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Abstract In this paper we propose an approximation algorithm, which is called ADCMCST
(algorithm with the minimum number of child nodes when the depth is restricted), to construct
a tree network for homogeneous wireless sensor network, so as to reduce and balance the
payload of each node, and consequently prolong the network lifetime. When the monitoring
node obtains the neighbor graph, ADCMCST tries to find a tree topology with a minimum
number of child nodes, and then broadcast the topology to every node, and finally a tree
network is constructed. Simulation results show that ADCMCST could greatly reduce the
topology formation time, and achieve good approximation results; when the compression
ratio is less than 70 %, the network lifetime of ADCMCST will be larger than that of energy
driven tree construction.

Keywords Wireless sensor networks · Tree network · Limited delivery latency ·
Approximation algorithm

1 Introduction

As wireless communication technology and micro electromechanical sensing technology are
developing rapidly, wireless sensor network has emerged. It is deployed in the monitoring
area by a large number of nodes, through wireless communication to form a multi-hop ad
hoc network system [1]. The typical application models include two categories: one is the
sensor nodes continuously monitor surrounding states or events, and the results are passed to
the monitoring node [2]; and the other is the monitoring node issues command to the sensor
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nodes, and the sensor nodes perform the corresponding command. In both of them, the tree
topology is a preferable choice [3].

According to the similarities and differences of function between nodes, wireless sensor
networks can be divided into two types: the homogeneous and the heterogeneous. In the
homogeneous wireless sensor network [4], all nodes except the monitoring node, which
is called sensor nodes, have the same function and status, which are responsible for data
collection, processing and forwarding to monitoring node. However, in the heterogeneous
wireless sensor network [5], nodes are classified into monitoring node, relay nodes and sensor
nodes. Sensor nodes are responsible for data collection, and relay nodes are only responsible
for data forwarding but not responsible for data collection.

Since sensor nodes in wireless sensor network are mainly powered by battery, their energy
is limited. We should try to balance their energy consumption to extend the network lifetime
[6]. Although we can achieve above goal by scheduling of data transmission [7], network
topology also plays an important role. Thus during the course of constructing a tree net-
work, we must take the energy consumption into consideration. When the number of nodes
is small, we can manually configure them to form a tree network and to achieve above
objectives; but when the number of nodes becomes larger, manual configuration will be
unrealistic. Therefore, researching on the automatic construction of tree network is very
important.

In this paper, we propose an algorithm, which is called as ADCMCST (algorithm with the
minimum number of child nodes when the depth is restricted), to automatically construct a
tree network based on the homogeneous wireless sensor network, by searching a tree topology
with the minimum number of child nodes when the depth of the tree is constrained, according
to the neighborship between all the nodes. Because it is a NP-Hard problem, we propose an
approximation algorithm to resolve it. The innovations of this paper are two fold: first, the
network depth is limited, so the maximum forwarding delay, which is evaluated by hops,
of data packet could be guaranteed; second, the number of child nodes is minimized, which
helps to reduce and balance the payload of each node and consequently prolong the network
lifetime.

The rest of this paper is organized as follows: Section 2 is the related methods to construct
tree networks; Sect. 3 describes the model of the homogeneous wireless sensor network;
Sect. 4 provides an algorithm to construct the tree topology; the performance analysis and
comparison are in Sect. 5; and this paper is concluded in Sect. 6.

2 Related Methods

In this section, we present some typical tree topology construction methods which are pro-
posed for different purposes, and the pros and cons are also discussed.

Ding [8] proposed a distributed heuristic algorithm based on effective energy of nodes to
form an aggregation tree. The algorithm lets every node select the node with the maximum
residual energy and the minimum hop to the monitoring node as its parent node. However,
this method may lead to unbalanced payload and serious packet collision because it does
not limit the degree. And what’s more, the priority of maximum residual energy and the
minimum hop is not discussed, which might lead to the energy of some node be used up
rapid when the node is nearest to the monitor node.

In order to prolong network lifetime, Wu [9] proposed a centralized construction algorithm.
It translates the residual energy of a node into its degree, and the lower the residual energy
is, the larger the degree is. So the method is formulated to search a tree with the minimum
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degree. Although it could maximize the network lifetime, it does not take the network depth
into consideration, so it may lead to large transmission hops.

