
Wireless Pers Commun (2013) 73:1089–1116
DOI 10.1007/s11277-013-1250-5

IPv6 Multicast Forwarding in RPL-Based Wireless
Sensor Networks

George Oikonomou · Iain Phillips · Theo Tryfonas

Published online: 12 June 2013
© Springer Science+Business Media New York 2013

Abstract In wireless sensor deployments, network layer multicast can be used to improve
the bandwidth and energy efficiency for a variety of applications, such as service discovery
or network management. However, despite efforts to adopt IPv6 in networks of constrained
devices, multicast has been somewhat overlooked. The Multicast Forwarding Using Trickle
(Trickle Multicast) internet draft is one of the most noteworthy efforts. The specification of
the IPv6 routing protocol for low power and lossy networks (RPL) also attempts to address
the area but leaves many questions unanswered. In this paper we highlight our concerns
about both these approaches. Subsequently, we present our alternative mechanism, called
stateless multicast RPL forwarding algorithm (SMRF), which addresses the aforementioned
drawbacks. Having extended the TCP/IP engine of the Contiki embedded operating system to
support both trickle multicast (TM) and SMRF, we present an in-depth comparison, backed by
simulated evaluation as well as by experiments conducted on a multi-hop hardware testbed.
Results demonstrate that SMRF achieves significant delay and energy efficiency improve-
ments at the cost of a small increase in packet loss. The outcome of our hardware experiments
show that simulation results were realistic. Lastly, we evaluate both algorithms in terms of
code size and memory requirements, highlighting SMRF’s low implementation complexity.
Both implementations have been made available to the community for adoption.

G. Oikonomou (B)
Faculty of Engineering, University of Bristol, Merchant Venturers Building,
Woodland Road, Clifton BS8 1UB, UK
e-mail: g.oikonomou@bristol.ac.uk

G. Oikonomou · I. Phillips
Computer Science, Loughborough University, Loughborough LE11 3TU, UK

I. Phillips
e-mail: i.w.phillips@lboro.ac.uk

T. Tryfonas
Faculty of Engineering, University of Bristol, Queen’s Building,
University Walk, Clifton BS8 1TR, UK
e-mail: theo.tryfonas@bristol.ac.uk

123

1090 G. Oikonomou et al.

Keywords 6LoWPAN · Wireless sensor networks · IPv6 multicast · Trickle

1 Introduction and the Need for Multicast in Wireless Sensor Networks

Over the past years, the research community has invested considerable efforts towards the
seamless integration of wireless sensor networks (wsns) with the Internet. Previous work
has demonstrated that pure ipv6-based wsn architectures are not only viable but can also out-
perform application-centric designs [1]. Significant standardization efforts have contributed
to mature, interoperable implementations of embedded ipv6 stacks, such as uipv6 which
is distributed as part of the Contiki embedded Operating System. Among those standards
are rfc 4944 [2] and rfc 6282 [3]. Published by ietf’s 6lowpan work group, they discuss
techniques for ipv6 datagram fragmentation and header compression, in order to achieve
their efficient transmission within ieee 802.15.4 low power radio frames. For those networks
(6lowpans), the most widely adopted standard for routing is the “IPv6 routing protocol for
low-power and lossy networks” (rpl), which is specified in rfc 6550 [4].

The importance of network layer multicast forwarding in 6lowpans stems from its ability
to improve the efficiency of applications adopting a one-to-many communication paradigm.
Examples of services which can benefit by multicast include service discovery [5,6], network
management and publish/subscribe schemes. For instance, extended multicast dns (xmdns)
builds on the mdns specification [7] and expands it “to site-local scope in order to support
multi-hop LANs that forward multicast packets but do not provide a unicast DNS service” [8].
uBonjour [6] is a service discovery scheme for resource-constrained devices in the wireless
embedded internet. It is essentially Bonjour’s lightweight variant and is based on multicast
dns (mdns) and dns service discovery (dns-sd) [9], which have recently had their message
sizes optimised for 6lowpans [10]. Additionally, the contstrained application protocol (coap)
is an emerging standard aiming at the integration of wsn devices with the web. It operates
over udp (mandatory) or tcp (optionally) and has been designed so that its messages can be
easily translated to http. It targets embedded devices with severe memory and power supply
restrictions. The current version of its specification provides an extensive discussion on its
operation over ipv6 multicast [11].

Previous research efforts in the area of multicast for wsns focus on bespoke network stack
designs and do not investigate ipv6-specific challenges. The majority of multicast forward-
ing algorithms encountered in current literature are based on geographic routing [12–17].
However, most of those approaches have certain characteristics and make assumptions which
render them unsuitable for ipv6-based wsn deployments. For instance, many of them assume
that, for every multicast message, the sender is aware of the addresses or IDs of all intended
destinations. Additionally, some efforts suffer from poor scalability while others rely on
unrealistically large network packets. Lastly, they are only applicable in situations where the
source as well as all destinations are within the wsn boundaries.

Despite the number of existing efforts, ipv6-based multicast has been somewhat over-
looked by the 6lowpan research community, as we discuss further in Sect. 2. The “Multicast
Forwarding Using Trickle” internet draft (Trickle Multicast—tm) [18] discusses an algo-
rithm which poses among the most suitable candidates. The rpl rfc also briefly mentions
multicast, but the discussion focuses on group management without providing a sufficient
level of detail in terms of forwarding.

The open issues outlined above have motivated us to design and implement smrf, a
lightweight Stateless Multicast rpl Forwarding algorithm. In this paper, we disclose its design
in depth and we highlight how it addresses current open issues while maintaining high speed,

123

IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks 1091

energy efficiency and low complexity. Compared to geographic multicast algorithms, smrf
does not require geolocation information (neither explicit nor via a location service) and
does not suffer from the aforementioned scalability and datagram size issues. Moreover, by
recommending a forwarding algorithm, smrf fills the gaps left open by the rpl rfc. In this
context, this paper’s contributions are the following:

– We compare the performance of smrf against tm. For the evaluation, we consider four
metrics: (1) Packet delivery ratio, (2) End-to-end delay, (3) Out-of-order datagram deliv-
ery ratio and (4) Energy consumption. Evaluation is performed through simulations as
well as on a multi-hop hardware testbed. We also investigate the complexity of the two
algorithms and we compare their code size and memory requirements. Simulation and
testbed results demonstrate that smrf is less complex and that it outperforms tm on three
of the four metrics.

– Based on the outcome of the comparative evaluation, we present a host of criteria, which
can be used by network engineers and designers in order to select the more suitable
between smrf and tm, depending on their deployment’s specific needs.

– We have extended Contiki’s tcp/ip stack to support both algorithms. Both implementa-
tions have been released1 to the community for adoption and further scrutiny as a part of
our port of the Contiki OS2,3 [19].

This paper extends our previous work [20], providing the following additional contributions:
(1) Extended design details for smrf, (2) Evaluation of an additional metric: the ratio of
datagrams delivered out of order by tm (Sect. 5.4), (3) Additional simulation experiments in
a different topology for the evaluation of both algorithms on a hop-by-hop basis (Sects. 5.2.1,
5.3.1 and 5.5.1), (4) Results from the evaluation of both algorithms on a hardware testbed
(Sect. 6) and lastly (5) Discussion on the code size and memory requirements for both
algorithms (Sect. 7).

2 Related Work

2.1 Multicast in Traditional WSNs

Previous research efforts in the area of multicast for wsns have primarily been focusing
on traditional, application-centric network designs and as such do not address ipv6-specific
challenges. Multicast forwarding algorithms based on geographic routing are dominant in
existing bibliography and can be broadly classified as either purely geographic [12–15] or
hybrid [16,17], whereby the geographic component is complemented by features of other
approaches, such as hierarchical routing.

The geographic multicast routing (gmr) algorithm builds on existing unicast geographic
routing approaches. By adapting them, it aims to achieve multicast message delivery to all
intended destinations while maintaining minimum bandwidth consumption. Nodes exchange
position information with their neighbours through periodic beacons. gmr is characterised by
low computational complexity and a small memory footprint [12]. According to subsequent
works, gmr scales better than some of its predecessors [13] but still suffers from scalability
issues when dealing with large deployments [16].

