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Abstract Secure communication has become more and more important for many modern
communication applications. In a secure communication, every pair of users need to have a
secure communication channel (each channel is controlled by a server) In this paper, using
monotone span programs we devise an ideal linear multi-secret sharing scheme based on
connectivity of graphs. In our proposed scheme, we assume that every pair of users, p and
q , use the secret key spq to communicate with each other and every server has a secret share
such that a set of servers can recover spq if the channels controlled by the servers in this
set can connect users, p and q . The multi-secret sharing scheme can provide efficiency for
key management. We also prove that the proposed scheme satisfies the definition of a perfect
multi-secret sharing scheme. Our proposed scheme is desirable for secure and efficient secure
communications.
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1 Introduction

Secret sharing schemes, which were introduced by Shamir [1] and Blakley [2] independently
more than 30 years ago, have been widely used in many secure communications. In these
schemes, there is a finite set of participants and a collection, �, of subsets of the participants
(called the access structure). A secret sharing scheme for � is a method in which a dealer
distributes shares of a secret to the participants such that (1) any subset in � can reconstruct
the secret from its shares, and (2) any subset not in � cannot reveal any partial information
about the secret in the information theoretic sense.

A secret sharing scheme is called ideal if the shares of participants are taken from the
same domain as the secret. As proved in [3], this is the minimal size of the shares. The
access structures which can be realized by ideal secret-sharing schemes are called ideal
access structures. This definition of ideal single-secret sharing can be extended to multi-
secret sharing, that is, a secret sharing scheme with multiple secrets is said to be ideal if all
secrets and the shares of participants have the same size. This is the optimal efficiency for
multi-secret sharing schemes.

Many secret sharing applications, in particular those associated with the key manage-
ment, require the protection of more than one secret. As an example, consider the following
situation described by Simmons [4]. There is a missile battery in which each missile has
a different launch enable code. The problem is to devise a scheme to protect these codes
by using the same pieces of private information. This problem could be trivially solved by
realizing different secret sharing schemes, one for each launch enable code; but in this case
each participant should remember too much information. In order to reduce the amount of
information given to participants, it is interesting to investigate the possibility of construct-
ing multiple secret sharing schemes without necessarily using multiple single secret sharing
schemes.

Specific models for the sharing of many secrets have already been considered in the
literature. In [3], Karnin et al. considered the problem of sharing m secrets s1, . . . , sm among
a set of n participants. In particular, they considered the situation in which, for a fixed value
k ≤ n, any set of k participants can reconstruct the secret s j , for 1 ≤ j ≤ m, whereas, any
subset of k − 1 participants has no information about the secret s j . These schemes are called
(m, k, n) multi-secret sharing threshold schemes, which have been constructed by several
papers (see [5–10]). Schemes of this kind have also been considered by Jackson et al. [11,12].
In particular, they considered the situation in which, for a fixed value, t ∈ {1, 2, . . . , n}, there
is a secret associated with each subset P ′ ⊆ P , such that |P ′| = t . For a fixed parameter,
k ≤ t , this secret can be reconstructed by any k participants in P ′. They proved bounds on
the size of the information that participants must be held in order to ensure that up to w
participants (0 ≤ w ≤ n − t + k − 1) cannot obtain any information about a secret which
they have no access right. Such schemes are referred to a w-secure (k, t, n) multi-threshold
schemes.

In [13], the problem of sharing multiple secrets among a set of shareholders has been
generalized to the case where all secrets are shared according to a general secret access
structure. In the proposed model, any qualified set of participants can recover all the secrets,
whereas, any unqualified set of participants has absolutely no information about each secret
but, knowing some secrets, might have some information about the other secrets. Schemes
of this kind have also been considered in [14], where some optimal constructions have been
proposed. The problem of sharing many secrets according to different access structures has
been considered in [15] and further investigated in [16], where a classification of ideal secret
sharing schemes with multiple secrets has been proposed.
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By using a multi-party computation protocol, [17] solved a secret-leaking problem in
multi-secret sharing schemes. They also showed that the non-direct sum linear multi-secret
sharing scheme was preferred in reducing share expansion after comparing it with the asso-
ciated “direct sum” scheme. A corresponding relation between monotone span programs
and linear multi-secret sharing schemes has been studied in [18], where the optimal linear
multi-secret sharing schemes have also been discussed. These results are fairly interesting as
to how to construct ideal multi-secret sharing schemes for general access structures.