Singhal [10] divided all nodes into a lot of clusters, utilized the minimum spanning tree
algorithm to construct a tree for every cluster, and combined these trees to form a tree-like
network. Just like the method in [9], this method is also used to maximize network lifetime.
However, different from our method, its lifetime is effected not by the number of child nodes
but by the transmission distance between two nodes.

Andreou [11] proposed an energy driven tree construction (ETC) algorithm, which puts
all nodes into different layers. Each node could only communicate with the nodes in the
adjacently higher layer, and node selects the upper one with the minimum number of child
nodes as its parent node. This method could not only ensure the timely packet relay but also
balance the payload, and consequently prolongs the network lifetime. And the method is
compared by ours.

In order to construct a balanced tree to minimize the packet collision, Georigios [12]
proposed a distributed algorithm to minimize the number of child nodes based on an a-priori
established unbalanced tree. However, it does not discuss how to construct the initial tree and
the depth constraint is not taken into account, and consequently the resultant tree could not
ensure timely packet delay.

In Zigbee network, the maximum number of child nodes and relay nodes and depth are
predetermined, which may lead to the existence of orphan nodes. In order to reduce the
number of orphan nodes, Pan [13] proposed an algorithm to construct tree network which
contains nodes as much as possible and how to reduce the orphan nodes is its purpose.
However, how to determine the depth and degree are not discussed. Although the depths are
both limited in Pan’s and ours, the degree is constrained in Pan’s but not in our method. Our
method is trying to reduce the degree of the final tree, which may be still bigger than the
pre-selected degree of Pan’s. And what’s more, the method in [13] is based on heterogeneous
network, but our method is based on homogeneous network.

In order to provide users with satisfied throughput and delay for multimedia contents over
the Internet, Su [14] constructs a tree network by defining a layered degree, i.e. out-degree
and in-degree, according to the capacity of node and the streaming rate. Although this tree
network could achieve better performance, it does not take the network lifetime and delay
into consideration, so it is not suitable for wireless sensor networks.

3 Network Model

The model of the homogeneous wireless sensor network is shown in Fig. 1. The model is
denoted as a directed graph �G = (V, E), where V is the set of all the nodes and |V | is the
number of nodes, and E is the set of all the directed edges. For any edge ei, j ∈ E , it means
node j could reliably receive the data packet from node i . In this model, there is a monitoring
node, i.e. node 1, and the rests are sensor nodes. Sensor nodes collect the information of
surrounding environment, and transmit them to the monitoring node in multi-hop manner.

We assume that every node has a global unique physical address to identify itself and the
same transmission power, and the communication links are symmetric. In order to ensure
the stable neighborship, only two nodes whose received power from each other is bigger
than some preset value could be neighbors. Node could communicate point-to-point with its
neighboring nodes.

In homogeneous wireless sensor network, all sensor nodes have the same function and
collect the same environment information. We assume that any sensor node could amalgamate
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Fig. 1 Model of the
homogeneous wireless sensor
network
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its own data with other data from the received packets, and compress them for forwarding to
other node in order to reduce the power consumption [15,16]. We also assume that every data
packet has the same size and each node has its own data to be transmitted, so the compression
ratio C of each node is defined as follows:

C = Ns − 1

Nr
(1)

where Ns denotes the number of packets to be sent, Nr denotes the number of received
packets from its child nodes. The maximum value of Ns is Nr + 1, which means that C
equals to 1 and there is no compression. The minimum value of Ns is 1, which means that
C equals to 0. C equaling to 0 mainly depends on the concrete application. For example,
when the network is used to monitor environmental information such as electronic device
temperature, electronic device working time, and coal gas density and so on, to obtain the
maximum or minimum value, each sensor node only needs to compare the received data from
child nodes with its own data, and select one to forward.

When the monitoring node obtains the neighbor graph, it generates a tree topology Te

with the minimum number of child nodes when the depth is constrained. And then, it floods
the tree topology to all nodes, such that every node knows its parent node and child nodes.
Next we give proposition 1.

Proposition 1 given a directed graph �G = (V, E) and the depth upper bound Ls, searching
a tree with the minimum number of child nodes when the depth is restricted (DCMCST) is a
NP-Hard problem.

