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Abstract We consider multi-cell multi-user massive MIMO system under correlated
Rayleigh fading channels. Taking pilot contamination and CSI delay into consideration,
we derive the equivalent channel model with MMSE channel estimation and one-tap predic-
tion. Employing this equivalent channel model, the lower bound of the uplink sum-rate is
derived, and its asymptotical performance is studied when the base station antenna number
goes without bound. We find that if we schedule the k-th user of all cells who have the same
prediction coefficient, the uplink sum-rate is the same as the one with no CSI delay when
the number of BS antennas goes without bound at a much greater rate than the number of
users. Simulation results show that the asymptotic approximation has good performance for
large M , and suggest that large antenna array can compensate for the decay due to CSI delay.
Simulation results also verify our guess that CSI delay does not necessarilly decrease the
uplink sum-rate due to the impact of pilot contamination.

Keywords Massive MIMO · Pilot contamination · CSI delay · Uplink sum-rate

1 Introduction

Massive MIMO or large-scale MIMO systems are currently investigated with the remarkable
potential of increasing the spectral efficiency and power efficiency even with very simple
linear transmitter/receiver [1–3]. To avoid the per-antenna pilot training of the downlink,
TDD (Time Division Multiplexing) is adopted and the downlink CSI can be obtained by
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exploiting channel reciprocity; Thus the overhead related to channel training scales linearly
with the number of mobile users per cell (K ) and is independent of the number of antennas
per base station (M) [4]. In the multi-cell scenario, non-orthogonal training sequences must
be used due to the limitation of the pilot resources. This non-orthogonal nature causes pilot
contamination when the channel estimate at target cell becomes polluted by users from other
cells. There’re many papers studying the impact of pilot contamination; for example, the
performances of the spectral efficiency for massive MIMO with the pilot contamination have
been studied in [1,5,6] for both uplink and downlink transmission under the i.i.d Rayleigh
fading channels; and [7–9] study the performances of the spectral efficiency under correlated
channel.

The papers mentioned above all assume the channel state information (CSI) stay constant
during the phase of pilot transmission and uplink data transmission. However, in practical
TDD systems, due to increased user mobility, transmission delay and processing delay, the
delayed CSI will be outdated. So the assumption of a locally time-invariant (block-fading)
channel breaks down, and an effective approach is to predict the channel values at times when
they will be used [10,11]. Then how will the predicted CSI affect the spectral efficiency of
practical massive MIMO system?

In this work, we study the performances of the uplink sum-rate of the massive MIMO
under correlated channel taking both pilot contamination and CSI delay into consideration.
Using correlation between the actual channel and the estimated one, and the channel’s time-
correlation, we derive an equivalent channel model with MMSE channel estimation and one-
tap prediction. Employing this equivalent channel model, we then obtain the lower bound of
the uplink sum-rate, and study its asymptotical performance when the base station antenna
number goes without bound. We find that if we schedule the k-th user of all cells who have
the same prediction coefficient, the uplink sum-rate is the same as the one with no CSI delay
when the number of BS antennas goes without bound at a much greater rate than the number
of users.

The notation adopted in this paper conforms to the following convention. Matrices are
represented with uppercase boldface and vectors meaning column vector with lowercase
boldface. (·)∗, (·)T and (·)H represent conjugate, transpose and Hermitian transpose respec-
tively. |·| denotes the module operation and ‖·‖ denotes the spectral norm. T r (A) is the trace
of A and det (A) denotes the determinant of A. Diag (x) is a diagonal matrix with x on its
diagonal. IM denotes a M × M identity matrix. The operator E (·) denotes expectation, and

the covariance operator is given by cov (x, y)
�= E (x yH

)−E (x) E ( yH
)
. CN (0,Σ) denotes

complex Gaussian distribution with mean 0 and covariance matrix Σ .

