdhspdh psdh p = QI,av

(31)

In the following, we simplify the integration part by finding the pdf of the random
variable hs

h ps Pp+N0 B where hs and h ps follow the Gamma distribution with parameters ms

and m ps , respectively. In order to do that, at first we define two new random variables
g0 = h ps Pp + N0 B and g1 = hs . Taking into account that dhsdh ps = 1

Pp
dg0dg1, the joint

pdf fhs ,h ps (hs, h ps) of the uncorrelated channel power gains can be easily transformed to
fg0,g1(g0, g1) with the simple substitution of the variables.

Afterwards, we define the variables x and y as x = g1/g0 and y = g0 + g1 and we find
the Jacobian determinant [36], which is given by

J = − (1 + x)2

y
.

Thus, the joint pdf of x and y can be expressed as follows:

fx,y(x, y) = mms
s m

m ps
ps P

−m ps
p eN0 Bm ps/Pp

Γ (ms)Γ (m ps)
xms−1(1 + x)−m ps−ms

× yms (y − N0 B(1 + x))m ps−1 · exp

{
−y

(
ms Ppx + m ps

Pp(1 + x)

)}
(32)

Integrating fx,y(x, y) with respect to y, we can find the marginal distribution of x , which is
given by:

fx (x) =
∞∫

N0 B(1+x)

fx,y(x, y)dy = mms
s m

m ps
ps P

−m ps
p eN0 Bm ps/Pp

Γ (ms)Γ (m ps)
xms−1(1 + x)−m ps−ms

·
∞∫

N0 B(1+x)

yms (y − N0 B(1 + x))m ps−1 exp

{
−y

(
ms Ppx + m ps

Pp(1 + x)

)}
dy (33)
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Using (4.11) from [15, p.348], we get that

fx (x) = mms
s m

m ps
ps P

1+ms −m ps
2

p e
N0 Bm ps

Pp (N0 B)
m ps +ms −1

2

Γ (ms)
xms−1(ms x Pp + m ps)

− ms +m ps +1
2

· exp

{
− N0 B(ms x Pp + m ps)

2Pp

}
W

(
1 + ms − m ps

2
,

−(ms + m ps)

2
,

N0 B(ms x Pp + m ps)

Pp

)
(34)

where W (·) is the Whitakker function [15, p.1024]. Consequently, the average interference
power constraint can be simplified to the following:

QI,av = Γ (m p, m phout )

Γ (m p)

⎧
⎨

⎩
Pmax

∞∫

0

(

1 − m−1
sp

Γ (msp)
Γ
(

msp + 1,

mspλ
−1
0 aSU x(Pmax x + 1)−(aSU +1)

)
)

fx (x)dx + m
− aSU

aSU +1
sp

Γ (msp)

(
λ0

aSU

)− 1
aSU +1

×
∞∫

0

x
− aSU

aSU +1

[
Γ

(
msp + aSU

aSU + 1
, mspλ

−1
0 aSU x(Pmax x + 1)−(aSU +1)

)

−Γ

(
msp + aSU

aSU + 1
, mspλ

−1
0 aSU x

)]
fx (x)dx

− m−1
sp

Γ (msp)

∞∫

0

x−1
[
−Γ

(
msp + 1, mspλ

−1
0 aSU x

)

+Γ
(

msp + 1, mspλ
−1
0 aSU x(Pmax x + 1)−(aSU +1)

)]
fx (x)dx

⎫
⎬

⎭
(35)

We must note here that the computation of the infinite integrals can be easily performed
due to the decreasing behavior of the integrand functions.
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