So far, very little is known about how to devise ideal multi-secret sharing schemes for gen-
eral access structures. Due to the difficulty of finding general results, the construction of ideal
multi-secret sharing schemes for specific families of access structures may have interesting
applications which is worth investigation (see [19,20]). Today, secure communication has
become more and more important for many communication applications. In this paper, we
consider the following scenario in a group communication. We assume that there are t users
and every pair of users have a secure communication channel connecting them (each channel
is controlled by a server). Because some communication channels may be shut down due to
natural cause or by human interruption, the secure communication service between two users
should be maintained properly as long as the remaining channels can establish an alternative
connection between two users. To achieve this objective of secure services, we advise to use
a secret key to encrypt message between every pair of users. There are all t (t − 1)/2 secret
keys, where t is the number of users in the communication. How to efficiently share these
t (t − 1)/2 secret keys among t (t − 1)/2 servers such that for every pair of users, a set of
servers who provide the alternative connection between users can recover the shared secret
key of two users is the subject of our proposed scheme.

Using monotone span programs (MSP), we devise an ideal linear multi-secret sharing
scheme (LMSS) based on connectivity of graphs. In our proposed scheme, the dealer is
a trusted entity, the servers act the role of shareholders in a secret sharing scheme, the
communication channels are denoted by edges and the users are denoted by vertices. We
propose an efficient multi-secret sharing scheme. In addition, we prove that the proposed
scheme satisfies the definition of a perfect multi-secret sharing scheme. Here, we list the
contributions of our paper.

• A novel LMSS based on connectivity of graphs is proposed, which ensures secure and
fault-tolerant communications.

• The efficiency of proposed scheme is optimal. Namely, it is an ideal LMSS and all secrets
and the shares of participants are the same size.

• The proposed scheme is a perfect LMSS, that is, a set of servers who provide the alternative
connection between two users can recover the shared secret key between two users.

The rest of the paper is organized as follows: In Sect. 2, some preliminaries are reviewed.
The MSP to permit more than one target vector is introduced in Sect. 3. Then, in Sect. 4, we
build an ideal LMSSS based on connectivity of graphs. Section 5 proves the correctness and
security of the proposed scheme. Conclusions are given in Sect. 6.

2 Preliminaries

In this section, we review some basic definitions related to secret sharing schemes. For a
unified description and detailed proof of results in the subject of secret sharing schemes, the
reader can refer to the survey articles by Simmons [4] and Stinson [21].
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2.1 Positive Access Structures and Negative Access Structures

Let P = {1, . . . , n} be the set of players. A positive access structure, denoted by �, is a
collection of subsets of P satisfying the monotone ascending property: for any A′ ∈ � and
A ∈ 2P , A′ ⊆ A implies A ∈ �. A negative structure, denoted by A, is a collection of subsets
of P satisfying the monotone descending property: for any A′ ∈ A and A ∈ 2P , A ⊆ A′
implies A ∈ A. Because of the monotone properties, for any positive access structure �
and any negative access structure A, it is enough to consider the minimum positive access
structure �min = {A ∈ � | ∀B ⊂ A ⇒ B /∈ �} and the maximum negative access structure
Amax = {B ∈ A | ∀A ⊃ B ⇒ A /∈ A}, respectively. In this paper, we consider the complete
situation, i.e., A = 2P − �.

We use the following example to illustrate these two structures. We assume that there are
3 users, A, B and C. The positive access structure of a secret is � = {{AB}, {BC}, {ABC}}.
By taking the logically complement of the access structure, we obtain the negative access
structure as A={{A′B′},{A′C′},{A′B′C′},{B′C′}}. We can obtain that the minimum positive
access structure is �min = {{AB}, {BC}} and the maximum negative access structure is
Amax={{B′}.{A′B′}}.

2.2 Linear Secret Sharing Schemes and Monotone Span Programs

Suppose that S is the secret-domain and Pi is the share-domain of player i , where 1 ≤ i ≤ n.
When a dealer D wants to share a secret s ∈ S among a set of players P = {1, . . . , n}, he
will give each player a share pi ∈ Pi . The shares should be distributed secretly, so no player
knows the share given to another player. At a later time, a subset of players will attempt to
reconstruct the secret s from the shares they collectively hold. By using Shannon’s entropy
function, a secret sharing scheme with respect to an access structure � is defined such that
the following requirements are satisfied.