Proof we know that finding a tree with the minimum number of child nodes from an undi-
rected graph is a NP-Hard problem [19], and because the undirected graph is a special one
from the directed graph, so above problem could be reduced to finding a tree with the min-
imum number of child nodes from a directed graph (MDST); When Ls → ∞ DCMCST
is equivalent to MDST, which means that MDST is a special case of DCMCST. So MDST
could be further reduced to DCMDST. So we conclude that DCMDST is also a NP-Hard
problem.

4 Tree Network Construction

In this section, we first give the depth lower bound that the tree topology could be; then
we propose an approximation algorithm ADCMCST to construct a tree topology when the

123



Construction of Tree Network with Limited Delivery 235

depth upper bound is given; finally, we demonstrate the implementation procedure of the tree
network.

4.1 Depth Lower Bound

Obviously, we must know the minimum depth Ll that the tree topology could be according
to the neighbor graph �G = (V, E), which helps users to select a preferable depth Ls for
the final tree network. If Ls < Ll , we could not achieve a tree network that contains all the
nodes. So, the first thing is to determine the minimum value of Ll .

Proposition 2 Given a directed graph �G = (V, E), for any node v ∈ V , if we let v be the
root node, and traverse the graph using breadth first search algorithm (BFS), we will get a
BFS tree Tbf s . The depth of the BFS tree is the minimum of all the spanning trees from �G.

Proof for any node v ∈ V , we denote the depth of Tbf s rooted at v as dbf s . We assume
that there is a Non-BFS tree Tn−b f s rooted at v whose detph dn−b f s is less than dbf s .We let
dbf s(x) represent the depth of node x in the tree Tbf s and let dn−b f s(x) represent the depth
of node x in the tree Tn−b f s . Because of dn−b f s < dbf s , there must be a node denoted as
n satisfying dn−b f s(n) < dbf s(n). However, according to the property of the breadth first
search algorithm, the depth of any node in the tree Tbf s could be reduced. It is in contradiction
with the assumption. So we could conclude that the depth of any spanning tree will not be
less than that of the BFS tree rooted at the same node. ��

According to the proposition 2, we could easily get the depth lower bound Ll : let the
monitoring node be the root, traverse the graph �G using BFS algorithm and obtain a BFS
tree. The depth of the BFS tree is the minimum depth Ll .

4.2 Approximation Algorithm

After getting Ll , the user selects a preferable depth Ls which satisfies Ls ≥ Ll , and then the
monitoring node searches a tree topology to minimize the number of child nodes of the tree
when the depth Ls is given. The number of child nodes of a tree is defined as the number of
child nodes of a node which has the maximum number of child nodes in the tree. Because it is
a NP-Hard problem demonstrated by proposition 1, in the next, we propose an approximation
algorithm, which is called as ADCMCST, to resolve it. ADCMCST includes two aspects:
main body which is shown in Table 1 and local optimization procedure which is shown in
Table 2.

In the main body of the approximation algorithm, we try to reduce the number of child
nodes of every node, which depends on the local optimization procedure. Radha [20] has
proposed a local optimization procedure to minimize the number of child nodes; however,
he does not take the depth constraint into consideration. So in the next, we give an improved
local optimization procedure.

If the local optimal procedure is successful, the number of child nodes of node n will
reduce one, and there must be another node n’ whose child nodes is increased one. However,
the step S2_2 ensures the number of child nodes of node n is still larger than that of node n’.

Next, we give an example of constructing an inner tree with depth not more than 3 (the
depth of monitoring node is 0) to demonstrate the procedure of our approximation algorithm
based on Fig. 1. Firstly, the monitoring node sets itself as the root, traverses the graph using
BFS algorithm and gets an initial tree shown in Fig. 2a; because the number of child nodes
of node 1 is maximal, so we locally optimize the node 1; we could see that the number of
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Table 1 Main body

Input: �G = (V, E) and Ls ;

Output: The tree topology Te with the minimum number of child nodes whose depth is not
more than Ls ;

Steps:

S1_1) Lets the monitoring node be the root, traverses the graph �G using the BFS algorithm
and finally gets an initial temporal tree Tt .

S1_2) arranges all nodes in Tt according to the descending sort of the number of child nodes,
and puts the sort results in a queue. The node with the maximum number of child nodes is in
the front, and labeled as current node.

