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Abstract In this paper, an energy balanced model (EBM) for lifetime maximization for a
randomly distributed sensor network is proposed. The lifetime of a sensor network depends
on the rate of energy depletion caused by multiple factors, such as load imbalance, sensor
deployment distribution, scheduling, transmission power control, and routing. Therefore, in
this work, we have developed a mathematical model for analysis of load imbalance under uni-
form and accumulated data flow. Based on this analysis, we developed a model to rationalize
energy distribution among the sensors for enhancing the lifetime of the network. To realize
the proposed EBM, three algorithms—annulus formation, connectivity ensured routing and
coverage preserved scheduling have been proposed. The proposed model has been simulated
in ns-2 and results are compared with Energy-Balanced Transmission Policy and Energy
Balancing and unequal Clustering Algorithm. Lifetime has been measured in terms of the
time duration for which the network provides satisfactory level of coverage and data delivery
ratio. EBM outperform both the existing models. In our model the variance of residual energy
distribution among the sensors is lower than other two models. This validated the essence of
energy rationalization hypothesized by our model.

Keywords Energy balancing · Lifetime maximization · Load imbalance · Scheduling ·
Coverage · Connectivity

1 Introduction

Wireless sensor network is a set of small and intelligent entities which are responsible for
their organization, configuration and working in order to provide sensing services assigned
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to them [1]. The services provided by a sensor network belong to broad spectrum of real
time applications. Surveillance in battlefields and buildings for stopping possible intrusion
and theft, monitoring vehicular traffic and for pest management in agricultural fields etc. are
some of the vital applications [2]. In spite of its wide applicability, research in this area has
its own challenges. One of the main challenges in WSN is to maximize the lifetime of the
network by conserving energy and without compromising the coverage and connectivity in
the realistic environments [3].

Energy management is a critical task in wireless sensor networks due to severely power
limited sensors. The limitation of power is because of the two operating factors. First, sensors
consume lots of energy while operating with full intensity which cannot be supported by a
small battery for longer duration. Secondly, battery cannot be replenished in a sensor network
due to inaccessibility of physical locations [4]. In the literature, many solutions exist for
energy balancing in the wireless senor network. These solutions balance energy consumption
among different sensors in the network while they are at work [5]. However, performance
of a sensor network primarily depends on the deployment scheme. But at the same time,
these solutions also suffer from the inherent discrepancy in the deployment itself. There are
two kinds of deployment schemes; deterministic deployment and random deployment. In the
former, sensors are deployed in pre-calculated manner in the sensing region. In the latter,
sensors are not deployed in so called well calculated manner. However, if situation is not
very hostile, some estimation can be carried out before deployment [6]. Different sensors
bear different load in randomly deployed networks. Due to this fact, sensors near the sink
lose their energy earlier and thus network suffers from the problem of connectivity [7].

In this paper, we propose an energy balanced model for wireless sensor network. We
assume that for a large wireless sensor networks in hostile environment sensors are deployed
randomly. However, this random deployment can be realized by following normal distribu-
tion from its center to the boundaries. We analyze the energy consumption in transmission
and sensing by all the sensors. In the paper, we have used energy consumption and load
interchangeably. Load analysis has been performed for uniform data flow and accumulated
data flow. In the current work, we intend to fairly equalize the energy consumption by all
the sensors deployed in sensing region using adaptive sensing, adjusting transmission range
and density control of sensors. To realize the proposed energy model, supporting algorithms
for annulus formation, connectivity ensured routing and coverage preserved scheduling are
developed. We have carried out extensive simulations to validate the applicability of EBM.

2 Related Work

In the literature, most of the research works on energy balancing models for wireless sensor
networks deal with the planned networks. Therefore, researchers have not focused on energy
balancing in these networks since such networks either do not require energy balancing nec-
essarily or do not provide much opportunity for energy balancing. But, in randomly deployed
networks, energy balancing is one of the key requirements due to unpredicted topology. Pow-
ell et al. have proposed a spreading technique to balance the energy among sensors of the
same slice. The authors divided the whole sensing region in many slices. The technique has
also been validated through simulation for data monitoring and propagating task by applying
the probabilistic data propagation algorithm with optimal parameters [8]. Energy-Balanced
Transmission Policy (EBTP) has been proposed based on controlled transmission power by
Azad and Kamruzzaman in [9]. Authors have proposed that imbalance in energy consump-
tion causes early demise of some of the sensors which ultimately leads to the problems of
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coverage and connectivity in the network. The analysis has been performed by taking con-
centric circles around the sink and load is balanced by decreasing the transmission range of
different sensors near the sink. Efthymiou et al. [10] have suggested an algorithm for energy
balancing in the sensor network through routing.