1 https://github.com/g-oikonomou/contiki-sensinode/tree/mcast-forward.
2 https://github.com/g-oikonomou/contiki-sensinode/wiki.
3 http://nets-www.lboro.ac.uk/george/contiki-sensinode/.

123

https://github.com/g-oikonomou/contiki-sensinode/tree/mcast-forward
https://github.com/g-oikonomou/contiki-sensinode/wiki
http://nets-www.lboro.ac.uk/george/contiki-sensinode/

1092 G. Oikonomou et al.

Using periodic beacons can have negative side-effects such as collisions and increased
energy consumption [13]. Based on this observation, bruma attempts geographic multi-
casting without beacons, whereby neighbour positions are discovered reactively. Next hop
selection happens opportunistically through a mechanism which only requires a low number
of control messages. The authors demonstrate that bruma is more efficient than gmr [13].

Carzaniga et al. [14] propose a compact and completely decentralised multicast scheme
with asymptotically optimal network congestion properties. It operates by building a multicast
forwarding tree over an underlying geographic unicast routing service, which allows nodes
to send messages to a destination defined by a coordinate pair (x, y).

Receiver-based multicast (rbmulticast) [15] is another purely geographic approach. Its
principal novelty lies in the next-hop determination phase: potential next hops contend for
the channel based on their contribution towards delivering a packet to its destination. Nodes
offering the highest forward progress have higher probability of getting selected as next
hop. By adopting this approach, RBMulticast can operate without routing tables and without
maintaining a forwarding tree. To achieve this, rbmulticast embeds the geographic location
of all destinations in the packet header. This raises questions regarding its scalability in large
deployments.

The hierarchical geographic multicast routing (hgmr) [16] is a hybrid algorithm com-
bining the key design concepts of gmr [12] and the hierarchical rendezvous point multicast
(hrpm) protocol [21]. The resulting hgmr algorithm is further optimised to be more energy
efficient and scalable. hgmr divides multicast groups into subgroups by using hrpm’s geolo-
cation hashing. It takes advantage of layer 2 reliability mechanisms by using hrpm’s unicast
forwarding approach for long, sparse paths and reverts to layer 2 broadcasting in areas of
high density in order to reduce the number of transmissions. When unicast forwarding is in
use, hrpm (and therefore hgmr) uses source routing along the branches of an overlay tree
generated by the traffic source. In this work the authors conducted a performance evaluation
of the three algorithms in a simulated ieee 802.11 network. It is therefore difficult to under-
stand how the algorithms would behave under the frame size and bandwidth limitations or
the loss characteristics related to ieee 802.15.4 networks.

The multicast routing with branch information nodes (mr.bin) [17] protocol is a hybrid
approach, combining geographic unicast routing with state-based multicast. It maintains
multicast states only on branch nodes of the forwarding tree. Communication between non-
branching nodes takes place with geographic unicast. In order to perform datagram forward-
ing, each node maintains a potentially long list of next hops. Messages are tagged with a
2-byte multicast group identifier but the management scheme for those ids is not discussed;
it is unclear how a node can choose which group id to join and how two different groups are
prevented from having the same id.

Adaptive geo-source multicast routing (agsmr) [22] is a geographic unicast and source
multicast hybrid. It relies on generating a forwarding tree at the traffic source. Path infor-
mation is embedded in packet headers in a compressed format which uses 2 bytes per hop,
an additional 2 bytes per branch and reduced by 2(n − 2) bytes for each n-node long,
non-branching path. The authors demonstrate that, with this compression scheme in place,
agsmr’s packets are smaller than gmr’s. However, reported packet sizes have an order of
magnitude of KBytes (e.g. about 9 KB for a tree with about 50 subscribers in a network of
1024 nodes). Packet size increases with the number of subscribers as well as the total number
of network nodes.

Branch aggregation multicast (bam) [23] differs from the aforementioned efforts in that it
operates without knowledge of node geolocation. bam’s design has two components: s- bam
achieves single-hop aggregation at branching nodes and m- bam aims to reduce the number

123

IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks 1093

of branches. The former tries to combine multiple layer 2 unicasts within a single radio frame,
by extending headers to list the addresses of all intended destinations. Recipients reply with
an acknowledgement frame, using a random back off to avoid ack collisions. m- bam relies
on existing forwarding tables, which can be populated by any routing protocol. The authors
make the assumption that the routing table contains multiple candidate next hops for the
same destination and they propose an algorithm for path aggregation. However, routing table
size has an impact on scalability with increasing network size [19] even when the table only
lists a single next hop per destination. Storing multiple candidate next hops per destination
would impose further memory overheads4 and should not be considered common practise.
Furthermore, bam does not manage multicast groups internally. Instead, it assumes that the
network adopts a data centric routing model, whereby nodes broadcast requests for data
and their neighbours remember querying node addresses in order to forward relevant data
accordingly [23].

All aforementioned algorithms assume that the message source is aware of and maintains
a list of all destinations, uniquely identified by an attribute such as a node id, address or
name. This is untrue in the case of ip and ipv6 multicast, whereby datagram destination is
expressed as the multicast group’s ip or ipv6 address and the traffic source is oblivious with
respect to the unicast address of each individual group member.

The gmr protocols discussed above also require knowledge of the geolocation of all
destinations. When this information is not available, a geographic routing service can be
used in conjunction with a location service, such as mls [24] or gls [25]. Querying the
location service incurs time overheads which have an impact on delivery delay, compared
to non-geographic approaches which do not rely on this information. However, this is not
considered at all in relevant work.

Many of the above multicast forwarding algorithms embed a list of all destinations in the
packet header [12,13,15,17,22,23]. This increases the byte overhead associated with each
data transmission and has an adverse impact on the protocol’s scalability [16].

Lastly, with all those approaches traffic is confined within the deployment’s boundaries.
In order to be able to communicate beyond the wsn’s borders, one would need a dedicated
gateway. This does not apply to 6lowpans and ipv6 multicast forwarding protocols, such as
those discussed later on in this paper.

2.2 Multicast in 6LoWPANs

Previous research with focus on 6lowpans is very limited. Sá Silva et al. [26] investigated
the applicability and usefulness of traditional multicast paradigms in wsns. In this work,
the authors evaluate multicast ad hoc on-demand distance vector (maodv) [27] and source-
specific multicast (ssm) [28] in a simulated sensor network. They demonstrate that, in their
simulated scenarios, multicast can offer significant advantages over traditional network-wide
broadcast flooding and unicast. Results also suggest that maodv and ssm are comparable in
terms of bandwidth consumption and energy efficiency.

Clausen and Herberg [29] conducted relevant research with focus on rpl networks. Despite
the fact that this work only discusses network-wide broadcast, it offers some important insight
on related issues and techniques. In their contribution, the authors conduct experiments by
simulating an ieee 802.11b network, which cannot capture the duty cycling aspects of modern
wsns, nor the low-power, lossy nature of ieee 802.15.4-compliant radio hardware.

4 In the version of the Contiki OS used for this research, each entry in the IPv6 routing table occupies
approximately 48 bytes of RAM, the exact number depending on the hardware platform and toolchain.

123

1094 G. Oikonomou et al.

The rpl rfc [4] briefly discusses built-in multicast support. In rpl networks, nodes
advertise unicast downward paths inside destination advertisement object (dao) messages.
An rpl instance is administratively configured with one out of a possible four modes of
operation (mop). Nodes may only participate in the network as routers if they support the
advertised mop, otherwise they may only join as leaf nodes. In the Storing with multicast
support mop, dao messages are also used for group management by advertising multicast
prefixes. Unfortunately, the approach leaves many open issues, as we discuss in greater detail
in Sect. 4.