(i) Correctness requirement: any subset A ⊆ P of players enabled to recover s can compute
s. Formally, for all A ∈ �, it holds H(S | A) = 0.

(ii) Security requirement: any subset A ⊆ P of players not enabled to recover s, even
pooling all of their shares together, can not reconstruct s. Formally, for all A /∈ �, it
holds 0 < H(S | A) ≤ H(S).

In the security requirement, if for any A /∈ � it holds H(S | A) = H(S) (that is, players in
A pool their shares together obtain no information on s), we call it a perfect secret sharing
scheme which we are interested in. If | S | = |Pi | for 1 ≤ i ≤ n, then the secret sharing
scheme is called ideal. Furthermore, a perfect secret sharing scheme is linear, if S = K is a
finite field, Pi are linear spaces over K and the reconstruction operations are linear [22].

Karchmer and Wigderson [23] introduced monotone span programs (MSP) as linear mod-
els computing monotone Boolean functions. Usually we denote an MSP by M(K,M, ψ),
where M is a d × l matrix over a finite field K and ψ : {1, . . . , d} → {1, . . . , n} is a sur-
jective labeling map which actually distributes to each player some rows of M . We call d
the size of the MSP. For any subset A ⊆ P , there is a corresponding characteristic vector
�δA = (δ1, . . . , δn) ∈ {0, 1}n where for 1 ≤ i ≤ n, δi = 1 if and only if i ∈ A. Consider
a monotone Boolean function f : {0, 1}n → {0, 1} which satisfies that for any A ⊆ P and
B ⊆ A, f (�δB) = 1 implies f (�δA) = 1. We say that an MSP M(K,M, ψ) computes the
monotone Boolean function f with respect to a target vector �v ∈ Kl\{(0, . . . 0)}, if it holds
that �v ∈ span{MA} if and only if f (�δA) = 1, where MA consists of the rows r of M with
ψ(r) ∈ A and �v ∈ span{MA} means that there exists a vector �w such that �v = �wMA.
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Beimel [22] proved that devising a linear secret sharing scheme (LSSS) for an access
structure � is equivalent to constructing an MSP computing the monotone Boolean func-
tion f� which satisfies f�(�δA) = 1 if and only if A ∈ �. On the other hand, an MSP
M(K,M, ψ) can compute f� if and only if there exists a vector �v which lies in the
space

⋂
A∈�min

∑
i∈A Vi − ⋃

B∈Amax

∑
i∈B Vi , where Vi is the space spanned by the row

vectors of M distributed to player i according to ψ and the vector �v can be seemed as
the target vector described above. Hence, finding the linear spaces Vi with the condition⋂

A∈�min

∑
i∈A Vi − ⋃

B∈Amax

∑
i∈B Vi �= ∅ is the key point of building an LSSS with

respect to �.

2.3 Multi-secret Sharing Schemes

The problem of sharing many secrets simultaneously among the same set of players has
been considered (with some differences in the definitions) by several researchers (see
[3,11,13–16,24]). The most straightforward definition of a multi-secret sharing scheme for
m secrets s1, . . . , sm is a natural generalization of single secret sharing schemes, where for
any 1 ≤ j ≤ m, each secret s j is associated with a (potentially different) access structure
� j on P . Let �� = (�1, . . . , �m) be the m-tuple of access structures and let S1 × · · · × Sm

be the set from which the secrets are chosen (the j th secret to be shared is chosen in S j ),
according to some probability distribution on such a set. For any i ∈ P , denote by Pi the set
of all possible shares given to player i .

In the definition of a perfect multi-secret sharing scheme, an m-tuple of secrets (s1, . . . , sm)

∈ S1 × · · · × Sm is shared in an m-tuple �� = (�1, . . . , �m) of access structures on P in
such a way that, for each j = 1, . . . ,m, the access structure � j is the set of all subsets of P
that can recover secret s j ∈ S j . This means that only the sets in � j can recover the secret s j ,
but any set A /∈ � j has no more information on s j than that already conveyed by the known
secrets. A perfect multi-secret sharing scheme is defined in [15] as follows.