Sardouk et al. in [11], have proposed a scheme to maximize the lifetime of the network
based on the cooperation among different sensors. This scheme considers information impor-
tance based communication for energy efficient data processing. In [12], Bouabdallah et al.
have suggested a protocol that finds multiple paths for traffic generated by sensors to balance
energy in the network. It is proved analytically that choosing multiple paths for sensors to for-
ward data conserves energy to maximize the lifetime of a network. A scalable and distributed
algorithm is presented for routing of data by Chang and Tassiulas [13]. This routing tech-
nique is based on linear programming formulation used for choosing next hop. Chiasserini
and Garetto proposed a scheme that schedules redundant sensors to go in sleep mode for
saving the battery power and maximizing the lifetime of the network [14]. An energy estima-
tion approach has been suggested in [15], where authors claimed that their approach enables
mobile agents to predict the remaining energy of all sensors in their clusters. Additionally,
they have also presented a routing scheme to balance the energy among sensors using mobile
agents. In [16] authors have developed an clustering algorithm which selects a sensor as
cluster head based on remaining energy, node degree, density, etc. This algorithm provides
opportunity to each sensor to become a cluster head to balance the energy consumption
among all the sensors. Heuristic based routing technique to control transmission power of all
sensors has been suggested in [17]. Authors in [18] have proposed load balanced clustering
algorithm. This algorithm considers parameters such as radius of cluster based on distance
and distribution, node degree and remaining energy of sensors to form clusters.

Energy Balancing and unequal Clustering Algorithm (EBCAG) using gradient routing has
been presented in [19]. EBCAG assigns grades to each sensor of the network. A grade is the
minimum number of hop-counts required to reach the sink. After assigning grades, unequal
clusters have been created to achieve fairly balanced energy depletion among all the sensors.
Descending gradient based forwarding strategy has been used by each cluster members to
forward data to the sink. Algorithms for efficient cluster head selection and cluster formation
have also been provided.

Our motivation for this paper rests on the laxity of researchers for not addressing the
problem of energy imbalance inadequately. A few of researchers addressed this problem
once the distribution of sensors had been assumed. This assumption poses lots of limitations
due to uneven load. Some others addressed the problem by assuming routing as one of
possible candidates for energy balancing. Therefore, in this work, we have made an attempt to
address the problem of energy imbalance by using adaptive sensing and transmission without
compromising coverage and connectivity. This approach does not only fairly equalize the
energy consumption by different sensors but also improves lifetime of network.

3 Problem Description

Problems of coverage and connectivity are critical for randomly distributed wireless sensor
networks. Connectivity is measured in terms of successful packet transmission to the sink.
However this could not be the only metric for measurement of connectivity; how efficiently
connection is established also matters. At the same time optimized coverage for the region is
required for quality of service. While addressing the problem of coverage and connectivity,
issue of energy consumption and balancing is mostly ignored. Some efforts have been made
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by researchers to address the problem of energy balancing independent of coverage and
connectivity. Therefore, to increase the lifetime of the network, one needs to balance the
energy consumption among sensors with maintaining satisfactory coverage and connectivity.
The problem is formulated as follows:

Sensors in a wireless senor network primarily perform two tasks; sensing and transmission.
For sensing, we assume that each sensor takes Es units of energy per unit time. According
to free space path loss model, the received power Pr at a distance d from a sensor is given
by following equation

Pr = Pt

(
λ

4πd

)2

Gt Gr (1)

where Pt represents the transmission power used by a sensor, λ is the wavelength of signal,
and Gt , and Gr are antenna gains for transmitting and receiving sensors respectively. We
note that power consumed in sensing is directly proportional to the square of distance (1).
We have

Es1 ∝ r2
1 (2)

and Es2 ∝ r2
2 (3)

where, Es1 and Es2 are energy consumed by sensors s1 and s2 with sensing ranges r1 and r2

respectively. From (2) to (3), we get.