3 Multicast Forwarding with Trickle

In wired networks, multicast mechanisms rely on topology maintenance in order to forward
packets to their intended destinations. Due to memory restrictions, this is a very challeng-
ing task in networks of constrained nodes. The multicast Forwarding with Trickle algorithm
(Trickle Multicast—tm) addresses this challenge by providing a means of supporting ipv6

multicast without having to rely on topology information. To control the frequency of data-
gram exchange, tm adopts the pre-existing Trickle algorithm.

Trickle [30,31] is a mechanism that governs the frequency of periodic information
exchange among neighbouring nodes in a low power, lossy network. Strictly speaking, trickle
only specifies the dynamic behaviour of periodic timers. Its aim is to provide a method of
propagating state information efficiently, without constantly flooding the network with con-
trol messages. In simple terms: when two single-hop neighbours share the same knowledge
(agree), control message exchange rate slows down exponentially, achieving energy and
bandwidth efficiency. Conversely, when an inconsistency is detected, the timer’s interval (I)
is reset to a minimum value (called I min) and changes propagate within milliseconds. After
a long period without changes, the trickle timer reaches its maximum interval called I max ,
which is expressed as the maximum number of I min doublings. Thus, for a trickle timer con-
figured with (I min, I max), the maximum trickle interval in time units will be I min ∗2I max

and can result in very infrequent message exchange, with nodes sending only a few pack-
ets per hour [31]. Trickle only dictates the behaviour of timers, in other words when nodes
should exchange messages, not how nor their format. This trait makes it very attractive for any
protocol involving periodic exchange of state information. Trickle was originally designed
for data dissemination and network reprogramming [32] and has been adopted by multiple
works, such as Deluge [33] and dip [34]. It also handles the frequency of rpl dio (upward
route advertisement) messages [4]. Lastly, trickle underpins the tm forwarding algorithm
which is discussed in the remainder of this section.

With tm, each multicast datagram must carry a Multicast Option header in the shape of
an ipv6 hop-by-hop option (hbho) extension header. The multicast option tags the packet
with a a sequence number, a single-bit M parameter and the unique identifier (Seed ID) of
the sender, which may be different that the datagram’s ipv6 source address. The contents of
the multicast option remain unchanged en route. Each network node maintains a cache of
recently seen multicast packets, uniquely identified by the information in the hbho. Upon
reception of a multicast datagram, a node inspects the multicast option and, if the packet is
new, it gets added to the cache.

Neighbouring nodes use icmpv6 datagrams to exchange information about their cache
contents, at a frequency controlled by trickle timers. If a node’s cache contents don’t match
the information in a received icmpv6 datagram, the node resets its trickle timer to its minimum
interval (I min) in order to facilitate quick propagation of new packets. Inconsistency is

123

IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks 1095

also triggered upon reception of a new multicast datagram. At every trickle interval, nodes
forward inconsistent datagrams to their single-hop neighbours inside link-layer broadcast
frames.

3.1 Advantages

By design, tm has some very significant advantages. More specifically:

Generality tm will work, without modifications, alongside any routing protocol.
Reliability By caching datagrams and maintaining per-packet state information, tm
increases its reliability (high packet delivery ratio / low loss). The exact reliability levels
are heavily influenced by the choice of I min and the underlying duty cycling algorithm.
Guaranteed no duplicates With the help of the hbho, tm guarantees that each node in
the network will receive each individual datagram at most once.

3.2 Concerns

The design of the tm algorithm raises a number of concerns which are outlined below and
further analysed in the evaluation sections (Sects. 5, 6, 7).

Scalability One of the arguments for specifying the tm algorithm in the first place was
that maintaining topology information is hindered by memory constraints. The algorithm
bypasses this requirement and as a result scales well with the number of nodes in a network.
However, topology maintenance is replaced with bespoke, per-packet state maintenance. This
raises concerns regarding scalability with traffic volume, cache size and number of multicast
traffic sources.

Performance In order to avoid duplication, nodes never forward multicast datagrams
immediately. Instead, they cache them and wait for icmpv6 control messages. When an
inconsistency is detected, the packets causing it are scheduled for transmission during the
next trickle interval. This forwarding delay has an impact on end-to-end delay and can
be heavily influenced by trickle parameters. The trickle rfc [31] dictates that “A protocol
specification that uses Trickle MUST specify: Default values for Imin, Imax, and k...”. Cur-
rently, this is not the case for tm; its internet draft only outlines examples with indicative
values [18]. Furthermore, as we demonstrate in Sects. 5 and 6, the values used in these exam-
ples are sub-optimal. We outline alternative recommendations, supported by experimental
results.

Complexity Nodes maintain two trickle timers, a sliding window for each source of mul-
ticast traffic and a cache of recent multicast datagrams. They also need to be able to create
and process a new type of icmpv6 message and a new type of hbho extension header. Espe-
cially in the case of incoming icmpv6 messages, a node needs to compare all entries in the
message against all cached messages. This raises concerns in terms of complexity, code size
and memory requirements. This is further investigated in Sect. 7.

Multicast versus Broadcast Due to lack of topology maintenance and group registrations,
tm forwards all multicast messages to all parts of the network, irrespective of whether they
are needed or not. Any datagram with a routable multicast ipv6 destination address is in
practice treated as a network-wide broadcast. In sparse multicast topologies (where only a
small percentage of nodes is interested in a multicast flow), adopting tm leads to energy and
bandwidth inefficiencies.

Arrival Order Due to its store and forward nature and per-packet state maintenance, tm is
susceptible to out-of-order datagram arrivals. Depending on the application relying on mul-
ticast, this trait may or may not be a problem. For instance, code dissemination applications

123

1096 G. Oikonomou et al.

generally distribute an image in a number of chunks. Changes only get committed after all
chunks have been received successfully, thus arrival order is highly irrelevant. However, in
other types of applications (e.g. network management) a packet arriving out of order could
cause undesirable behaviour. In this case, the application would have to employ a technique
to detect out of order datagram delivery and mitigate its impact.

Trickle Multicast in RPL Networks Even though there is no technical reason preventing
tm and rpl from happily coexisting in the same network, contradiction in the respective
specifications makes the situation less clear. More specifically, the tm internet draft specifies
that “The tm option is carried in an IPv6 Hop-by-Hop Options header, immediately following
the IPv6 header” [18]. The rpl rfc specifies that all data plane datagrams also carry an
hbho, used for loop detection and avoidance. The format and functionality of this header
is further specified in a separate rfc, which states that “The RPL Option is carried in an
IPv6 Hop-by-Hop Options header, immediately following the IPv6 header” [35]. With both
hbhos immediately following the ipv6 header, co-existence of the two protocols becomes
less straightforward.

4 Stateless Multicast RPL Forwarding—SMRF

In this paper, we contribute a multicast forwarding algorithm called smrf, as an alternative
to tm for rpl networks. The principal rationale behind smrf is that nodes participating in an
rpl network exchange topology information in order to build the basic rpl construct (called
a destination-oriented directed acyclic graph—dodag) and to populate their routing tables.
The dodag is a tree structure and is thus particularly attractive to form the basis of multicast
forwarding. Since network nodes perceive the network as a tree, we can capitalise on it in
order to perform multicast forwarding without defining new message formats.

IPv6 routing protocol for low power and lossy networks (rpl) nodes advertise downward
paths inside dao messages (data messages in rpl networks can only flow up or down the
dodag). According to its specification, one of rpl’s mop is Storing with multicast support.
In this mop, unicast dao messages are also used to relay multicast group registrations up the
dodag. Those daos are identical to the ones conveying unicast information except for the
type of prefix being advertised, which is a routable multicast ipv6 address.

Nodes can join a multicast group by advertising the group’s multicast address in their
outgoing dao messages, which only travel upwards in the dodag. Upon reception of such
message from one of its children, a router makes an entry in its routing table for the advertised
multicast address. Conceptually, this entry indicates that a node under us in the dodag is a
member of this group. This router will then (1) advertise this prefix in its own daos and (2)
relay multicast datagrams addressed to this destination.