2 System Model of the Uplink Multi-cell Multi-user Massive MIMO

We consider the L cells system with one BS and K mobile users in each cell. Each BS is
equipped with M antennas, and each user has single antenna. We assume that the system
is operating on TDD protocol with full frequency reuse. Because of TDD operation and
reciprocity the propagation is the same for either a downlink or an uplink transmission. Then
at BS of cell l, the uplink received base-band signal vector at time t reads

yl (t) = Gl,l (t) xl (t) +
L∑

i �=l

Gl,i (t) xi (t) + wl (t) (1)
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where yl (t) = [
yl,1 (t) · · · yl,M (t)

]T is the received signal vector at time t , and xl (t) =
[
xl,1 (t) · · · xl,K (t)

]T ∼ CN (0, I K ) is the overall transmitted signal vector of the l-th cell
is, xl,k (t) the transmit signal of user k in cell l, wl (t) ∼ CN (0, γUL I M ) is the complex
additive noise vector. Gl,i (t) = [gl,i,1 (t) · · · gl,i,K (t)

]
is the uplink channel matrix at time

index t between all of the K users of cell i to the BS of cell l.
We assume all of the K users of each cell have the same antenna correlation, and model

the channel vector gl,i,k (t) as

gl,i,k (t)
�=
√

cd−α
l,i,ksl,i,k R

1
2
l,i hl,i,k (t) (2)

where α is the path loss exponent, typically between 3.0 and 5.0, c is the median of the
mean path gain at a reference distance dl,i,k = 1km, and sl,i,k is a log-normal shadow
fading variable. hl,i,k (t) ∼ CN (0, I M ) represents the small-scale fast fading. Rl,i is the
deterministic receive correlation matrix of the K users of cell i to the BS of cell l.

Then the composite channel Gl,i (t) can be expressed as

Gl,i (t) = R
1
2
l,i

[
hl,i,1 (t) · · · hl,i,K (t)

]
Λ

1
2
l,i

= R
1
2
l,i H l,i (t) Λ

1
2
l,i (3)

where λl,i,k
�= cd−α

l,i,ksl,i,k , Λl,i = diag
{[

λl,i,k · · · λl,i,K
]}

.
Throughout the paper we adopt the following assumptions:
A1: hl,i,m,k (t) is the small-scale fast fading between k-th user of cell i to the m-th antenna

of BS l, which is slowly time-varying according to Jakes model with Doppler spread fd ,and

ρl,i,k (τ )
�= E

{
h∗

l,i,m,k (t) hl,i,m,k (t + τ)
}

= J0 (2π fd |τ | Ts). Ts is the symbol period, and

J0 (·) is the zeroth order Bessel function of the first kind.
A2: lim supM

∥∥Rl,i
∥∥ < ∞ for all l and i .

A3: lim inf M
1
M T r

(
Rl,i
)

> 0 for all l.

3 Uplink Sum-Rate Analysis of Massive MIMO with Pilot Contamination and CSI
Delay

In this section, the channel estimation of massive MIMO system under correlated channel
using minimum mean-square-error (MMSE) is reviewed first, and then prediction filter with
one tap is used to predict the delayed channel. We derive the equivalent channel model which
allows us to give further analysis of the achievable uplink sum-rate for a finite and an infinite
number of BS antennas, and obtain some interesting and insightful observations. We also
analyze these performances for i.i.d channel model.

3.1 Channel Estimation and Prediction

When TDD is adopted, the minimum required number of pilot symbols is equal to the number
of mobile users per cell K and is independent of the number of antennas per base station M
[4]. So without loss a generality, here we assume that the pilot matrix is an identity matrix of
size K . Channel estimation is performed by sending pilot sequence of length K to BSs, and
we assume that a total of L base stations share the same band of frequencies and the same
set of K orthogonal pilot signals. Furthermore we assume synchronized transmissions and
reception which constitutes a worst-case scenario from the standpoint of pilot contamination
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[1]. There is no cooperation between the BSs. For slow varying channel, we assume that the
channel is invariable during the phase of pilot transmission. For simplicity of writing, from
here on we omit the time index (t)of channel matrix, and use subscript P to distinguish the
phase of pilot transmission from the phase of data transmission. Then, from (1), the received
pilot signal at BS of cell l can be given by

Y P,l = Gl,l XP,l +
L∑

i �=l

Gl,i XP,i + WP,l (4)

where Y P,l is an M ×K received pilot signal matrix, here the dimension K refers to the length
of pilot sequence. XP,i = I K is a K ×K pilot matrix. WP,l is an M×K noise matrix and each

element is i.i.d ZMCSCG random variable with variance γP. Since E
(

gl,i,k gH
l,i ′, j

)
= 0, for

j �= k, the estimation of gl,i,k can be processed individually. We take k-th user for example,

yP,l,k = gl,l,k +
∑

i �=l

gl,i,k + wP,l,k (5)

where yP,l,k and wP,l,k are the k-th column of Y P,l and WP,l , respectively. Given (5), the
MMSE estimation of channel vector gl,i,k can be obtained by