Es1

Es2

= r2
1

r2
2

(4)

Another task performed by a sensor is transmission of accumulated data. We assume that
Et is the energy consumed per unit time in transmission between two sensors separated by
distance t . The path loss formula given in (1) is also applicable for this case, therefore, we
have

Et1

Et2
= t2

1

t2
2

(5)

We assume that sensing region is circular in shape having radius R. Further, we also assume
that data generated by each sensor in a sensing region follows binomial distribution and
routed to the sink which is situated in the center of the region. Our objective, in this work
is to fairly equalize the total energy consumption of each sensor over a specified period of
time. We consider that the energy consumed during time T in sensing and transmission by
i th sensor are Es

i and Et
i respectively. Therefore, the total energy consumed during time T

by i th sensor can be expressed as

Es
i + Et

i = ET
i ∀i = 1 . . . N (6)

where, N is total number of sensors deployed. Our objective is to keep ET
i fairly equal for

all sensors, i.e. ET
1 = ET

2 = · · · = ET
N−1 = ET

N . Further, in the paper the energy ET
i is also

referred to as load on i th sensor. While achieving this objective we are required to maintain
a satisfactory coverage and connectivity in the sensing region. The notations used in EBM
are given in Table 1.
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Table 1 Notation table

Notation Description

Es Energy required per unit time in Sensing

Pr Received power

d Distance between two sensors

Pt Transmitted power

λ Wavelength of the signal

Gt Antenna gain of transmitter

Gr Antenna gain of receiver

ri Sensing range of i th sensor

Et Transmission energy required per unit time for distance t

ti Transmission distance

Es
i Energy consumed in sensing by i th sensor in time T

Et
i Energy consumed in transmission for i th sensor in time T

ET
i Total energy consumed in both sensing and transmission during time T by i th sensor

R Radius of circular sensing region

N Total number of sensors deployed

L Total load on sensors in all annulus

Li Load on all sensors in i th annulus

δ Spacing parameter between each concentric circles

X (n) Probability of data generated in nth annulus

Y Poisson random variable

fy(n) Probability density function of Y representing load on sensors in nth annulus

fGU (x) Probability density function of load on sensors under uniform data flow

fB (r) Binomial distribution probability mass function

fG A(x) Probability density function of load on sensors under accumulated data flow

Wi PDF of exponentially distributed waiting time for i th sensor

ξi Rate parameter for Wi

hi Minimum hop-counts at i th sensor

ηi Density of sensors achievable in i th hop count

Ri Transmission range of sensor in i th annulus

Ai i th Annulus

A Total number of annulus in the region

4 Mathematical Analysis of Load on Sensors

We present a mathematical model for energy balancing based on uniform data flow and
accumulated data flow. Load analysis has been performed for both uniform and accumulated
data flow. In the following section, we analyze the distribution pattern of sensors and its
impact on the load.
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Fig. 1 Increasing load under
uniform data flow

Increasing Load on
Sensors

4.1 Load Analysis Under Uniform Data Flow

Without losing the generality of problem, we assume that sensing region is circular in shape
with radius R. It is also assumed that sink is situated at the center of sensing region. In view
of the assumptions, it is clear that data sensed in the entire region ultimately reach the center
of circle. In this approach, sensors near the center deplete their energy faster. Therefore, for
fair distribution of sensors or load, we have divided sensing region in concentric circles with
approximately equal spacing (cf. Fig. 1). Using this model, we analyze how the rate of flow
of data exerts transmission load on sensors in each concentric circle towards the sink.

Let total amount of data to be carried through each annulus from outer most to the sink
is L . Let spacing between each concentric circle is decreasing by a very small factor δ from
outside to inside. Radii of circles from outside to inside can be given by R, δR, δ2 R and so
on. Area of outer most annulus is given by π(R2 − δ2 R2). In the same way we can calculate
the area of other annulus as follows: π(δ2 R2 −δ4 R2), π(δ4 R2 −δ6 R2) and so on. We assume
that sensors are distributed uniformly in each annulus and the load in an annulus is equally
distributed among sensors in that annulus. Load in each annulus is given by the following
formula.

load = amount of data in the annulus

area of the annulus
(7)

Let X is a random variable such that X (n) represents the probability that data is generated
in nth annulus (from outside to inside) by following uniform distribution. The probability
X (n) can be calculated as follows.