This rpl built-in mechanism solves the problem of propagating group membership infor-
mation towards the dodag root. However, it suffers from two limitations: (1) It lacks a
method which would prevent a node from accepting the same datagram twice or more.
(2) The rpl rfc specifies that each router should copy multicast datagrams to a subset of its
link layer neighbours, for instance only its preferred parent or only those children that are
registered group members. This destination filtering can only be achieved by using frames
with a unicast destination at the link layer. Thus, a node would have to transmit each datagram
multiple times, once per intended recipient. This would incur additional costs in terms of
traffic, delay and processing time and would be largely inefficient in dense networks. It would
also increase memory requirements, since each router would need to maintain associations
between multicast groups and neighbour subsets.

123

IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks 1097

Fig. 1 The smrf algorithm

Stateless multicast RPL forwarding algorithm (smrf) is a multicast forwarding algorithm
that uses information provided by rpl’s group membership scheme and addresses both those
drawbacks. Its operation, illustrated in the flowchart in Fig. 1, is the following:

– A node will accept an incoming multicast datagram if and only if the datagram’s link
layer source address is the link layer address of the node’s preferred rpl parent (which
can be looked up in the node’s neighbour cache).

– If the message gets accepted, it will get delivered up the network stack locally if and only
if the node is a member of the multicast group.

– If the message gets accepted, it will get forwarded if and only if there is an entry for the
datagram’s ipv6 destination address (multicast group) in the node’s routing table (a node
below us in the dodag is a group member).

4.1 Cross-Layer Optimizations

With smrf, multicast datagrams are always transmitted as layer 2 broadcast frames, with some
cross-layer optimisations in place so as to improve performance. To better understand how
these work, it is necessary to visit the concept of duty cycling and 802.15.4 frame transmission
with ContikiMAC [36,37], which is one of the main duty cycling algorithms used by the
Contiki OS. Despite the misleading ‘mac’ suffix, ContikiMAC is actually a duty cycling
mechanism which can operate in conjunction with a variety of mac layers (e.g. csma). In

123

1098 G. Oikonomou et al.

Fig. 2 Broadcast packet transmission with ContikiMAC

very simple terms, each node wakes up every few milliseconds and checks the channel for
traffic. This interval is called channel check interval (cci) or Channel Sampling Period. If no
traffic is present, the radio transceiver is turned back off. If traffic is detected, the node stays
on until complete reception. To send a frame, a node will transmit it repeatedly (strobes)
for slightly longer than cci, waiting for a brief time interval between two strobes for a
potential acknowledgement frame (ack). This repeated transmission, often called a packet
train, lasts long enough for intended recipients to wake up, detect the packet and receive
it, irrespective of exactly when they last went to sleep. This removes the complexity of
maintaining synchronisation between neighbours. In the case of unicast packets, the receiver
will send an ack frame, causing the sender to terminate its chain of strobes and thus conserve
energy. However, broadcast frames must be received by all neighbours and there are no
acks; the sender always has to go through the entire packet train, as illustrated in Fig. 2.
Thus, broadcast transmissions are fundamentally more costly. The actual implementation
of the ContikiMAC algorithm is more sophisticated and optimised (e.g. phase locks, burst
support), but the concept remains the same.

A side effect of the algorithm discussed above is that when a node receives a broadcast
frame, it should not attempt to transmit before the sender has gone through its entire packet
train. Immediate transmission would signal a collision and the outgoing packet would be
dropped. Thus, smrf introduces a short delay (D), defined as D = max(Fmin, CC I) where
CC I is the Channel Sampling Interval as reported by the underlying duty cycling algorithm
and Fmin is a configuration parameter. Configuring smrf with a non-zero value for Fmin
is particularly useful in the case of duty cycling algorithms which keep RF hardware always
on (CC I = 0 ms). One such duty cycling algorithm is Contiki’s NullRDC.

In order to mitigate the negative effect of hidden terminals, smrf can also optionally further
delay datagram forwarding by a random factor. This is parametrised on Spread, a positive
integer. The final forwarding delay is a random number in [D, Spread ∗ D] with granularity
equal to D. Table 1 outlines the resulting forwarding delays for various configuration values
and duty cycling algorithms.

123

IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks 1099

Table 1 Examples of smrf configuration parameters and resulting forwarding delay

Duty cycling Configuration Outcome

Algorithm cci(ms) Fmin (ms) Spread (ms) D (ms) Final delay (ms)

ContikiMAC 125 ≤125 1 125 125

ContikiMAC 125 ≤125 4 125 [125, 500]

NullRDC 0 0 Ignored 0 Immediate

NullRDC 0 31.25 8 31.25 [31.25, 250]

4.2 Benefits and Drawbacks

With smrf, multicast traffic can only travel downwards in the dodag. This makes the algo-
rithm useful for applications such as service discovery or network management. Since each
node will only consider datagrams received from its preferred parent and will forward each
packet at most once, it guarantees that each datagram can be received at most once per node,
without need for a method of uniquely identifying messages.

The gain in comparison to tm is multi-fold: smrf uses multicast groups to differentiate
between nodes that are interested in a flow and those that are not. Instead of blindly forwarding
all datagrams to all nodes, multicast datagrams will only reach parts of the network that have
expressed an interest in the flow by joining a multicast group.

Stateless multicast RPL forwarding algorithm (smrf) does not define any control messages
of its own. It operates based on rpl parent information and on multicast group membership
information, carried inside rpl dao messages, as defined in [4].

Nodes do not need to maintain per-packet state. A drop or forward decision is taken
for each datagram individually and is based on information available at the moment of its
arrival. A positive side-effect of this on the spot approach is that smrf can’t entangle datagram
ordering. Thus, unless message order gets shuffled around by an underlying layer, smrf will
deliver them in the correct order.

Stateless multicast RPL forwarding algorithm (smrf) is very lightweight in terms of
complexity, code footprint and memory requirements, as demonstrated in Sect. 7. This makes
it a very attractive option for severely constrained hardware.

Compared to tm, smrf achieves lower end-to-end delays and demonstrates better energy
efficiency. This is further analysed in Sects. 5.3 and 5.5.

The trade-off in order to achieve the aforementioned improvements, is a decrease in packet
delivery ratio (increased packet loss), compared to tm which is by design more reliable. Packet
delivery ratio is scrutinised for different traffic rates under multiple network topologies in
Sect. 5.2.

5 Simulation Results

In order to evaluate the algorithms, we performed a series of experiments in Contiki’s Cooja
simulator, with common parameters outlined in Table 2. Our discussion in the following
paragraphs uses the term network density. In this context, network density N D is defined in
the same way as the density of an undirected graph with edge set E and set of vertices V
(Eq. 1). N D can take values between 0 and 1 inclusive (N D = 0 for an edgeless graph and
N D = 1 for a complete graph).

123

1100 G. Oikonomou et al.

Table 2 Simulation
configuration Nodes 21 Sky motes (1 traffic source, 20 sinks)

Radio medium Unit disk graph medium (UDGM)

Ranges TX: 50 m, interference: 60 m

PHY and MAC IEEE 802.15.4 with CSMA

Duty cycling ContikiMAC (cci 125 ms) & NullRDC

Iterations 10 for each parameter permutation

RNG seeds New seed each iteration

Duration 5 min of actual time each iteration

Traffic pattern CBR (exact rate discussed in text)

Message size 4 app. layer bytes (variable size on link)

TM Params I min ∈ 125, 250, 375, 500, 625, 750

k = 3, I max variable (see text)

SMRF params Fmin = 0 ms, Spread = 1

Fmin = 31.25 ms, spread ∈ 2, 4, 8

Fig. 3 Simulated topologies differentiated by network density. Very sparse line topology with N D ≈ 0.09.
Three tree topologies: solid line with N D ≈ 0.14, dashed (N D ≈ 0.36) and dotted (N D ≈ 0.71). The solid
black node acts as rpl root and multicast traffic source

N D = 2 |E |
|V | (|V | − 1)

(1)

This is a link layer metric: an edge between nodes A and B exists if and only if the two
nodes are single-hop neighbours (can directly hear each other). This definition only makes
sense if radio links are symmetric, which is true for Cooja’s udgm environment (Table 2)
but not always the case for real deployments. In case of non-symmetric links (e.g. when A
can hear B, but B cannot hear A), the link layer topology would have to be modelled as a
directed graph. Investigating the behaviour and performance of multicast algorithms in an
environment with non-symmetric links is part of our future plans.