Definition 1 Let �� = (�1, . . . , �m)be an m-tuple of access structures on the set of players P .
A multi-secret sharing scheme for �� = (�1, . . . , �m) is a sharing of the secrets (s1, . . . , sm) ∈
S1 × · · · × Sm in such a way that, for j = 1, . . . ,m,

(i) Any subset A ⊆ P of players enabled to recover s j can compute s j . Formally, for all
A ∈ � j , it holds H(S j | A) = 0.

(ii) Any subset A ⊆ P of players not enabled to recover s j , even knowing some of the other
secrets, has no more information on s j than that already conveyed by the known secrets.
Formally, for all A /∈ � j and T ⊆ {S1, . . . , Sm}\{S j }, it holds H(S j |AT ) = H(S j | T ).

2.4 Some Concepts About Graphs

Let G(V, E) be a graph with the vertex set V and the edge set E . Two vertices u, v ∈ V are
adjacent if they are, respectively the two endpoints of an edge in G, i.e., uv ∈ E . A path in
G is of the form v0v1 . . . vl such that v0, v1, . . . , vl are distinct vertices in G and v jv j+1 ∈ E
for 0 ≤ j < l. More precisely, we call it a path from v0 to vl . When l ≥ 2 and vl is adjacent
to v0, we get a cycle. Two vertices u, v ∈ V are connected, if there is a path from u to v. The
graph G is called connected if each pair of vertices in G are connected. A tree is a connected
graph with no cycles.

A subgraph of a graph G(V, E) is a graph G ′(V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E .
A spanning subgraph of G(V, E) is a subgraph G ′(V ′, E ′) with the vertex set V ′ = V .
A spanning tree is a spanning subgraph that is a tree. When a graph is not connected (i.e.,
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disconnected), its maximal connected subgraphs are called components. An isolated vertex
is a vertex that is not an endpoint of any edge.

3 MSP Computing m Monotone Boolean Functions

In this section we introduce the MSP computing m monotone Boolean functions.
Let M(K,M, ψ) be an MSP to permit m target vectors v1, . . . , vm , where M is a d × l

matrix over a finite field K and ψ : {1, . . . , d} → {1, . . . , n} is a surjective labeling map
which actually distributes to each player some rows of M . We call d the size of the MSP. For
any subset A ⊆ P , there is a corresponding characteristic vector �δA = (δ1, . . . , δn) ∈ {0, 1}n

where for 1 ≤ i ≤ n, δi = 1 if and only if i ∈ A. Consider a monotone Boolean function
f : {0, 1}n → {0, 1} which satisfies that for any A ⊆ P and B ⊆ A, f (�δB) = 1 implies
f (�δA) = 1. We say that an MSP M(K,M, ψ) computes m monotone Boolean functions
f1, . . . , fm with respect to m target vectors �v1, . . . , �vm ∈ Kl\{(0, . . . 0)}, if it holds that for
each j = 1, . . . ,m, �v j ∈ span{MA} if and only if f j (�δA) = 1, where MA consists of the
rows r of M with ψ(r) ∈ A and �v j ∈ span{MA} means that there exists a vector �w such
that �v j = �wMA.

Likewise, by using the same method of proof in [22], it is easy to obtain that devis-
ing a linear multi-secret sharing scheme (LMSSS) for an m-tuple �� = (�1, . . . , �m) of
access structures is equivalent to constructing an MSP M(K,M, ψ) computing m monotone
Boolean functions f�1 , . . . , f�m which satisfies for each j = 1, . . . ,m, f� j (

�δA) = 1
if and only if A ∈ � j . On the other hand, an MSP M(K,M, ψ) can compute f� j

for each j = 1, . . . ,m if and only if there exists a vector �v j which lies in the space⋂
A∈(� j )min

∑
i∈A Vi − ⋃

B∈(A j )max

∑
i∈B Vi , where Vi is the space spanned by the row

vectors of M distributed to player i according to ψ and the vector �v j can be seemed as
the target vector described above. Hence, finding the linear spaces Vi with the condition⋂

A∈(� j )min

∑
i∈A Vi − ⋃

B∈(A j )max

∑
i∈B Vi �= ∅ is the key point of building an LMSSS

with respect to �� = (�1, . . . , �m).

4 An Ideal LMSSS Based on Connectivity of Graphs

In this section we firstly define an m-tuple �� = (�1, . . . , �m) of access structures with
respect to the problem described in the introduction, i.e., the access structures is defined
based on connectivity of graphs. Afterwards, we devise an ideal LMSSS which realizes such
an m-tuple �� = (�1, . . . , �m) of access structures.