S1_3) locally optimizes the current node. If successful, then goes to S1_2, otherwise goes to
S1_4.

S1_4) if current node is not the last one in the queue then picks the next as the current node
and goes to S1_3, otherwise goes to S1_5.

S1_5) assigns the Tt to Te , and output Te .

Table 2 Local optimization procedure

Input: �G = (V, E), Ls , Tt and current node n;
Output: the optimized temporal tree Tt ;
Steps:

S2_1) Denotes the number of child nodes of node n as vn , and denotes the set of all the child
nodes of node n as Cn . All the nodes in Cn is marked as “new”;

S2_2) for any node in Cn , if the number of ingoing edges in �G is not less than vn − 1, deletes
these edges from �G, and subsequently adds all the edges in Tt into �G. Thus we get a

temporal directed graph
⇀
Gt ;

S2_3) if there are nodes in Cn marked as “new”, selects one randomly, denotes it as m, marks
it as “old”, deletes directed edge from node m to node n, and goes to S2_4; otherwise goes
to S2_6;

S2_4) lets m be the root node, traverses using
⇀
Gt the BFS algorithm, and finds a directed path

P from node m to the monitoring node. If such a path exists, goes to S2_5; otherwise goes
to S2_6.

S2_5) for any node in P , deletes the outgoing edge in Tt , and adds the outgoing edges in P
into Tt . If the depth of the modified Tt does not exceed Ls , then goes to S2_6; otherwise
recovers above operation and goes to S2_3;

S2_6) if Tt is not changed, returns Tt and failed; otherwise, returns Tt and successful.

child nodes of node 1 is 4 and its child nodes are from node 2 to node 5. If the number of
edges pointing to any of the child nodes of node 1 is over 3 in graph

⇀

G, we delete these

inner edges from
⇀

G, and the result is shown in Fig. 2b; combining Fig. 2a with Fig. 2b, we

get a temporal directed graph
⇀

G, which is shown in Fig. 2c; selecting node 3 and deleting
the directed edge from node 3 to node 1, Fig. 2c becomes Fig. 2d; we let node 3 be the root
and find a path to the monitoring node 1 using BFS algorithm, and we get the path node
3->node 2->node 1; we optimize the temporal tree according to the new path and obtain an
optimized tree shown in Fig. 2e; now check whether the depth of the new temporal tree is
satisfied with the preset value, and the local optimization procedure is finished if satisfied,
otherwise we recover above procedures and reselect a new node to be optimized. Continue
above procedures and we will get the final tree shown in Fig. 2f.
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Fig. 2 Example of constructing an inner tree with depth not more than 3

4.3 Implementation

The procedure of forming a tree network is as follows: firstly, monitoring node obtains the

neighbor graph
⇀

G = (V, E) by broadcasting [9], which contains finding stage and forming
stage, and the details are shown in next paragraph; secondly, the monitoring node obtains
the minimum depth Ll which is stated in Sect. 4.1 and returns the result to user, and user
subsequently selects an upper bound Ls ; thirdly, the monitoring node searches a tree topology
Te using the ADCMCST algorithm; and finally the monitoring node floods Te to every senor
node. Thus a tree network is formed. Although this implementation is a centralized manner,
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it can be easily extended to the distributed manner [17,18]. The CSMA/CA could be used
by the nodes to access the wireless channel.

The finding stage is initiated by the monitoring node, and the details are as follows: firstly,
monitoring node broadcasts a “Hello” packet which contains < ID, deep > , where ID denotes
the physical address of and deep is set to 0; secondly, any node except the monitoring node
receives the “Hello” packet, it labels the node sending the “Hello” packet as its neighbor;
thirdly, if the node is the first time to receive the “Hello” packet, it sets its deep equal to the
deep in the packet plus one and then generates a new “Hello” packet to broadcast; otherwise
it compares the deep in the received packet with previous received packet, and if the former
is less than the later, the node regenerates a “Hello” packet to broadcasts. In the new “Hello”
packet, ID denotes its physical address and deep equals to that in the received packet plus
one; and finally, when all nodes could not receive any “Hello” packet, the finding stage is
finished.