123

IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks 1101

5.1 Simulation Topologies and Configuration

We ran our experiments in four different topologies, as illustrated in Fig. 3: (1) A
topology where all devices are placed in a line 40 m apart, (2) Three different tree
topologies differentiated by network density. In all scenarios, all network nodes are
configured to join the multicast group in order to provide us more detailed measure-
ments.

In the case of the line topology, the chosen maximum transmission range of 50 m (Table 2)
meant that each node could directly exchange radio messages with a maximum of two nodes.
This topology helps us examine the algorithms in an extremely sparse topology (N D ≈ 0.09
for 21 nodes). Another useful feature is that the shape of the rpl dodag is predictable: it
always matches the physical topology. Previous works evaluating network protocols on a
per-hop basis have been limiting their investigation to seven or eight hops [38]. Thus, the
selected maximum distance of 20 hops is considered adequate.

For each of those topologies, we experimented with two radio duty cycling algo-
rithms: NullRDC and ContikiMAC. Choosing these two mechanisms brings out poten-
tial performance differences between a duty cycling network (ContikiMAC) and a net-
work where nodes keep their radios always on (NullRDC). ContikiMAC typically oper-
ates with a channel sampling rate of 16 Hz [37] or 8 Hz [36], resulting in wake-up
intervals of approximately 62.5 and 125 ms respectively. In our simulations we used
a sampling rate of 8 Hz, which is the default value used by Contiki’s port for Sky
motes.

For tm, we used six different configurations of I min, also listed in Table 2. For each
value of I min, we set I max so that the longest possible trickle interval (I min ∗ 2I max)
would not overflow the boundaries of the variable holding its value. For smrf, we simu-
lated four different (Fmin , Spread) pairs (Table 2). We ran ten iterations (each one with
a different random seed) per topology, per configuration, per traffic rate. For each permu-
tation we evaluated three metrics: (1) packet delivery ratio, (2) end to end delay and (3)
energy consumption. For tm only, we also investigated the ratio of out of order datagram
deliveries.

From an application layer perspective, our multicast traffic was constant bit rate (cbr)
with a payload of 4 bytes. For each of the configurations above, we experimented with
four multicast flows differentiated by the interval between two successive message trans-
missions (250, 500, 750 ms and 1 s). As a result of 6lowpan header compression, the
number of actual bytes on link would vary per hop: a message leaving the source has
a shorter on-link length than when copied beyond the first hop. Furthermore, tm adds
8 bytes to each datagram in the shape of a hbho, which also prohibits udp header
compression. As a result, layer two frames varied in size between 35 and 61 bytes.
For these reasons, we use the inter-packet interval to refer to the flows, instead of
bytes/s.

Operating the network under very heavy traffic load is intentional; it brings out algorithm
advantages and drawbacks, allowing us to draw conclusions on their performance. Addition-
ally, as 6lowpans progress towards general-purpose multi-service deployments, protocols
are expected to cope with traffic originating from internet hosts and it is not uncommon to
encounter applications with higher throughput requirements. For instance, to adapt to these
changing requirements, traditional duty cycling algorithms which relied on the assumption
of low data rates are now evolving in order to perform efficiently under high and bursty traffic
patterns [39]. It is thus becoming increasingly common to conduct wsn protocol evaluation
under conditions of heavy network load [39,40].

123

1102 G. Oikonomou et al.

Fig. 4 Packet delivery ratio for tm over NullRDC in the line topology. Each graph illustrates results for a
different Multicast Traffic rate. Lines correspond to an individual or a group of I min values, as indicated in
the legend. Notice the different Y-axis scale for each subfigure

5.2 Packet Delivery Ratio and Loss

For each multicast group, we calculate packet delivery ratio (P DR) with Eq. 2, where N is
the number of unique multicast datagrams sent by traffic sources to the group’s ipv6 address,
M is the number of multicast group members and Ri is the number of unique multicast
datagrams sent to this group and received correctly by node i . This equation is valid under
the assumption that multicast group membership remains unchanged throughout the multicast
flow’s entire lifecycle, which holds true in the experiments presented here.

P DR =
∑M

i=1 Ri

N × M
(2)

Packet delivery ratio (P DR) is an application layer metric and can take values in [0, 1].
Packet loss is calculated as 1 − P DR, thus packet loss 0 % is the equivalent of 100 % P DR,
which means that all multicast datagrams were received correctly by all multicast group
members.

5.2.1 Line Topology

Investigating the behaviour of tm for different I min values, we observe that packet delivery
ratio can vary between perfect (0 % loss) and extremely poor. The four graphs in Fig. 4
illustrate the results for four different datagram transmission rates in the line topology over
NullRDC. When configured with I min = 125 ms, tm achieves 100 % delivery across all 20
hops regardless of traffic rate. Delivery ratio drops rapidly with higher I min values and with
higher transmission rates. Losses occur when node caches are full and a new packet arrives,
overwriting an older one before the latter gets copied further down the line. Since there is
no path redundancy in this topology, a packet lost in this manner cannot be recovered. In all
scenarios, a very heavy packet loss increase is observed when I min becomes higher than the

123

IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks 1103

Fig. 5 Packet delivery ratio over NullRDC (Line Topology)

Fig. 6 Packet delivery ratio with
ContikiMAC for both algorithms
and various configurations (Line
Topology)

multicast flow’s inter-datagram interval. The reason is that, even with constantly resetting
trickle timers, icmpv6 control packet exchange is not nearly quick enough to keep up with the
multicast datagram arrival rate. Thus, the loss phenomenon described above is guaranteed
to occur. Heavy packet losses mostly happen at the first hop, which acts as a filter for the
remainder of the line: The first node throttles traffic to a rate which is more tenable for the
rest of the network, which is why the decremental trend is a lot smoother beyond the first
hop.

We cherry-picked tm’s I min value of 125 ms, (which is the best choice for NullRDC),
compared its packet delivery ratio with smrf and plotted the results in Fig. 5. We include
results with three Fmin, Spread configurations, each corresponding to a different line in the
plot: Diamonds: (0, 1) respectively, Squares: (31.25, 4) and Triangles: (31.25, 8). Results for
smrf were comparable for different multicast traffic rates, we have thus combined all four
rates in this single figure. Since smrf only forwards each datagram once, it was anticipated
to demonstrate a higher packet loss rate. Results confirm this and also indicate that losses
increase as the forwarding delay increases.

We performed the same measurements over ContikiMAC and results are significantly
different, as illustrated in Fig. 6. The first observation is that with ContikiMAC, packet
loss rates are higher across the board. This is due to the fact that multicast datagrams are

123

1104 G. Oikonomou et al.

(a) (b)

Fig. 7 Packet delivery ratio in the tree topologies for different algorithms, over both RDC layers and various
traffic rates. a Over ContikiMAC. b Over NullRDC

transmitted as broadcast frames at the link layer, which is rather inefficient as discussed in
Sect. 4.1. Another observation is that over ContikiMAC, lowering tm’s I min has an adverse
result: delivery ratio decreases instead of increasing. I min values of 125 and 250 ms stand out
as having underperformed, compared to the remaining four values which yielded comparable
results and are thus averaged out into a single line. smrf-related results are similar to those
observed over NullRDC: (1) Packet loss is slightly higher compared to tm and (2) Increased
forwarding delay (by increasing Fmin and Spread) results in higher losses.