X (n) = π(δ2n R2 − δ2n+2 R2)

π R2 , 0 < δ < 1 and n ≥ 0 (8)

Theorem 1 X is geometrically distributed.
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Proof Probability of data generation in nth annulus is given by X (n) = π
(
δ2n R2−δ2n+2 R2

)
π R2 .

By solving the expression on right hand side of the Eq. (8), we get following series(
1 − δ2

)
, δ2

(
1 − δ2

)
, δ4

(
1 − δ2

)
,… for different possible values of n. This is a geometri-

cally distributed series with parameter
(
1 − δ2

)
: hence the result. ��

Theorem 2 Geometric distribution X (n) in limiting case can be expressed by exponential
distribution.

Proof We assume that q = 1 − δ2 is very small and mq = μ, where m is supposed to be
large and x = n

m . From Eq. (8), we have

∞∑
n=0

q (1 − q)n = 1

∞∑
n=0

μ
(

1 − μ

m

)m n
m 1

m
= 1

as m → ∞, and by applying (1 − z)m ≈ e−zm , we have

∞∫
0

μe−μx dx = 1 (9)

where μ = m(1−δ2). From Eq. (9), it is clear that data generated in all annuli is exponentially
distributed from outside to inside. ��

Theorem 3 The probability density function of load on sensors given in Eq. (9) yields to
Gaussian distribution in limiting case from inner to outer annulus.

Proof We assume that Y is a random variable where Y = 1/X , and Y follows Poisson
distribution. The probability density function fy(n) for Y can be given as

fy(n) =
(
m

(
1 − δ2

))n
e−m(1−δ2)

n! (10)

Let m(1 − δ2) = μ and x = n = μ (1 + ε) μ 
 1 and ε � 1
Since m converges to μ and x ! ≈ √

2πx
( e

x

)−x
as x → ∞, we have

fy(n) = (μ)μ(1+ε)e−μ

√
2πe−μ(1+ε) [μ(1 + ε)]μ(1+ε)+ 1

2

= e−με [(1 + ε)]−μ(1+ε)− 1
2√

2πμ

= e−με2/2

√
2πμ

By substituting the value of ε, the probability density function fGU (x) of the load on sensors
under uniform data flow can be expressed as
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Fig. 2 Load curve Under uniform data flow

fGU (x) = e−(x−μ)2/2μ

√
2πμ

= e−(
x−m

(
1−δ2))2

/2m(1−δ2)√
2πm(1 − δ2)

(11)

��
The distribution of load in the various annuli has been analyzed by simulating (7) and

(11). For m =100,000 and p = .99, the distribution of load in various annuli has been show
in Fig. 2.

The result in Fig. 2 shows that the distribution of load on sensors from inner to outer
annulus follows folded Gaussian distributed in limiting case. Sensors are deployed as per
Eq. (11) with appropriate mean and variance to equalize the load in network.

4.2 Load Analysis Under Accumulated Data Flow

In this section, we analyze the load on each sensor under accumulated data flow. Sensors are
distributed according to Gaussian distribution as described in previous section by Eq. (11)
to compensate for excessive load on sensors in the inner annulus under uniform data flow
model. It is assumed that sensors are generating data following binomial distribution with
parameter t . Let the area of each annulus is sufficiently large to accommodate a large number
of sensors to cover it. Probability mass function of data generated by r out of n sensors is
given by

fB(r) = n!
r !(n − r)! tr (1 − t)n−r (12)

Let t = μ
s , where s is assumed to be large and t is small. According to the law of rare events,

we obtain

fP (r) = 1

r !μ
r e−μ (13)

Expression (13) represents a probability mass function for Poisson distribution. Data gener-
ated from each annulus is assumed to follow Poisson process. Under accumulated data flow
model, we have to analyze the load on each sensor in each annulus. It is apparent from the
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Fig. 3 Accumulated data flow Data generated in each
layer

Fig. 3 that inner annuluses have to carry not only their own data but also data generated from
outer annuluses. We have assumed that for a large number of annulus this data distribution
follows Gaussian distribution as proved in theorem 3. Therefore, probability density function
of the load on sensors can be given as

fG A(x) = e−(x−μ)2/2μ

√
2πμ

(14)

4.3 Load Equalization

Before equalization of load, we need to simulate Eq. (7) to show the distribution of load in
the various annuli. Result obtained through is depicted in Fig. 4 for t = 0.1 and s =100,000
using Eq. (12) for generation of data by sensors. It shows that due to accumulated data flow
from outer annulus to the sink, load on sensors in inner annulus increases rapidly.