4.1 Definition of the Access Structures

Let t be a positive integer, n =
( t

2

)
= t (t − 1)/2, and P = {1, . . . , n} be the set of players.

Let G(V, E) be an undirected complete graph with the vertex set V = {v0, v1, . . . , vt−1}
and edge set E = {

vpvq | p �= q, 0 ≤ p, q ≤ t − 1
}
. Suppose that f : E → P is a bijection

which associates each player with an edge, in other words, associates every two vertices
with a number. For any subset A ⊆ P,G(V, E A) is a spanning subgraph of G(V, E) where
E A = {

vpvq ∈ E | f (vpvq) ∈ A
}
. Seeing that every two vertices vp and vq use the related

secret s f (vpvq ) to communicate with each other and a set of players can recover s f (vpvq ) if
the edges related to the players in this set can construct a path from vp to vq , there are all
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Fig. 1 The access structures for
t = 4

m = n = t (t−1)/2 secrets such that for any p �= q and 0 ≤ p, q ≤ t−1, each secret s f (vpvq )

is associated with an access structure � f (vpvq ) on P (naturally, A f (vpvq ) = 2P − � f (vpvq )).

We define such an m-tuple �� = (�1, . . . , �m) of access structures as follow:

� f (vpvq )=
{

A⊆ P | vp and vq are connected in G(V, E A)
}
, p �= q and 0 ≤ p, q ≤ t−1.

(1)

Obviously, � f (vpvq ) satisfies the monotone ascending property.

Example 1 Let t = 4, n = 6, and V = {v0, v1, v2, v3}. Let P = {1, . . . , 6}, f (v0v1) =
1, f (v1v2) = 2, f (v2v3) = 3, f (v0v3) = 4, f (v1v3) = 5, f (v0v2) = 6. See Fig. 1.

It is easy to see that m = 6 and there are all six secrets, which are shared in such a 6-tuple
�� = (�1, �2, �3, �4, �5, �6) of access structures on P as follows:

(�1)min = {{1} , {2, 3, 4} , {2, 6} , {4, 5} , {3, 5, 6}} , (�2)min = {{2} , {1, 3, 4} , {1, 6} , {3, 5} , {4, 5, 6}} ,
(�3)min = {{3} , {1, 2, 4} , {4, 6} , {2, 5} , {1, 5, 6}} , (�4)min = {{4} , {1, 2, 3} , {3, 6} , {1, 5} , {2, 5, 6}} ,
(�5)min = {{5} , {1, 6, 3} , {1, 4} , {2, 3} , {2, 6, 4}} , (�6)min = {{6} , {1, 5, 3} , {1, 2} , {3, 4} , {2, 5, 4}} .

4.2 Construction of the LMSSS

As pointed out in Sect. 3, designing an LMSSS with respect to �� = (�1, . . . , �m) is equivalent
to building an MSP M(K,M, ψ) by finding linear spaces Vi , i ∈ P such that for each
j = 1, . . . ,m,

⋂
A∈(� j )min

∑
i∈A Vi − ⋃

B∈(A j )max

∑
i∈B Vi �= ∅ and letting any vector in

this nonempty space be the target vector �v j . Based on this fact, we build an LMSSS realizing
�� = (�1, . . . , �m) defined by (1) as follows. This scheme consists of three phases:
(1) The setup phase.

Let S1 × · · · × Sm be the set from which the secrets are chosen (that is, s j to be shared is
chosen in S j , 1 ≤ j ≤ m). Let S1 = · · · = Sm = K be a finite field with the characteristic
char(K) = 2 (that is, K = F2), and V̄ = Kt−1 be the t − 1 dimensional linear space over K.
Here the condition “char(K) = 2” is needed in the proof of the following Proposition 1. For
the lager secret space (that is char(K) > 2), we can choose a appropriate positive integer h
such that F2h = K is satisfied and then by using our scheme, per bit sharing the secrets can
be realized. Obviously, it is still an ideal LMSSS and parallel processing will succeed.