5.2.2 Tree Topologies

In tree topologies, tm has a comparative advantage since there is path redundancy: a node
may receive a multicast datagram from any of its potentially multiple neighbours. We thus
anticipated its packet losses to be considerably lower. Multicast traffic transmission rates
once again appeared to have minimal impact on the results and are thus averaged out. Based
on our experience from the line topology, we singled out tm’s two best I min candidates: 125
and 500 ms and compared results with smrf’s two best Fmin, Spread pairs: (0, 1) and (31.25,
4). Results are illustrated in Fig. 7, with the graph on the left corresponding to ContikiMAC
and the one on the right to NullRDC.

When operating over NullRDC, the (0,1) smrf configuration which performed very well
in the line topology now severely under-performed its (31.25, 4) counterpart. The reason is
that it is very susceptible to the hidden terminal problem, which was the original motiva-
tion behind introducing Spread. The results over ContikiMAC also confirm the finding that
configuring tm with a sub-optimal I min value can lead to very poor delivery ratios. Since
packet trains indirectly mitigate the hidden terminal problem, the performance of smrf’s (0,
1) configuration is comparable to the delivery ratio exhibited when Spread > 0. Depending
on network density, smrf can actually deliver more packets than tm, despite the fact that it
is less reliable by design. This occurs when the latter is configured with a sub-optimal I min.

5.3 End to End Delay

5.3.1 Line Topology

As discussed in Sect. 4, after our initial analysis we anticipated tm to exhibit low speed com-
pared to the very straightforward smrf. Figures 8 and 9 illustrate the results over NullRDC
and ContikiMAC respectively.

For tm in the case of NullRDC we observe similar results as those for our analysis of Packet
Delivery Ratio. Reducing I min yields significant performance improvements: As I min

123

IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks 1105

Fig. 8 End-to-end delay over NullRDC (Line Topology)

Fig. 9 End-to-end delay over ContikiMAC (Line Topology). Lines which would otherwise ovarlap are sum-
marized into a single one (triangles and circles)

decreases, after resetting their trickle timers nodes exchange cache content information more
frequently and inconsistencies are detected earlier, leading to significantly lower hop-by-hop
forwarding delay. A similar observation applies to smrf: Increasing the value of Spread
effectively increases forwarding delay. The effect is augmented over twenty hops, leading to
longer end to end delays. However, as anticipated by our discussion in Sect. 4, smrf config-
urations with low Spread (2 and 4) are considerably faster than tm with I min = 125 ms.

We approximated the three most representative lines from Fig. 8 (stars, circles and white
triangles) with linear regression trend lines (not displayed in the diagram for clarity). All
three trend lines demonstrated very good fit (co-efficient of determination was very high:
R2 > 0.998). The slopes of the three lines were 0.006, 0.049 and 0.105 respectively. These
three values represent an approximation of the estimated per hop forwarding delay. In other
words, smrf with Fmin, Spread (31.25, 2) is about 2.15 times faster per hop than tm with
I min = 125 ms.

For ContikiMAC, tm’s end to end delay behaves in a similar fashion to packet delivery
ratio with respect to I min values. Reducing I min has a positive impact until the value of
500 ms. Any further reductions cause a radical performance degradation, with I min=125 ms
severely under performing. The difference between the two algorithms is even more extreme

123

1106 G. Oikonomou et al.

(a) (b)

Fig. 10 End to end delay for different algorithm configurations, over both RDC layers. a Over NullRDC. b
Over ContikiMAC

Fig. 11 Hop count distribution
for tree topologies

than in the case of NullRDC, as shown in Fig. 9, with smrf being over 5 times faster than tm,
on a hop-by-hop basis. This is caused by the fact that tm relies heavily on link-local multicast
messages (link layer broadcasts) to exchange cache content information between nodes. As
discussed in Sect. 4.1, link layer broadcasts are fundamentally inefficient with ContikiMAC.

5.3.2 Tree Topologies

We repeated the measurements in tree topologies, with results illustrated in Fig. 10. Network
density is a very important factor for both algorithms. As network density increases, rpl’s
dodag tends to become shallow and wide: Maximum path length decreases, while the number
of direct ancestors for a single node and the number of leaf nodes increase. As a result, with
smrf datagrams have to traverse fewer hops to reach their destinations. Similarly, tm has
been designed to be density-aware [18]: High density and path redundancy result in fewer
message exchanges before a datagram can reach all its intended recipients. In Fig. 11, the
Y axis illustrates the number of nodes observed to be reachable after a number of hops, as
a percentage of the total number of nodes across all experiments for this network density.
Notice how, for both algorithms, the maximum observed hop count decreases as network
density increases. The choice of duty cycling did not have significant impact so the figure
combines results from both rdc algorithms.

123

IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks 1107

Fig. 12 Packets received Out-of-Order as a percentage of total packets received (Line Topology). Over
ContikiMAC different I min values have minor impact and are thus combined into a single line

Results regarding tm’s I min and end to end delay confirm the previous findings: Low
values of I min perform very well over NullRDC, while over ContikiMAC the optimal choice
is a value of 500 ms. In all scenarios, irrespective of duty cycling and multicast traffic injection
rate, smrf outperforms tm significantly.

In the case of tm over ContikiMAC in a sparse topology, increasing traffic rate decreases
end to end delay. This may seem confusing in the first instance but there is a very reasonable
explanation: Increased traffic rate becomes the most frequent trigger for trickle timer resets,
thus reducing per hop forwarding delay. In more dense topologies, maximum hop count is
lower and mitigates this ph enomenon.

5.4 Out-of-Order Arrivals

As discussed in Sect. 4, smrf’s operation does not entangle datagram ordering. In all our
experiments, all messages delivered by smrf were in the correct order. Thus, in this section
we present evaluation results pertaining to tm only.

In Fig. 12 we present out of order datagram arrivals as a percentage of total transmitted
datagrams, with each sub-figure corresponding to a different multicast traffic rate. Interest-
ingly, in the case of ContikiMAC, changes in I min do not appear to influence packet ordering
significantly and are therefore combined into a single line. Beyond the fourth hop, out of order
datagram delivery ratio fluctuates between about 35 and 45 % for all traffic rates. Compared
to NullRDC, packet order is considerably worse with ContikiMAC due to higher error rate
on a hop-by-hop basis. At each trickle timer reset, a node will copy and forward multiple
datagrams in a row. However, the algorithm offers no guarantees that datagrams forming
this batch will be transmitted in the correct order. Furthermore, some of them may get lost
and get re-transmitted at a subsequent pass, thus arriving late. Conversely, with NullRDC,
hop-by-hop transmission is more reliable and as a result tm delivers fewer datagrams out of
order.

123

1108 G. Oikonomou et al.

Fig. 13 Out-of-order datagram
delivery in tree topologies

For slow traffic rates (top two sub-figures) over NullRDC, low I min values (125 or
250 ms) both achieve 0 % out of order arrivals (triangles in the graph coincide with squares).
This happens because the algorithm has a chance to copy and forward packets before the
queue in each node’s cache can build up. With a very good hop-by-hop successful trans-
mission rate, need for re-transmissions is infrequent. As I min increases, cache queues start
building up and the batch phenomenon described above occurs, increasing out of order
deliveries.

Experimentation in tree topologies (Fig. 13) confirms the findings: The percentage of
datagrams getting delivered out-of-order is lower over NullRDC than over ContikiMAC,
with low I min values performing better than their high counterpats. Over ContikiMAC,
the choice of I min does not play a significant part, while the phenomenon is mitigated by
increasing network density (as a result of the fact that each datagram has to cross fewer hops
before reaching all intended recipients).

5.5 Energy Consumption

Through the facilities provided by Contiki’s energy consumption estimation module
(energest) [41,42], we measured the time each node spent in each of the following three
states over the duration of each experiment: (1) mcu active, (2) rf listening / receiving, (3)
rf transmitting. Since we are simulating sky motes, we then converted these time values
to estimated energy consumption based on typical datasheet power levels at an operating
voltage of 3.0 V [43].

NullRDC keeps radio transceivers always on (no duty cycling). As a result, the majority
of energy is consumed during idle listening or packet reception, with other components
contributing insignificantly. For this reason, we only consider ContikiMAC for the evaluation
of the two algorithms in terms of energy consumption.