Fig. 4 Load curve under
accumulated data flow
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Fig. 5 Equalizing load in each annulus

Now we present a scheme to equalize the load on sensor in different annulus. In the inner
annulus, sensors transmit more packets in comparison to those in outer annulus. We have
analyzed the impact of increasing data load on sensors. It was observed that the load follows
folded Gaussian distribution.

We have presented the load curve for accumulated data in Fig. 5. From the figure, the area
of an annulus is calculated by multiplying height of load curve (red line) over annulus with
the width of annulus. For equalizing the load, we take rectangles of equal area throughout
the curve. These areas can be kept equal if we increase the width with increasing distance
from the origin as shown in Fig. 5. However, in this discussion annulus number represents
the number of sensors in that annulus. Therefore, by changing the width of annulus we are
varying the sensing range or transmission range of the sensors in the annulus. The area of
annulus can be changed by either controlling the sensing or transmission range. Sensing range
of sensors can be controlled by scheduling the sensors. Transmission range of a sensor can
be controlled by designing appropriate routing protocols. We have used adaptive sensing and
transmission method for equalizing excessive load on sensors. To accomplice this objective
we present scheduling and routing algorithms in the next section.

5 Proposed Algorithms

In this section, supporting algorithms for energy balancing are presented. These algorithms
include creation of annulus in the sensing region (cf. Fig. 6), connectivity ensured routing
and coverage preserved scheduling.

5.1 Annulus Forming Algorithm (AFA)

We assume that Ri is the transmission range of a sensor in i th annulus. The width of an annulus
is assumed to be twice of the transmission range of sensor in that annulus. Therefore, it is
important to determine the value of Ri . We derive transmission range Ri for sensors according
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Fig. 6 Annulus formation

Annuli

Node Id. Received Power Hop Count Annulus Number

Fig. 7 Fields of a node of Hello list

to their distance from the sink by using Li Ri = Li−1 Ri−1∀i ≥ 1 or Ri = Li−1 Ri−1
Li

. The
value of Li is computed from (14) as

Li = e−(Ai −μ)2/2μ

√
2πμ

(15)

In the Eq. (15) Ai is the annulus number determined using the following function.

Ai =
{ hi

2 if hi is even

hi −1
2 if hi is odd

(16)

where hi is the minimum number of hop counts from sink to i th sensor. To find hi , sink node
sends a Hello packet to its neighboring sensors with hop count 0. All the sensor nodes, which
receive the Hello packet, increase the hop count by 1 and broadcast the packet further. A
sensor node sends Hello packet if it has lower hop count than the previously received packet
and remembers the packet that has lowest hop counts, i.e. hi . Every sensor node finalizes
its annulus number after elapsed of a period sufficient to deliver a Hello packet from sink
to the farthest sensor node. A sensor stores the identity of all the sensors which have sent it
the hello packet. This information is used in routing of the data packets. In Fig. 7, we have
depicted the fields of a node of Hello list.

Broadcasting of the Hello packet by sensors may result in collision of packets. To avoid
the collisions a sensor has to wait for a random period before sending the Hello packet. This
waiting time is determined by using a parameter ξi f or i = 1, 2, . . . N that depends on
the hop count. We assumed that waiting times for the sensors are exponentially distributed.
Therefore, waiting time is given by Wi = ξi e−ξi t , where t is a uniform random variable with
interval [0, 1]. We assume that waiting time of sensor is inversely proportional to hop count,
i.e. a node having Hello packet with minimum hop count value should wait for minimum
period. The parameter ξi depends on the density of sensors in nearby region. If density is
high, sensors must wait for longer period for avoiding possible collisions and therefore,
ξi ∝ 1

ηi
, where ηi is the density of sensors in i th annulus. Density of sensors decreases from
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the inner to outer annulus and can be expresses as follows, if the sensors are deployed using
Eq. (11)