Suppose that �e0 = (0, . . . , 0) ∈ Kt−1 and �e j = (0, . . . , 0, j
1 , 0, . . . 0) ∈ Kt−1for 1 ≤ j ≤

t − 1. We can associate each vertex vk with a (t − 1)-dimensional vector �ek , where 0 ≤ k ≤
t − 1. For any 1 ≤ i ≤ n, suppose that f −1(i) = vpvq , where p �= q and 0 ≤ p, q ≤ t − 1,
and then let �ui = �ep + �eq be the (t − 1)-dimensional vector associated with the player i and
Vi = span{�ui }.
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Fig. 2 Associate each vertex
with a vector

Let �v j = �u j , 1 ≤ j ≤ m be the m target vectors and �ui be the row vector distributed to
player i for 1 ≤ i ≤ n, where m = n = t (t − 1)/2. We can build an MSP M(K,M, ψ)
computing f�1 , . . . , f�m , where M is a n × (t − 1)matrix over K with the i th row vector �ui ,
(that is, ψ(i) = i for 1 ≤ i ≤ n) and �� = (�1, . . . , �m) is defined according to (1).

Example 2 (following Example 1) Let V̄ = K3. Select �e0 = (0, 0, 0), �e1 = (1, 0, 0), �e2 =
(0, 1, 0), �e3 = (0, 0, 1). Associate vertex v0 with �e0, vertex v1 with �e1, vertex v2 with �e2,
vertex v3 with �e3 (see Fig. 2). We obtain that

V1 = span{(1, 0, 0)}, V2 = span{(1, 1, 0)}, V3 = span{(0, 1, 1)},
V4 = span{(0, 0, 1)}, V5 = span{(1, 0, 1)}, V6 = span{(0, 1, 0)}.

(2) The distribution phase.
The dealer first randomly selects a vector �r ∈ Kt−1 such that the inner product (�v j , �r) =

s j , 1 ≤ j ≤ m. Then he computes M�r τ and transmits Mi �r τ to player i (1 ≤ i ≤ n), where
“τ” is the transpose and Mi denotes the matrix M restricted to the row i withψ(i) = i . Thus,
each player i (1 ≤ i ≤ n) gets the share Mi �r τ .
(3) The reconstruction phase.

For any A ∈ � j (1 ≤ j ≤ m), since �v j ∈ ∑
i∈A Vi , there exists a vector �w such that

�v j = �wMA. So s j = (�v j , �r) = �v j · �r τ = ( �wMA)�r τ = �w(MA�r τ ), that is, the players in A
can reconstruct the secret s j by computing a linear combination of their shares.

Obviously, the linear multi-secret sharing scheme that we build is ideal. Namely, the
lengths of all secrets and shares are equal to one bit.

Example 3 (following Example 2) Suppose that M(K,M, ψ) is the monotone span program
constructed as above and the six target vectors are

�v1 = �u1 = (1, 0, 0), �v2 = �u2 = (1, 1, 0), �v3 = �u3 = (0, 1, 1),

�v4 = �u4 = (0, 0, 1), �v5 = �u5 = (1, 0, 1), �v6 = �u6 = (0, 1, 0).

Note that

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

�u1

�u2

�u3

�u4

�u5
�u6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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and ψ(i) = i for 1 ≤ i ≤ 6. Then the distribution of six shares and the reconstruction of six
secrets are completed as above.

5 Correctness and Security Proof

We now prove that our scheme is a perfect multi-secret sharing scheme. Firstly, we prove the
following Proposition.

Proposition 1 Suppose that �� = (�1, . . . , �m) is defined by (1) and K, �ui , Vi , 1 ≤ i ≤ n are
given as above. For any 1 ≤ j ≤ m, let �v j = �u j , then it holds that �v j ∈ ⋂

A∈(� j )min

∑
i∈A Vi −⋃

B∈(A j )max

∑
i∈B Vi .

Proof Firstly, we prove that �v j ∈ ⋂
A∈(� j )min

∑
i∈A Vi for any 1 ≤ j ≤ m. For any A ∈

(� j )min, suppose that f −1( j) = vpvq . According to (1), it implies that there must exist a path
vi0vi1 . . . vik from vp to vq in G(V, E A), where vi0 = vp, vik = vq(0 ≤ i0, . . . , ik ≤ t − 1).
Namely, �u j = �ep + �eq = �ei0 + �eik . We assume that f (vil vil+1) = hl(0 ≤ l ≤ k − 1), where
hl ∈ A and �uhl = �eil + �eil+1 . We obtain that

�uh0 + �uh1 + · · · + �uhk−1 = (�ei0 + �ei1)+ (�ei1 + �ei2)+ · · · + (�eik−1 + �eik ) = �ei0 + �eik = �u j .