5.5.1 Line Topology

Figure 14a illustrates average (per-node) energy consumption for each of the two algo-
rithms under different multicast traffic rates. Observe how consumption attributed to radio
reception remains relatively constant across different experiments. The reason is that Radio

123

IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks 1109

(a) (b)

Fig. 14 Energy consumptions over ContikiMAC for both algorithms in the line topology. a Average per node.
b Per node average, normalised for the number of received packets

on/off cycles are controlled by the duty cycling algorithm and are thus unrelated to the
behaviour of upper layers in the stack. The main difference between the two algorithms
is caused by radio transmissions, with tm consuming more energy in this state due to
its periodic icmpv6 control datagram exchange and due to the fact that each node may
end up forwarding the same cached datagram multiple times (until all its neighbours have
received it or until it gets replaced by a newer one in the node’s cache). In the case of
smrf, radio reception and radio transmission contribute to total consumption at a ratio of
about 1:1. Consumption attributed to micro-controller activity is also higher in the case of
tm, providing yet another indication of the algorithm’s increased complexity compared to
smrf.

Values displayed in this figure are averages across all nodes in the network. On a hop-by-
hop basis, total energy consumption decreases linearly with distance from the traffic source,
with nodes close to the source demonstrating an approximate 20 % higher consumption than
the average, while nodes near the end of the line consume as little as 20 % less than the
displayed average.

Contrary to our anticipation, network-wide energy consumption decreases as the multicast
traffic rate increases, a side-effect of increased packet loss rate. Figure 14b depicts the same
results normalised by the number of received datagrams for each scenario. In this context,
the line drawing plots average energy consumption per successfully delivered datagram. This
normalisation brings out the anticipated (incremental) trend with increasing multicast traffic
rate.

5.5.2 Tree Topologies

Previous conclusions are confirmed under tree topologies, with results illustrated in Fig. 15.
Average, per-node energy consumption is lower with smrf, with radio transmissions being
the most significant factor in the case of tm. Consumption due to listening and reception
fluctuates slightly more than in the line topology, while network density has a positive effect
in total consumption. The effect of network density is more significant in the case of tm,
which was anticipated since the algorithm is density-aware by design [18].

123

1110 G. Oikonomou et al.

Fig. 15 Energy consumption for various network densities (tree topologies)

Table 3 Hardware testbed
configuration Nodes 11 Sensinode N740 NanoSensors

PHY and MAC IEEE 802.15.4 with CSMA

Duty cycling NullRDC

Iterations 10 for each parameter permutation

Message size 4 app. layer bytes (variable size on link)

Traffic interval ∈ 62.5, 125, 250, 500, 1, 000 ms

TM params (I min, I max) ∈ (125 ms, 11), (500 ms, 9)

k = 3

SMRF Params Fmin = 0 ms, Spread = 1

Fmin = 31.25 ms, Spread = 4

6 Hardware Experiments

In order to evaluate the validity of simulated results, we conducted similar measurements
on a hardware testbed formed by 11 Sensinode N740 NanoSensors, each one equipped with
an ieee 802.15.4 rf transceiver. Similar to simulated experiments, one of the nodes acted
as multicast traffic source and rpl root, while the remaining nodes would join the same
multicast group and act as multicast forwarders and traffic sinks. Our nodes were installed in
two different rooms, with enough distance and physical obstacles (full height concrete walls
and closed wooden/glass doors) to guarantee a multi-hop topology at link-layer. Thus, the
traffic source could only communicate with 5 of the 10 participating nodes.

Under the assumption that radio links are symmetric, the network density of this deploy-
ment is N D = 0.72(|E | = 40, |V | = 10 in Eq. 1, Sect. 5). We used devices of identical
specification, all transmitting with the same power and configured with the same receiver
sensitivity level, thus the assumption is not unrealistic. Deviations can still be caused by
spatial interference and by differences between devices introduced during manufacturing.

From a network layer perspective, the topology would alter from time to time and from
experiment to experiment due to decisions made by the rpl routing protocol. On most occa-
sions, all nodes were within up to three hops away from the source, with distances of four or
five hops observed on very few occasions.

123

IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks 1111

Fig. 16 Datagram delivery ratio
during hardware experiments

Fig. 17 Out-of-order datagram
delivery for tm during hardware
experiments. With smrf, all
delivered datagrams are in the
correct order

In this deployment, we evaluated packet delivery ratio and out of order packet arrival for
the configurations listed in Table 3. The port of the Contiki OS for our hardware platform [19]
does not support ContikiMAC yet. As a result all experiments were conducted over NullRDC.

In Fig. 16 we illustrate average datagram delivery ratio for both algorithms under different
configurations and traffic rates, with results being a good match of simulated observations.
For each experiment permutation, averages were calculated over all nodes and all iterations.
Configuring tm with I min = 500 ms severely under performs all other scenarios and exhibits
heavy packet losses under most traffic rates. As was the case during simulations, tm with
I min = 125 ms exhibits higher delivery ratios than smrf in most cases.

The results are inverted when the traffic rate is very high (1 message per 62.5 ms). We
observe that tm’s packet loss increases abruptly when traffic inter-packet interval is lower
than the value of I min. The reason for this behaviour is that tm’s trickle timers are not
refreshing frequently enough. As a result, node caches can overflow before all messages
have been forwarded, resulting in dropped datagrams.

As discussed in Sect. 3.2, tm can re-arrange packet order resulting in out of order datagram
deliveries. In Fig. 17, we illustrate the percentage of datagrams delivered out of order by tm
for each experimental configuration. smrf delivered all packets in order during all hardware
experiments and is thus not displayed in the figure. The most noteable observation is that
incorrect packet order frequency peaks when the traffic rate is equal to I min, with observed
frequencies on either side of that value being significantly lower.

123

1112 G. Oikonomou et al.

Fig. 18 Code sizes for both
algorithms and different
hardware platforms in a typical
configuration with support for 1
multicast group and tm cache
size of 6 messages

7 Code Sizes and Memory Requirements

For both algorithms, we evaluated code size when compiled for three different hardware
platforms: (1) Sensinode N740 NanoSensors (cc2430 System-on-Chip [44], 8bit 8051-based
MCU, 8 MB RAM) with the Small Device C Compiler (sdcc), (2) Tmote Sky (16bit MSP430
MCU, 10 MB RAM) with the msp430-gcc toolchain, (3) 8bit AVR MCU (avr-gcc).

Figure 18 illustrates Contiki image sizes when configured to use each of the two algorithms
and when built without multicast support. In both our implementations, changes to the tcp/ip
core are minimal and this is reflected in the diagram for all platforms (white bar portions).
In order for smrf to operate, it requires rpl group management, as specified in the rpl rfc.
Implementing this functionality for Contiki results in an increase of the rpl engine code
size. This is only necessary for correct smrf operation and is automatically disabled when
building with tm support.

As discussed in Sect. 3.2, tm’s design is of high complexity compared to smrf. Each of
the two algorithms is implemented as a separate code module, with respective code sizes
depicted with the label Multicast Support (bars with black fill in the chart). The size of the
module implementing tm is about ten times larger for all platform/compiler combinations.
For instance, when building with sdcc, tm’s code size is 12028 bytes whereas smrf’s module
only occupies 718 bytes of code. With msp430-gcc, the respective sizes are 3,676 and 326
bytes in the .data segment.

We also investigate algorithm memory requirements and scalability with their operational
parameters. For tm, we evaluate scalability with message cache size and for smrf we research
into the impact of an increase in the number of supported multicast groups. For smrf, each
multicast group requires additional storage space in the node’s routing table. The memory
requirement increase incurred by each additional group is reflected in Fig. 19 for two different
hardware platforms (lines with diamonds and squares). The increase equals 24 bytes per group
for both platforms. The vertical offset between the two lines is caused by two factors: (1)
platform differences in terms of low level drivers and configuration and (2) different hardware
architectures and compiler optimization capabilities.