When the finding stage is finished, each node knows its neighbors. Next we give the
procedures of the forming stage, which is initiated by the leaf nodes who do not receive the
“Hello” packet where the value of deep is larger than that of itself. Firstly, node broadcasts
a “Neighbor” packet which contains < Neighbor, deep > . Neighbor denotes the neighbor
graph that the node learns, and deep denotes the depth of the node; Secondly, if any node
is the first time to receives the “Neighbor” packet, or the value of deep in the received
packet is bigger than its own “Neighbor” packet which has been broadcast, it combine the
Neighbor in the received packet with is own neighbor graph to form a new neighbor graph,
generate a new “Neighbor” packet to broadcast; and finally, when above procedures are
finished, monitoring node obtains all the half-baked neighbor graphs. After combining all
these graphs, the monitoring node will form a full neighbor graph.

5 Analysis and Simulations

In this section, we will evaluate ADCMCST algorithm in terms of time complexity and
approximation ratio from analysis and simulations, and evaluate the payload, delay and
lifetime of the network which is formed by our algorithm.

5.1 Analysis

ADCMCST algorithm includes two aspects: main body and local optimization procedure.
In the main body, we need to order all nodes to form a queue and thereafter to insert the
two nodes the number of whose child nodes have been changed into the queue, so the time
complexity of the ordering is O(n). Meanwhile, the local optimization procedure will be
invoked by n3 times [19], so the time complexity of the main body is O(n3 + n), equivalent
to O(n3). In the local optimization procedure, the complexity of BFS is O(n + e), so the
complexity of local optimizing one node is O(n(n + e)). Thus we conclude that the time
complexity of the approximation algorithm is O(n4(n + e)), which is quasi-polynomial.
Although the complexity is somewhat high, the real run time is not such long which will be
shown in simulations.

Proposition 3 Suppose OPT(I ) denotes the number of child nodes of the optimal tree, and
A(I ) denotes the maximal number of child nodes in the tree constructed by our ADCMCST
algorithm. Then the following inequality is satisfied:

A(I ) ≤ b × O PT (I ) + ⌈
logb n

⌉
(2)
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Where b is a positive integer larger than 1 and n is the total number of nodes.

Proof As to the tree Te constructed by our approximation algorithm, it has the following
feature: from the initial tree which is formed by the BFS algorithm based on the neighbor
graph G, through a variety of temporary tree Tt to the final tree Te, the depth of all of these
trees does not exceed Ls . For the final tree Te, no matter whether it is an optimal tree, we use
Sk denotes the collection of all the nodes the number of whose child nodes are not less than
k, and then there are least (k − 1)|Sk | + 1 nodes among the child nodes of Sk , which satisfy
that any of them is not descendant of others [20].

Obviously, if we take any of these (k − 1)|Sk | + 1 nodes as a root and search a new path
to the monitoring node, the path must traverse some node in S′

k−1 where S′
k−1 is a subset of

Sk−1. It must be noted that there may exist some nodes in Sk−1, which will cause the depth
of tree exceed Ls , and the collection of these nodes is Sk−1\S′

k−1. If there is a path which
does not go through any of the nodes in Sk−1 such that the depth of the new tree does not
exceed Ls, Te will not be the final tree because we could reduce the number of nodes in Sk

by one using the local optimization procedure. So we can conclude that for any final tree Te

constructed by our approximation algorithm, there must be at least (k − 1)|Sk | + 1 nodes in
Sk satisfying that any of them which have a path to monitoring node must go through some
node in S′

k−1. Thus we get the following inequality [20]:

O PT (I ) ≥ (k−1)|Sk |+1
|S′

k−1|
≥ (k−1)|Sk |

|Sk−1|
(3)

And then for any positive integer b which is bigger than 1, there must be an integer i which
satisfies [19]:

i ≥ A(I ) − ⌈
logb n

⌉ + 1 (4)

such that |Si−1| ≤ b|Si |. If we let k equal to i we can get:

O PT (I ) ≥ (i − 1)|Si |
b|Si | (5)

i.e. i ≤ b × O PT (I )+ 1. Combining with (3), we obtain the relationship between O PT (I )
and A(I ):

A(I ) ≤ b × O PT (I ) + ⌈
logb n

⌉
(6)

Thus, proposition 3 is proved. ��
The result shows that our algorithm could achieve the same effect with that in [20] which

is used to construct a tree without depth constraint.