ĝl,i,k = λl,i,k Rl,i Ql,k yP,l,k (6)

where

Ql,k =
(

L∑

i=1

λl,i,k Rl,i + γP I M

)−1

(7)

Invoking the orthogonality property of the MMSE estimate [12], the estimation error g̃l,i,k
is statistically independent of gl,i,k due to the joint Gaussianity of both vectors. So we can
decompose the channel as gl,i,k = g̃l,i,k + ĝl,i,k . And the covariance matrix of the estimation
error can be expressed as

cov
(
g̃l,i,k, g̃l,i,k

) = λl,i,k Rl,i − λ2
l,i,k Rl,i Ql,k Rl,i (8)

See (6), we find that given k, the channel estimation ĝl,i,k are correlated for each i due to

pilot contamination. As in [9], we define ĥl,k
�= Ql,k yP,l,k , which obeys ĥl,k ∼ CN (

0, Ql,k

)
.

So the estimated channel vector can be expressed by

ĝl,i,k = λl,i,k Rl,i ĥl,k (9)

where ĥl,k represents the Rayleigh fading part of the estimated channel.
Due to increased user mobility, transmission delay and processing delay, the CSI of the

phase of data transmission will be different from that of the pilot transmission, which we call
CSI delay. The time-varying characteristics of the small-scale fading cause estimation error
also. We improve the initial channel estimation taking CSI delay into consideration.

Suppose that we use a prediction filter with one tap exploiting the time-domain correlation
present according to A1 [10,11].
[
hτ

l,i,1 · · · hτ
l,i,K

] = [hl,i,1 · · · hl,i,K
]

diag
{[

ρτ
l,i,1 · · · ρτ

l,i,K

]}

+ [eτ
l,i,1 · · · eτ

l,i,K

]
diag

{[√

1 −
∣∣∣ρτ

l,i,1

∣∣∣
2 · · ·

√

1 −
∣∣∣ρτ

l,i,K

∣∣∣
2
]}

(10)
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As mentioned before, for simplicity of writing, we use hτ
l,i,kfor the channel delayed (the

superscript τ indicates the CSI delay between channel estimation and uplink transmission).
ρτ

l,i,k is the correlation coefficient between the delayed channel and current one, and it is
decided according to the assumption of A1. eτ

l,i,k is i.i.d zero mean circularly symmetric
complex Gaussian random variables of variance 1. And the second part of (10) stands for
prediction error.

Substituting (10) into (3), we obtain

Gτ
l,i = R

1
2
l,i

[
hl,i,1 · · · hl,i,K

]
diag

{[
ρτ

l,i,1 · · · ρτ
l,i,K

]}
Λ

1
2
l,i

+ R
1
2
l,i

[
eτ

l,i,1 · · · eτ
l,i,K

]
diag

{[√

1 −
∣
∣
∣ρτ

l,i,1

∣
∣
∣
2 · · ·

√

1 −
∣
∣
∣ρτ

l,i,K

∣
∣
∣
2
]}

Λ
1
2
l,i

= [gl,i,1 · · · gl,i,K

]
diag

{[
ρτ

l,i,1 · · · ρτ
l,i,K

]}+ Zτ
l,i (11)

where

Zτ
l,i

�= R
1
2
l,i

[
eτ

l,i,1 · · · eτ
l,i,K

]
diag

{[√

1 −
∣
∣
∣ρτ

l,i,1

∣
∣
∣
2 · · ·

√

1 −
∣
∣
∣ρτ

l,i,K

∣
∣
∣
2
]}

Λ
1
2
l,i

is the matrix of prediction error with covariance matrix E
[

Zτ
l,i

(
Zτ

l,i

)H
]

=
(
∑K

k=1 λl,i,k

(
1 −

∣∣∣ρτ
l,i,k

∣∣∣
2
))

Rl,i .