ηi ∝ 1

e−(hi −m(1−δ2))
2
/2m(1−δ2)√

2πm(1−δ2)

(17)

ξi = C
e−(

hi −m
(
1−δ2

))2
/2m(1−δ2)

hi

√
2πm(1 − δ2)

(18)

where, C is a normalizing constant that depends on the number of sensors in the region.
Therefore, the waiting time for a sensor can be given as follows

Wi = C
e−(

hi −m
(
1−δ2

))2
/2m(1−δ2)

hi

√
2πm(1 − δ2)

e
−C e

−(hi −m(1−δ2))
2
/2m(1−δ2)

hi
√

2πm(1−δ2)
t

(19)

The algorithm for annulus formation is presented below:

5.2 Connectivity Ensured Routing Algorithm (CERA)

We present a routing algorithm to realize Energy Balancing Model proposed to rationalize
the energy consumption by the sensors. The algorithm is designed to deliver a packet from a
sensor to the sink using minimum number of hops. To forward packets a sensor selects a next
hop sensor from its Hello List. While selecting next hop sensor from the Hello List, sensors
from lower level annulus are preferred over sensors from same annulus. For rationalization
of energy among sensors, from an annulus a sensor with the highest residual energy is
selected.
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5.3 Coverage Preserved Scheduling Algorithm (CPSA)

In this section, we present coverage preserved scheduling algorithm for EBM to further ratio-
nalize energy. The algorithms for routing and connectivity rationalize energy consumed in
transmission only. However, energy consumed in sensing also needs to be rationalized. A
large number of sensors are deployed in the sensing region to achieve satisfactory coverage
that results in redundancy. We propose coverage preserved scheduling algorithm which sets
off redundant sensors for a specific period. Identification of redundant sensors while pre-
serving coverage is critical for scheduling. Therefore, in the proposed algorithm, we have
developed a relative coordinate system that helps in identifying redundant sensors. In the
relative coordinate system, we determine the relative coordinates of a sensor with respect to
known coordinates of two sensors. In this system, we designate any sensor to be located at
origin (0, 0). We choose another sensor which is assumed to be located on x-axis at distance
d from the sensor at origin. Therefore, the coordinate of this sensor is (d, 0). By using the
geometry, now we can determine the relative coordinate of any other sensor by using the
coordinates, i.e. (0, 0) and (d, 0) of the two known sensors (cf. Fig. 8).

In the Fig. 8, we have designated a sensor O at (0, 0) and chosen another sensor A with
coordinates (d, 0). With help of this, the relative coordinate of sensor B is calculated as

ON = a = OB cos(BON) (20)

BN = b = OB sin(BON) (21)

Where the angle BON is given by cos (BON) = BO2+ON2−BN2

2.BO.ON . Similarly, we can calculate the
coordinates of other sensors in the network. Once, the relative coordinates of all the sensors
are known, we can determine redundant sensors by using concept of geometry as follows.

We consider a sensor with coordinate (m, n) and sensing range r1. Now choose its neigh-
boring sensor within sensing range having coordinate (p, q) and sensing range r2. The
coverage of these sensors can be expressed by the equation of circles as
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O(0, 0)

A(d, 0)

B(a, b)

+ve x- axis

M
N(a, 0)

Fig. 8 Coordinates assignments

(x − m)2 + (y − n)2 = r2
1 (22)

(x − p)2 + (y − q)2 = r2
2 (23)

Now we can determine intersection points of these two circles by solving the above equations.
Similarly, we can determine intersection points of sensor at (m, n) with its all neighboring
sensors. Now middle points of all pairs of consecutive intersection points are determined. If
every middle points are covered by at least one neighboring sensor, the sensor (m, n) is fully
covered and therefore, considered to be redundant.

The algorithms for annulus formation, connectivity ensured routing and coverage pre-
served scheduling are backbone of the proposed EBM. HELLO packets are used in annulus
formation in AFA algorithm. HELLO packets add to overheads in terms of energy consump-
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tion in WSNs. But at the same time, information gathered by exchange of Hello Packets is
used in routing. In other word no additional packets are required for route discovery. Second,
formation of annulus is also used for transmission power control by adjusting the transmis-
sion range in each annulus. Therefore, the energy consumed in transmission of Hello packets
in annulus formation is a gain in energy saving in terms of route discovery and transmission
power control.