Since Vi = span{�ui }(i ∈ P), it implies that for any A ∈ (� j )min, there exists a linear
combination of the vectors in

∑
i∈A Vi such that it equals to �v j = �u j , where 1 ≤ j ≤

m. Namely, �v j = �u j ∈ ∑
i∈A Vi for every A ∈ (� j )min. Hence, we obtain that �v j ∈⋂

A∈(� j )min

∑
i∈A Vi for any 1 ≤ j ≤ m. ��

Then we prove that �v j /∈ ⋃
B∈(A j )max

∑
i∈B Vi for any 1 ≤ j ≤ m. For every B ∈ (A j )max,

suppose that f −1( j) = vpvq . According to (1), it implies that there does not exist a path
from vp to vq in G(V, EB). We assume that there exists a linear combination of the vectors
in

∑
i∈B Vi such that it equals to �v j = �u j . Namely, �uh0 + �uh1 + · · · + �uhg = �u j = �ep + �eq ,

where hl ∈ B(0 ≤ l ≤ g). Suppose that f (hl) = vxl vyl . We obtain that

�ep + �eq = (�ex0 + �ey0)+ · · · + (�exg + �eyg ), (2)

where �exl , �eyl ∈ {�e0, �e1, . . . , �et−1} (0 ≤ l ≤ g). Due to the fact that �e0, �e1, . . . , �et−1 are
linearly independent and K = F2, we obtain that the number of times �ep and �eq appears on
the right side of (2) must be an odd number, but the number of times �er (1 ≤ r ≤ t −1 and r �=
p, q) appears on the right side of (2) must be an even number. Thus, the Eq. (2) actually
determines a path from vp to vq in G(V, EB). This is a contradiction. We obtain that for
every B ∈ (A j )max, there does not exist a linear combination of the vectors in

∑
i∈B Vi

such that it equals to �v j = �u j , where 1 ≤ j ≤ m. Namely, �v j = �u j /∈ ∑
i∈B Vi for every

B ∈ (A j )max. Hence, �v j /∈ ⋃
B∈(A j )max

∑
i∈B Vi for any 1 ≤ j ≤ m.

As a consequence of the above, it holds that

�v j ∈
⋂

A∈(� j )min

∑

i∈A
Vi −

⋃

B∈(A j )max

∑

i∈B
Vi

for any 1 ≤ j ≤ m.

Theorem 1 The scheme presented in Sect. 4 is a perfect multi-secret sharing scheme.

Proof From Proposition 1, for 1 ≤ j ≤ m, seeing that �v j ∈ ⋂
A∈(� j )min

∑
i∈A Vi , it implies

that any subset A ∈ � j of players can reconstruct the secret s j by computing a linear
combination of their shares. Hence, it holds that H(S j | A) = 0. ��
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At the same time, from Proposition 1, for any 1 ≤ j ≤ m, seeing that �v j = �u j /∈⋃
B∈(A j )max

∑
i∈B Vi , we obtain that there does not exist a linear combination of their shares

such that it equals to s j . It implies that any subset B /∈ � j (namely, B ∈ A j ) of players, even
knowing some of other secrets (that is, they can obtain some of other secrets by computing a
linear combination of their shares), has no more information on s j than that already conveyed
by the known secrets. Hence, it holds that H(S j | BSB) = H(S j | SB), where SB denotes the
secrets that B can compute.

Therefore, according to Definition 1, the scheme is a perfect multi-secret sharing
scheme.

As a consequence, our scheme is an ideal and perfect linear multi-secret sharing
scheme.

Remark 1 In a verifiable secret sharing scheme the validity of the shares can be verified,
hence players are not able to cheat. Based on our scheme, we can further construct an ideal
verifiable multi-secret sharing scheme by adding the existing verifiability methods where the
intractability of discrete logarithm problem is frequently used (see [6,7,9,10]).

6 Conclusions

In this paper we consider an ideal linear multi-secret sharing scheme based on connectivity
of graphs. For a set of players P = {1, . . . , n}, every pair of vertices, p and q , use the related
secret spq to communicate with each other such that a set of servers (edges) can recover spq

if these edges can provide an alternative comnnection between p and q . In particular, we put
forward a general and simple method of construction such a scheme based on monotone span
programs. The correctness and security of the proposed scheme are proved. This scheme is
suitable for secure and efficient communications.
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