According to gl,i,k = g̃l,i,k + ĝl,i,k , we get

Gτ
l,i = [ ĝl,i,1 · · · ĝl,i,K

]
diag

{[
ρτ

l,i,1 · · · ρτ
l,i,K

]}

+ [ g̃l,i,1 · · · g̃l,i,K

]
diag

{[
ρτ

l,i,1 · · · ρτ
l,i,K

]}+ Zτ
l,i (12)

Substituting (9) into (12), we obtain

Gτ
l,i = Rl,i

[
ĥl,1 · · · ĥl,K

]
diag

{[
λτ

l,i,1 · · · λτ
l,i,K

]}

+ [ g̃l,i,1 · · · g̃l,i,K

]
diag

{[
ρτ

l,i,1 · · · ρτ
l,i,K

]}+ Zτ
l,i (13)

where λτ
l,i,k

�= λl,i,kρ
τ
l,i,k .

We define the following matrices

Λτ
l,i � diag

{[
λτ

l,i,1 · · · λτ
l,i,K

]}

Ĥ l �
[

ĥl,1 · · · ĥl,K

]

Ĝ
τ

l,i �
[
ĝτ

l,i,1 · · · ĝτ
l,i,K

]

= Rl,i

[
ĥl,1 · · · ĥl,K

]
diag

{[
λτ

l,i,1 · · · λτ
l,i,K

]}

G̃
τ

l,i �
[
g̃τ

l,i,1 · · · g̃τ
l,i,K

]

= [ g̃l,i,1 · · · g̃l,i,K

]
diag

{[
ρτ

l,i,1 · · · ρτ
l,i,K

]}

The predicted channel estimation can be expressed as

Ĝ
τ

l,i = Rl,i Ĥ lΛ
τ
l,i (14)
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and the actual channel matrix can be expressed as

Gτ
l,i = Ĝ

τ

l,i + G̃
τ

l,i + Zτ
l,i (15)

3.2 Lower Bound of the Sum-Rate and Its Asymptotical Performance Analysis for Large M

Consider the uplink transmission represented by (1), and according to (15), the overall uplink
received signal at the BS of cell l can be written as

yl = Ĝ
τ

l,l xl +
L∑

i �=l

Ĝ
τ

l,i xi +
L∑

i=1

G̃
τ

l,i xi +
L∑

i=1

Zτ
l,i xi + wUL

l (16)

Then the sum rate of the cell l in bits per second per channel use (bps/channel) (omitting
the rate loss due to uplink channel training)is defined as

Ĉτ �= I
(

xl , yl |Ĝ
τ

l,1, . . . , Ĝ
τ

l,L

)
(17)

Theorem 1 For linear multi-user MMSE detection, while taking channel estimation error
and CSI delay into consideration, the lower bound of (17)can be given by

Ĉτ ≥ Ĉτ
L B = log2 det

(
L∑

i=1

Ĝ
τ

l,i

(
Ĝ

τ

l,i

)H(
Στ

l

)−1 + I M

)

− log2 det

⎛

⎝
L∑

i �=l

Ĝ
τ

l,i

(
Ĝ

τ

l,i

)H(
Στ

l

)−1 + I M

⎞

⎠ (18)

where Στ
l is the covariance matrix of noise and interference caused by prediction and esti-

mation error which is computed as

Στ
l = cov

(
L∑

i=1

G̃
τ

l,i xi +
L∑

i=1

Zτ
l,i xi + wUL

l ,

L∑

i=1

G̃
τ

l,i xi +
L∑

i=1

Zτ
l,i xi + wUL

l

)

=
L∑

i=1

(
K∑

k=1

λl,i,k Rl,i − Rl,i

(
K∑

k=1

λ2
l,i,k

∣∣ρτ
l,i,k

∣∣2 Ql,k

)

Rl,i

)

+ γUL I M (19)

Proof Because estimation error, prediction error and the additive noise are all uncorrelated
with the signal, then according to the Worst Case Uncorrelated Additive Noise Theorem in
[13],

Ĉτ
L B = log2 det

⎛

⎜
⎝

⎛

⎝
L∑

i �=l

Ĝ
τ

l,i

(
Ĝ

τ

l,i

)H + Στ
l

⎞

⎠

−1

Ĝ
τ

l,l

(
Ĝ

τ

l,l

)H + I K

⎞

⎟
⎠ (20)

Multiplying out

(
L∑

i �=l
Ĝ

τ

l,i

(
Ĝ

τ

l,i

)H + Στ
l

)−1

, we obtain (18).