6 Performance Analysis

In this section, we evaluate the performance of EBM via simulation in terms of distribution
of energy consumption among the sensors, lifetime measurement in terms of data delivery
and coverage, and number of Hello packets received by different sensors.

6.1 Simulation Environment

EMB model is simulated using network simulator ns-2. We have assumed that all the sensors
have same transmission range and same sensing range. The sensing range varies from rs =
25 to 35 m and the transmission range varies from rt = 25 to 35 m. Data packet length
is assumed to be 30 bytes. Transmission power consumed in each packet transmission is
10 µ J/bit. Power consumed in receiving of a data packet is 0.9 µ J/bit and power consumed
by a sensor in idle mode is 0.05 µ J/bit. Energy consumed in sensing is 1 mJ/s. Energy
consumed in sleep mode of sensors is infinitesimally small and its value is 1.5 nJ/s. Initial
energy of each sensor is assumed to be 1.5 J and transmission bit rate is 40 kbps. Sensing field
is assumed to be a circular region of radius R = 500 m. We assume that width of last annulus
is 50 m. Sink is situated at the center of sensing field. The number of sensors deployed in
sensing field is taken to be N = 1,500.

6.2 Annulus Formation

In the analysis of load in case of uniform data flow, we assume a large number of annuli
in the field. Since transmission range of sensors is taken in the range from 25 m to 35 m,
we cannot take a large number of annulus in this case. However, radio transmission range
of sensors changes with width of annulus. It is assumed that distribution of sensors in the
sensing field follows Gaussian distribution. Our main objective is to rationalize energy but
at the same time to maintain full coverage. Therefore, there should be sufficient number of
sensors in the outermost annulus to provide complete coverage. Let assume that number of
sensors required for this purpose is k. Therefore, by following Gaussian distribution, it can
be expressed as under.

R∫
R15

(
1√

2πσ
e−(x−μ)2/2σ 2

)
dx = k/N (24)

where, R15 and R are inner and outer radii of outmost annulus respectively. AFA is run with
above simulation parameters. Result of this simulation is shown in Figs. 9 and 10.

In Fig. 9, the number of Hello packets received by different sensors is shown. About 35 %
of sensors received 4 Hello packets. Analytically the average value ought to be 3.78 for
all sensors. About 30 % of sensors received 3 Hello packets. As the sensors are deployed
randomly, some of sensors receive no Hello Packet.
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Fig. 9 Number of Hello packets
received at individual sensors
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Fig. 10 Numbers of sensors in
each annulus
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Figure 10 depicts the number of sensors in each annulus. By using Eq. (24) with For μ = 0
analytically we found that the number of sensors in outermost annulus should be 100 when
total 1,500 sensors are considered. The result in Fig. 10 shows that there are 98 sensors in
the outermost annulus. There is a marginal variation in the two results.

6.3 Connectivity Measurement

This section analyses the performance of CERA through simulation. We assumed that every
sensor in each annulus generates data by following Poisson distribution with rate parame-
ter 20 packets/s. The connectivity is measured in term of fractions of packet transmitted
successfully to sink. We call this fraction as data delivery ratio and it is defined as

Data Delivery Ratio = Number of Packets success f ully received at sink

Number of Packets Generated
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Fig. 11 Data delivery ratio for
various transmission ranges
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Fig. 12 Average hop counts of
successful delivery
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The results of simulations for data delivery ration are shown in Fig. 11. We observed that the
delivery ratio increases exponentially with the increasing number of sensors. Data delivery
ratio starts saturating after 0.8 for r = 25 m and after 0.9 for r = 35 m. With increasing
transmission range, data delivery ratio increases rapidly and less number of sensors are
required to achieve satisfactory ratio.

Figure 12 shows average number of hop counts that a packet takes to reach the sink. It is
observed that with increasing number of sensors, the hop counts decrease rapidly. It is due to
the fact that CERA first finds a sensor in lower annulus to forward the packet to the sink. If
such a sensor is not found, it looks for a forwarding sensor in its own annulus. This increases
the number of hops for a packet to reach the sink.
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Fig. 13 Coverage with scheduling (CPSA) and without scheduling (NS no scheduling)

Fig. 14 Percentage of sleeping
sensors after scheduling
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6.4 Coverage Measurement

In this section the performance of CPSA is measured in terms of percentage of coverage
obtained for varying number of sensors and different sensing ranges. Results in Fig. 13 show
that higher level of coverage is obtained when sensors are not scheduled since sensors use
maximum sensing range. However, with scheduling, the same level of coverage is obtained.