5.2 Simulations

The simulation runs on a notebook PC whose CPU is Duo8400 and memory capacity is 2G.
The simulation software is Matlab 7.0.

In order to evaluate the running time of our approximation algorithm, we compare it with
the enumeration algorithm. It needs egregious time for the enumeration algorithm when the
number of nodes is large, so we only take a small number of nodes into consideration. We
first setup three completely connected networks, in which the numbers of nodes are 4, 5
and 6 respectively and one of them is the monitoring node. The running time of the two
algorithms are shown in Fig. 3. It could be seen that the running time of the enumeration
algorithm rapidly increases when the number of nodes is from 4 to 6; however, the time of
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Fig. 3 Running time under
different test scenario
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our ADCMCST approximation algorithm increases slowly. For example, when the number
of nodes increases from 4 to 6, the running time of the enumeration algorithm increases about
80 times, but the running time of our algorithm only increases about 6 times.

In order to find out the running time of the approximation algorithm further, we do a second
simulation. We assume that the region is a square with 50 m×50 m and the communication
distance is 20 m. We generate 50 scenarios randomly, and obtain the average running time
under different number of nodes and depths. The results are shown in Fig. 4. We could see
that the running time is reduced when the depth increases. For example the time is reduced
by about 45 % when the depth increased by 4. And the running time increases slowly when
the number of nodes increases. The results show that in order to construct a tree network
fast, we could increase the depth somewhat. However, increasing the depth will improve the
relay time of packets from leaf nodes to monitoring node.

In order to evaluate the approximation ratio of our algorithm, we build six completely
connected networks, in which the numbers of nodes are 20, 60, 80, 120, 160 and 200 respec-
tively. For each of them, we generate 10 different tree networks with the depth varied from
1 to 10, and totally we get 60 cases. Only in the completely connected networks could we
compute the optimal results manually. The approximation results are shown in Table 3 and
the value in the bracket denotes the difference between our ADCMCST algorithm and the
optimal result. The number of case where the approximation value equaling to the optimal
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Table 3 Approximation ratio under different depth and number of nodes

Depth

Nodes 1 2 3 4 5 6 7 8 9 10

20 19(0) 4(0) 3(0) 2(0) 2(0) 2(0) 2(0) 2(0) 2(0) 2(0)

60 59(0) 8(0) 6(2) 4(1) 3(1) 2(0) 2(0) 2(0) 2(0) 2(0)

80 79(0) 9(0) 6(2) 4(1) 3(0) 3(1) 2(0) 2(0) 2(0) 2(0)

120 119(0) 11(0) 7(2) 5(2) 4(1) 4(2) 3(1) 3(1) 2(0) 2(0)

160 159(0) 13(0) 9(3) 6(2) 5(2) 4(1) 3(1) 3(1) 2(0) 2(0)

200 199(0) 14(0) 9(3) 6(2) 4(1) 4(1) 3(1) 3(1) 3(1) 2(0)

value is 35, accounting for 58.3 %. The worst case is that the approximation value is 3 greater
than the optimal value, and however, the number of them is 2, only accounting for 3.3 %.

In order to evaluate the network performance of our ADCMCST algorithm, we compare it
with the ETC algorithm [11]. We assume that the region is a square with 50 m×50 m and the
transmission radius of each node is 20 m. Sending a packet needs 1 energy unit and receiving
a packet needs 0.5 energy units [21]. The total energy of each node is 1,000 unit. Each sensor
node periodically collects the data every 1 s and sends it to its parent node after receiving all
the data from its child nodes.

First we compare the maximum and the variance of payload of the two algorithms. In this
paper, the maximum of payload which has impact on the network lifetime is the maximal
number of child nodes of a node, and the variance of payload represents the payload balance
of a tree.

Figure 5 shows the maximum of payload when the number of nodes changes from 20 to 40.
Obviously, the maximal number of child nodes of our algorithm is in inversely proportional
to the depth of the tree. We could see that when Ls = Ll , our algorithm is far superior to
that of ETC, and the reasons are twofold: on the one hand, as for the ETC, only when the
number of child nodes of a node is above some threshold, the node will try to decrease its
child nodes, and our algorithm has no the threshold; on the other hand, our algorithm will
reduce the child nodes of a node in the tree by changing the depth of one of the child nodes,
which will not happen in ETC.