Observe the similarity between our result and theorem 1 in [9]. And using the similar
manipulation, we can deduce theorem 2 invoking the strong law of large number.
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Theorem 2 As M → ∞, Ĉτ
L B obeys Ĉτ

L B − Ĉτ
L B,inf

M→∞−−−−→0, where

Ĉτ
L B,inf =

K∑

k=1

log2

[
det
(
Ξ l,k + I L

)

det
(
Ξ ′

l,k + I L−1
)

]

=
K∑

k=1

log2

[
ξl,l,k + 1 − [ξl,2,k · · · ξl,L ,k

] (
Ξ ′

l,k + I L−1
)−1[

ξ2,l,k · · · ξL ,l,k
]T ]

(21)

where

ξi,i ′,k = ∣
∣λτ

l,i,k

∣
∣2Tr

(
Ql,k Rl,i

(
Στ

l

)−1 Rl,i ′
)

Ξ l,k =
⎡

⎢
⎣

ξ1,1,k · · · ξ1,L ,k
... · · · ...

ξL ,1,k · · · ξL ,L ,k

⎤

⎥
⎦

and Ξ ′
l,k is the submatrix of Ξ l,k formed by deleting the l-th row and l-th column.

Proof According to Theorem 2 in [9], and using the property of the determinant of the block
matrix, one can obtain the result.

If Rl,i = Rl ,∀i , Ĉτ
L B,inf can be simplified as

Ĉτ
L B,inf =

K∑

k=1

⎛

⎜
⎝1 +

∣∣∣λl,l,kρ
τ
l,l,k

∣∣∣
2

∑L
i �=l

∣∣∣λl,i,kρ
τ
l,i,k

∣∣∣
2 +

[
Tr
(

Ql,k Rl
(
Στ

l

)−1 Rl

)]−1

⎞

⎟
⎠ (22)

The receive correlation matrix can be decomposed as Rl = U V UH where U is a uni-
tary matrix, then Ql,k ,

(
Στ

l

)−1 can be written in the similar way as Ql,k = U V Q
l,kUH,

(
Στ

l

)−1 = U VΣ UH, and with the assumption of A2 and A3, when M
/

K → ∞,
[
Tr
(

Ql,k Rl
(
Στ

l

)−1 Rl

)]−1 → 0. We get following corollary.

Corollary 1 Let Rl,i = Rl ,∀i , when M → ∞, and assume M
/

K → ∞, (22) can be given
by

Ĉτ
L B,inf =

K∑

k=1

log2

⎛

⎜
⎝1 +

∣∣∣λl,l,kρ
τ
l,l,k

∣∣∣
2

∑L
i �=l

∣∣∣λl,i,kρ
τ
l,i,k

∣∣∣
2

⎞

⎟
⎠ (23)

If there is no CSI delay, that is ρτ
l,i,k = 1,∀i, k, (23) degrades to

Ĉτ
L B,inf =

K∑

k=1

log2

(

1 +
(
λl,l,k

)2

∑L
i �=l

(
λl,i,k

)2

)

(24)

which coincides with the conclusions derived by [1].
Remark Theorem 2 shows that for large M the approximation of Ĉτ

L B can be given by
Ĉτ

L B,inf . And setting ρτ
l,i,k = 1,∀i, k, (18) and (21) deduce to the conclusions with no CSI

delay, which coincide with Theorem 1 and 2 of [9]. Corollary 1 tells us that as M → ∞,
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and M
/

K → ∞, the effects of uncorrelated receiver noise, prediction error, estimation
error and fast fading are eliminated completely. And transmissions from users within ones
own cell do not interfere. However, transmission from users in other cells that use the same
pilot sequence constitutes a residual interference called pilot contamination. And due to CSI
delay, the direct gains and the cross gains are both propotional to the square of their respective
prediction coefficients. It also tells us that as M → ∞, and M

/
K → ∞, the sum-rate will be

up-bounded by the same infinite rate which is independent of the receive correlation matrix.
More interestingly, as M → ∞, and M

/
K → ∞,if we schedule the k-th user of target

cell who move at lower speed than other L − 1 k-th users, his uplink rate will be greater than
the one when all the users are immobile, and vice versa. It can be proven that the uplink rate
of some of the k-th users will increase while others will decrease if all the k-th users move at
different velocities. But if we schedule the k-th user of all cells with same mobile velocity,
all of their uplink sum-rate will not degrade in spite of their mobility. Such observation is
very useful for mobile communications. And the reason for such interesting observation is
that the existence of pilot contamination makes CSI delay not only degrade the signal power,
but also the interference power.