In Fig. 14, shows the percentage of average number of sleeping sensors after scheduling. It
is apparent from the figure that with increasing sensing range, percentage of sleeping sensors
also increases. For the larger number of sensors, the percentage of sleeping sensors increases
rapidly.

6.5 Distribution of Residual Energy

In this section, performance of EBM in terms of distribution of residual energy among
sensors at the end of different simulation period has been measured. We have run simulation
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Fig. 15 Energy with sensors at a t = 50 s, b t = 100 s, c t = 150 s, d t = 200 s

for total of 200 s. Distribution of residual energy is measured in four intervals of 50 s each.
It is assumed that sensors generate data by Poisson distribution with rate parameter of 20
packets per second. The simulation results are shown in Fig. 15. The results obtained from
this simulation are compared with the models of energy balancing EBTP and EBCAG. From
the results, it is observed that the distribution of sensors for residual energy follows Gaussian
curve. Average is taken to count the number of sensors with a specific energy value. At t =
50 s, there are about 800 sensors with residual energy of 0.8000 Joules which is mean value
of residual energy in EBM. In case of EBTP and EBCAG, the spread of sensors around mean
is faster than EBM. From this, we conclude that in EBM rationalization of energy regardless
of simulation time is better than EBTP and EBCAG.

6.6 Lifetime Measurement

A sensor network is assumed to be alive for a duration to which it provides satisfactory
service. In this work, lifetime of sensor network in terms of the time duration for which
satisfactory coverage and data deliver ratio achieved.

In Fig. 16 shows simulation results for comparison of data delivery ratio among EBM,
EBTP and EBCAG. In our simulation we have considered data delivery ratio above 80 % as
satisfactory level. It is quite evident from the figure that the lifetime of EMB is better than
with other two models. This can be attributed to the fact that in EBM, sensors near the sink
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Fig. 16 Comparison of data
delivery ratio among EBM,
EBTP and EBCAG
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Fig. 17 Comparison of lifetime
in terms of coverage for EBM,
EBTP, and EBCAG

40 80 120 160 200 240 280
0

10

20

30

40

50

60

70

80

90

100

Time[s]

C
ov

er
ag

e[
%

]

EBM

EBCAG

EBTP

remain alive for longer duration since redundant sensors are set off for a specific period by
CPSA, and sensor with higher residual energy is selected as next hop and transmission range
is controlled by CERA. In case of EBTP and EBCAG, sensors near the sink exhaust their
energy early since they bear excessive load of forwarding, and absence of energy efficient
next hop selection and scheduling. For satisfactory data delivery ratio, the lifetime obtained
using EBM is almost double of EBTP and 50 % higher than EBCAG.

In Fig. 17 simulation results of lifetime in terms of coverage provided for 280 s is shown. In
our simulation we have considered coverage above 90 % as satisfactory level. EBM provides
better satisfactory coverage for longer duration in comparison to EBTP and EBCAG. The
reason behind this improvement is that CPSA sets off redundant sensors in the sensing field
for a specific period. For satisfactory coverage EBM provides about 50 and 35 % longer
network lifetime as compared to that of EBTP and EBCAG respectively.

123



Energy Balanced Model 427

7 Conclusion

The energy balanced model for wireless sensor network presented in this paper, reaffirm
the significance of energy rationalization for providing satisfactory coverage and enhancing
lifetime of the network. Energy loss in transmission of HELLO packets for formation of
annuli compensated by energy gain in route discovery is a proved as a novel contribution of
the model through simulation results. Distribution of sensors in annuli, scheduling of sensors
and selection of next hop sensor based on residual energy for forwarding of packets are the
prime contributors in rationalizing energy among the sensors in the network. The model does
not only rationalize the energy but it saves energy by adjusting transmission range in each
annulus using transmission power control additionally. The significant increase in lifetime of
the network using EBM as compared to EBTP and EBCAG proves the effectiveness of the
proposed model. In the future research, authors will explore the idea of using game theory
for rationalization of residual energy among sensors in WSNs.
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