Figure 6 shows the variance of payload when the number of nodes changes from 20 to
40. When the depth increases, the termination possibility of our algorithm due to the depth
constraint reduces, and consequently the payload of the final tree tends to be more balanced,
which results in lower variance. When Ls = Ll , the variance of our algorithm is far superior
to that of ETC, which demonstrates that our algorithm tries the best to find the balanced tree,
and of course the payload is more balanced than that of ETC.

We then compare the average and the variance of the delay of the two algorithms. In this
paper, the average of the delay is the average hop counts that a packet transmitted from a
sensor node to the monitoring node, and it has impact on the network lifetime.

Figure 7 shows the average of delay when the number of nodes changes from 20 to 40.
Obviously, the average of delay increases when Ls increases. From this figure, we could see
that when Ls = Ll , the average of our algorithm is a little bigger than that of ETC. This is
because our algorithm will change the depth of some node in order to decrease the maximal
number of child nodes of a node, which results in the increment of the delay and ETC never
increases the depth of the node.

Figure 8 shows the variance of delay when the number of nodes changes from 20 to 40.
From this figure, we can see that the variance of our algorithm is in proportion to the depth.
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Fig. 5 Maximum payload under
different number of nodes
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Fig. 6 Variance of payload
under different number of nodes
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Fig. 7 Average delay under
different number of nodes
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It is easy to understand that when depth increases, the difference of the delay of different
final trees becomes larger, and consequently results in larger variance. When Ls = Ll , the
variance of our algorithm is a little smaller than that of ETC. This is because ETC does not
change the depth of node, and result in the delay is more influent to the nodes distribution.
In contrast, our algorithm reduces this influence by regulating the depths of some nodes.
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Fig. 8 Variance of delay under
different number of nodes
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Fig. 9 Network Lifetime under
different number of nodes
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Finally, we compare the lifetime of the tree networks constructed by the two algorithms. We
does not take the energy consumption for constructing the tree network into consideration,
and the network lifetime is defined as from the time that the network begins to normally
running to the time that one node uses up its energy.

Figure 9 shows the lifetime of the tree networks under different number of nodes when the
compress ratio changes from 0 to 1 and Ls = Ll . Figure 10 shows the network lifetime under
different depth when the compress ratio changes from 0 to 1 and the number of nodes is 30.
From these two figures, we could see that the performance of our algorithm is superior to that
of ETC when the compression ratio is 0; and the difference decreases when the compression
ratio increases. The lifetimes of the two algorithms are almost the same when the compression
ratio is about 0.7, and the performance of our algorithm will be a little inferior to that of ETC
when the compression ratio continues to increase. We know that when the compression ratio
approaches to zero, the received packets coming from all the child nodes are compressed to
one packet. More child nodes will result in more power consumption. But if a node changes
its depth, it will only increase the power consumption of its direct parent node, but have no
influence on other indirect parent node. So the depth of the tree has a little influence on the
lifetime, but the maximal number of child nodes of the tree will impact the lifetime. From
Fig. 5, we see that the maximal number of child nodes of our tree is less than ETC, so the
lifetime of our algorithm will be longer than ETC. However, when the compression ratio
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Fig. 10 Network lifetime under
different depth
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approaches to one, it means that there has no compression for packets. If node changes its
depth, it will not only increase the power consumption of its direct parent node, but also
increase the power consumption of its indirect parent, and the latter has more influence on
the lifetime of network. From Fig. 7, we see that the average hop of our tree is a little bigger
than ETC, so the lifetime of ETC will be a little longer than our algorithm These results
show that our approximation is suitable for the applications when the compression ratio is
somewhat small.

6 Conclusions

For the typical application of wireless sensor networks, tree topology is the preferable choice.
In this paper, we propose an approximation algorithm for constructing a tree network. When
the monitoring node obtains the neighbor graph, it uses the approximation algorithm to
construct a tree topology with minimum number of child nodes when the depth is constrained,
and after then, the monitoring node distributes the topology to every node to form a tree
network. Simulation results show that our approximation algorithm could greatly reduce
the constructing time, and the approximation ratio is very perfect. Compared with the ETC
algorithm, we find that when the compression ratio is less than 70 %, the network lifetime of
our approximation algorithm is larger than that of ETC.
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