If ρτ
l,k

�= ρτ
l,i,k �= 0,∀i , we define

R∞ =
K∑

k=1

log2

(

1 +
(
λl,l,k

)2

∑L
i �=l

(
λl,i,k

)2

)

(25)

3.3 Sum-Rate Analysis for i.i.d Channel Model

In order to deduce some insightful conclusions, we now consider the i.i.d Rayleigh fading
channel model

Gl,i = H l,iΛ
1
2
l,i (26)

The covariance matrix of the estimated channel vector ĝl,i,k can be simplified by

cov
(
ĝl,i,k, ĝl,i,k

) = λ2
l,i,k Ql,k

= λ2
l,i,k

[(
L∑

i=1

λl,i,k

)

+ γP

]−1

I M (27)

So in this case, the equivalent predicted channel estimation model (14) can be rewritten
as

Ĝ
τ

l,i = HΛl,i

(
L∑

i=1

Λl,i + γP I K

)− 1
2

diag
{[

ρτ
l,i,1 · · · ρτ

l,i,K

]}
(28)

where H is an M × K standard complex Gaussian matrices, and the covariance matrix of
noise and interference caused by prediction and estimation reads

Στ
l = (ετ + γUL

)
I M (29)

where

ετ �=
K∑

k=1

L∑

i=1

λl,i,k −
K∑

k=1

(
L∑

i=1

λ2
l,i,k

∣∣ρτ
l,i,k

∣∣2
)(

L∑

i=1

λl,i,k + γP

)−1

(30)
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So for the physical channel model (26), the lower bound of the sum-rate defined in (18)
can be given by

Ĉτ
L B = log2 det

⎛

⎝ε−τ H

(
L∑

i=1

Λτ
l,i

(
Λτ

l,i

)H
)(

L∑

i=1

Λl,i + γP I K

)−1

HH + I M

⎞

⎠

− log2 det

⎛

⎝ε−τ H

⎛

⎝
L∑

i �=l

Λτ
l,i

(
Λτ

l,i

)H
⎞

⎠

(
L∑

i=1

Λl,i + γP I K

)−1

HH + I M

⎞

⎠ (31)

where ε−τ � (ετ + γUL)−1.

Theorem 3 For the physical channel model (26), as M → ∞, Ĉτ
L B obeys Ĉτ

L B −
Ĉτ

L B,inf
M→∞−−−−→0, where the infinite sum-rate is expressed as

Ĉτ
L B,inf =

K∑

k=1

log2

⎛

⎜
⎝1 +

∣
∣
∣λl,l,kρ

τ
l,l,k

∣
∣
∣
2

∑L
i �=l

∣
∣∣λl,i,kρ

τ
l,i,k

∣
∣∣
2 + (ετ +γUL)

M

(∑L
i=1 λl,i,k + γP

)

⎞

⎟
⎠ (32)

Proof See “Appendix”.

We can make several observations from (32). We consider a group of users with the same
CSI delay in all cells, so their channel prediction coefficients only depend on their mobile

velocity. If ρτ
l

�= ρτ
l,i,k �= 0, for all i ,k, substituting (30) into (32), and make some algebraic

manipulations, the second part of the logarithm becomes

λ2
l,l,k

∑L
i �=l λ2

l,i,k + λ′
l,k

((∑K
k=1

∑L
i=1 λl,i,k+γUL

)

M|ρτ
l |2 −

∑K
k=1

(∑L
i=1 λ2

l,i,k

)
λ′

l,k
−1

M

)

where λ′
l,k =

(∑L
i=1 λl,i,k + γP

)
.

Since
∣∣ρτ

l

∣∣2 ≤ 1, Ĉτ
L B,inf ≤ Ĉ0

L B,inf That is to say, if the scheduled users are all with the
same mobile velocity, the uplink sum-rate will degrade due to mobility. But if we schedule the
users of all cells with different mobile velocity, how will the sum-rate become? It seems as if
the sum-rate may increase as well as decrease. To verify our guess, we make approximation
as follows.

According to (29), we know ετ I M is the covariance matrix of channel error caused by
prediction and estimation, so ετ ≥ 0. For each k,

ετ
k =

L∑

i=1

λl,i,k −
(

L∑

i=1

λ2
l,i,k

∣∣ρτ
l,i,k

∣∣2
)(

L∑

i=1

λl,i,k + γP

)−1

=
∑L

i=1 λ2
l,i,k −∑L

i=1 λ2
l,i,k

∣∣∣ρτ
l,i,k

∣∣∣
2 +∑L

j �=i
∑L

i=1 λl,i,kλ j,i,k + γP
∑L

i=1 λl,i,k
∑L

i=1 λl,i,k + γP

since
∣∣∣ρτ

l,i,k

∣∣∣
2 ≤ 1,

∑L
i=1 λ2

l,i,k −∑L
i=1 λ2

l,i,k

∣∣∣ρτ
l,i,k

∣∣∣
2 ≥ 0, so ετ

k > 0.
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This proves that ετ is monotonic increasing of K . So the interference depends mainly on
the ration K

/
M . As a result, when M

/
K → ∞,

(ετ + γUL)

M

(
L∑

i=1

λl,i,k + γP

)

→ 0

and (32) can be further simplified as

Ĉτ
L B,inf =

K∑

k=1

log2

⎛

⎜
⎝1 +

∣
∣
∣λl,l,kρ

τ
l,l,k

∣
∣
∣
2

∑L
i �=l

∣
∣
∣λl,i,kρ

τ
l,i,k

∣
∣
∣
2

⎞

⎟
⎠ (33)

which coincides with (23).

4 Numerical Results

In this section, we validate the analyses presented above through a set of Monte–Carlo
simulations. Same as [9], a 7-cell hexagonal system layout is adopted. The inner cell radius
is normalized to one, the distance between two adjacent cells is normalized to 2, and we
assume a distance-based path loss model with path loss exponent α = 3.7. To allow for
reproducibility of our results, we distribute K = 30 UTs uniformly on a circle of radius 2/3
around each BS and do not consider shadowing. The entries of the correlation matrix are
modeled via the common exponential correlation model

[
Rl,i
]

m,n = κ |m−n| with κ being
the transmit correlation coefficient [14]. The carrier frequency is 2.3 GHz. Symbol interval
is 1

14 ms. We assume the CSI delay is invariable, and equals 4 in symbol. So the prediction
coefficient is only related to mobile velocity v. We further assume γP = γUP.

Attention: for Figs. 1, 2, 3 and 5, users in all cells move at the same given velocity. Figure 1
plots the achievable sum-rate against the number of antennas M while uses move at different
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Fig. 1 Ergodic sum-rate for different v, κ = 0.9
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Fig. 2 Ergodic sum-rate for different M , κ = 0.9
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Fig. 3 Ergodic sum-rate for different v, κ = 0

velocity, and SNR equals 0, κ equals 0.9. We can see that for not so large number and low
velocity, our approximation is not very accurate. So we plots Fig. 2 which plots the achievable
sum-rate against the signal-to-noise ratio (SNR) with different numbers of antenna M and
the mobile velocity is set to 120 km/h. As ecpected, it can be seen that the approximation for
lare M is very acurate. More important, we can see that as the mobile velocity increases, the
sum-rate degrades more deeply for finite M . Interstingly, our approximatin is more accurate
for higher velocity for finite M . As Fig. 1 shows for users with different mobile velocity, the
faster the user moves, the more antennas he needs to achive the same given sum-rate; and as
Fig. 2 shows, the lower the SNR is (which means the lower the transmit power is when we
assume the power of the noise is invariable), the more antennas he needs to achive the same
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Fig. 5 Average rate per user for different v, κ = 0

given sum-rate. In other words, large antenna array can not only potentially reduce uplink
transmit power, but also compensate for the decay due to user mobility.

Figure 3 plots the achievable sum-rate against the number of antennas M for i.i.d channel
model while users move at different given velocity, and SNR equals 0. Compared to Fig. 1,
we see that high correlation degrades the sum-rate deeply, and low correlation makes our
approximation more accurate.

In order to verity our guess that the sum-rate may increase as well as decrease if we
schedule the users of all cells with different mobile velocity, we plot Fig. 4. In Fig. 4, the
curve marked immobile is the case with pilot contamination only; the curve marked mobile
is the case with both pilot contamination and CSI delay while all users in target cell move
at 60 km/h, and all users in the interfering cells move at 240 km/h. SNR all equal 0. As
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is analyzed, due to the impact of pilot contamiantion the sum-rate even increase when we
schedule the users in target cell who move at lower velocity than users in the interfering cells.

Figure 5 plots the average rate per user against large number of antennas M for i.i.d channel
model while users move at different given velocity, and SNR equals 0. We use average rate
per user instead of sum-rate for more distinct exhibition. As is expected, while we schedule
the k-th user of all cells with same mobile velocity, the average rate per user with different
mobile velocity will both approach R∞ as M goes to infinity.

5 Conclusions

We have analyzed the spectral efficiency for massive MIMO taking the practical problems
such as the antenna correlation, pilot contamination and CSI delay into consideration. The
equivalent channel model for massive MIMO with pilot contamination and CSI delay is
derived. With this new model, the lower bound of the sum-rate is obtained, and the asymptotic
performance of the sum-rate is analyzed for M → ∞. The results are general and it covers
the conclusions of [9]. Simulation results show that the asymptotic approximation has good
performance for large M . We also find that large antenna array can not only potentially reduce
uplink transmit power, but also compensate for the decay due to user mobility. Simulation
results also verify our guess that CSI delay may not decrease the uplink sum-rate due to the
impact of pilot contamination. When the number of BS antennas goes without bound at a
much greater rate than the number of users, if we schedule the k-th user of all cells who have
the same prediction coefficient, the uplink sum-rate is the same as that with no CSI delay,
and simulations verify our analysis.
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Appendix: Proof of Theorem 3

Proof Using the matrix identity

det (I + AB) = det (I + B A)

(31) can be rewritten as

Ĉτ
LB = log2 det

⎛

⎝ε−τ

(
L∑

i=1

Λτ
l,i

(
Λτ

l,i

)H
)(

L∑

i=1

Λl,i + γP I K

)−1

HH H + I K

⎞

⎠

− log2 det

⎛

⎝ε−τ

⎛

⎝
L∑

i �=l

Λτ
l,i

(
Λτ

l,i

)H
⎞

⎠

(
L∑

i=1

Λl,i + γP I K

)−1

HH H + I K

⎞

⎠ (34)

According to [15, Theorem 3.4, Theorem 3.7], we know 1
M HH H

M→∞−−−−→I K , so we obtain

1

M
ε−τ

(
L∑

i=1

Λτ
l,i

(
Λτ

l,i

)H
)(

L∑

i=1

Λl,i + γP I K

)−1

HH H
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− ε−τ

(
L∑

i=1

Λτ
l,i

(
Λτ

l,i

)H
)(

L∑

i=1

Λl,i + γP I K

)−1

I K
M→∞−−−−→0 (35)

And because log2 det (·) is continuous function, we have

log2 det

⎛

⎝ε−τ

(
L∑

i=1

Λτ
l,i

(
Λτ

l,i

)H
)(

L∑

i=1

Λl,i + γP I K

)−1

HH H + I K

⎞

⎠

−
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log2

⎛
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⎝Mε−τ

∑L
i=1
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∣
∣λτ
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∣
∣
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∑L
i=1 λl,i,k + γP

+ 1

⎞

⎟
⎠

M→∞−−−−→0 (36)

Similarly, as M → ∞, for the second term of the RHS of (34), we have
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Defining
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(∑L
i=1 λl,i,k + γP
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⎞
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⎠ (38)

Using (36) and (37), we see that Ĉτ
LB − Ĉτ

LB,inf
M→∞−−−−→0.

Substituting λτ
l,i,k = λl,i,kρ

τ
l,i,k into (38), we can derive (32).
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