The same figure illustrates tm’s memory requirements as message cache size increases. We
observe that the increase is very abrupt, with each additional message requiring an additional
256 bytes of RAM. This amount is necessary in order to cache the entire message headers
and payload, alongside local control information required by the algorithm. Without altering
Contiki’s configuration for the Sensinode platform, images with tm support will only fit

123

IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks 1113

Fig. 19 Memory requirements
and scalability

Table 4 Algorithm selection criteria and optimal configuration

Criterion tm smrf

Reliability �
Low delay �
Code size High Low

Delivery order �
Energy efficiency �
Configuration

NullRDC Low I min Fmin = 0 ms (lower delay)

(no duty cycling) e.g. I min = 125 ms Fmin > 0 ms (lower loss)

ContikiMAC 3 ∗ CC I ≤ I min ≤ 4 ∗ CC I Fmin > 0 ms

(duty cycling) e.g. (CC I, I min) = (125, 500)ms

available memory when cache size is lower than 7 messages. For the Sky platform, memory
restrictions are satisfied when the cache is configured to hold fewer than 9 messages.

8 Conclusions

In this work we have disclosed design and implementation details of the stateless multicast rpl
forwarding (smrf) algorithm for ipv6-based wireless sensor networks. We have also presented
the outcomes of an in-depth comparison between smrf and the Multicast Forwarding Using
Trickle (tm) algorithm. We presented evaluation results obtained by simulations as well as
from experiments conducted on a multi-hop hardware testbed. The latter result set validated
simulated findings.

We have demonstrated that tm’s performance and energy consumption are very sensitive
to changes in the value of its configuration parameter I min, with the optimal depending on
the choice of underlying duty cycling algorithm. In the case of deployments without duty
cycling, decreasing the value of I min results in better performance. In the more realistic
scenario of duty-cycled networks we observe that, in order to minimize delay and packet loss
I min should be configured to a value higher than the cci. Our experiments were conducted
with a cci value of 125 ms, in which case I min = 500 ms is the optimal configuration,
performing slightly better than when I min = 375 ms. Lower values have a negative impact
on packet loss, while higher values increase the ratio of packets delivered out of order. From

123

1114 G. Oikonomou et al.

our experiments we also observed that the values of I max and k do not have a significant
impact on performance.

On the other hand, smrf is less susceptible to variances of this nature, has lower end-to-
end delay and is more energy efficient in exchange for an occasional slight drop in reliability.
smrf is also a lot less complex and has lower memory requirements, making it suitable for
severely constrained devices.

Ultimately, the choice of multicast forwarding algorithm should be based on the anticipated
usage of a sensor deployment. In Table 4 we highlight a summary of selection criteria and
recommended configuration values for both algorithms.

The sources for both implementations are available on github, as a fork of Contiki’s source
tree5 and are distributed under the terms of the 3-clause bsd license.

References

1. Hui, J. W., & Culler, D. E. (2008). IP is dead, long live IP for wireless sensor networks. In Proceedings
of the 6th ACM conference on Embedded network sensor systems (SenSys’08) (pp. 15–28).

2. Montenegro, G., Kushalnagar, N., Hui, J. W., & Culler, D. E. (2007). Transmission of IPv6 packets over
IEEE 802.15.4 networks. RFC 4944.

3. Hui (editor), J., & Thubert, P. (2011). Compression format for IPv6 Datagrams over IEEE 802.15.4-Based
Networks. RFC 6282.

4. Winter (editor), T., Thubert (editor), P., Brandt, A., Hui, J., Kelsey, R., Levis, P., et al. (2012). RPL: IPv6
Routing Protocol for Low power and Lossy Networks. RFC 6550.

5. Butt, T. A., Phillips, I., Guan, L., & Oikonomou, G. (2012). TRENDY: An adaptive and context-aware
service discovery protocol for 6LoWPANs. In Proceedings of the third international workshop on the
web of things (WoT 2012). Newcastle, UK.

6. Klauck, R., & Kirsche, M. (2012). Bonjour contiki: A case study of a DNS-based discovery service for
the internet of things. In Proceedings of the 11th international IEEE conference on ad-hoc networks and
wireless (ADHOC-NOW 2012) Lecture Notes in Computer Science (LNCS) (Vol. 7363, pp. 316–329).
Berlin: Springer.

7. Cheshire, S., & Krochmal, M. (2013). Multicast DNS. RFC 6762.
8. Lynn, K., & Sturek, D. (2012). Extended multicast dns. Internet Draft (version 01). (draft-lynn-homenet-

site-mdns-01).
9. Cheshire, S., & Krochmal, M. (2013). DNS-based service discovery. RFC 6763.

10. Klauck, R., & Kirsche, M. (2013). Enhanced DNS message compression—optimizing mDNS/DNS-SD
for the use in 6LoWPANs. In Proceedings of the 9th international workshop on sensor networks and
systems for pervasive computing (PerSeNS 2013).

11. Shelby, Z., Hartke, K., & Bormann, C. (2013). Constrained application protocol (CoAP). Internet Draft.
(draft-ietf-core-coap-15).

12. Sanchez, J. A., Ruiz, P. M., Liu, J., & Stojmenovic, I. (2007). Bandwidth-efficient geographic multicast
routing protocol for wireless sensor networks. IEEE Sensors Journal, 7(5), 627–636.

13. Sanchez, J. A., Marin-Perez, R., & Ruiz, P. M. (2012). Beacon-less geographic multicast routing in a
real-world wireless sensor network testbed. Wireless Networks, 18(5), 565–578.

14. Carzaniga, A., Khazaei, K., & Kuhn, F. (2012). Oblivious low-congestion multicast routing in wireless
networks. In Proceedings of the thirteenth international symposium on mobile ad hoc networking and
computing (MobiHoc 2012).

15. Feng, C. H., Zhang, Y., Demirkol, I., & Heinzelman, W. B. (2012). Stateless multicast protocol for ad
hoc networks. IEEE Transactions on Mobile Computing, 11(2), 240–253.

16. Koutsonikolas, D., Das, S. M., Hu, Y. C., & Stojmenovic, I. (2010). Hierarchical geographic multicast
routing for wireless sensor networks. Wireless Networks, 16(2), 449–466.

17. Song, S., Choi, B. Y., Kim, D. (2010). MR. BIN: Multicast routing with branch information nodes for wire-
less sensor networks. In Proceedings of the 19th international conference on computer communications
and networks (ICCCN 2010) (pp. 1–6).

18. Hui, J., & Kelsey, R. (2012). Multicast forwarding using trickle. Internet Draft (version 01). (draft-ietf-
roll-trickle-mcast-01).

5 https://github.com/g-oikonomou/contiki-sensinode/tree/mcast-forward.

123

https://github.com/g-oikonomou/contiki-sensinode/tree/mcast-forward

IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks 1115

19. Oikonomou, G., & Phillips, I. (2011). Experiences from porting the contiki operating system to a popular
hardware platform. In Proceedings of the 2011 international conference on distributed computing in
sensor systems and workshops (DCOSS). Spain: Barcelona.

20. Oikonomou, G., & Phillips, I. (2012). Stateless multicast forwarding with RPL in 6LoWPAN sensor
networks. In Proceedings of the 2012 IEEE international conference on pervasive computing and com-
munications workshops (PERCOM Workshops). Switzerland: Lugano.

21. Das, S. M., Pucha, H., & Hu, Y. C. (2008). Distributed hashing for scalable multicast in wireless ad hoc
networks. IEEE Transactions on Parallel and Distributed Systems, 19(3), 347–362.

22. Song, S., Kim, D., & Choi, B. Y. (2009). Agsmr: Adaptive geo-source multicast routing for wireless
sensor networks. In Proceedings of the wireless algorithms, systems, and applications, Lecture notes in
computer science (Vol. 5682, pp. 200–209). Springer:Berlin/Heidelberg.

23. Okura, A., Ihara, T., & Miura, A. (2005). Bam: branch aggregation multicast for wireless sensor networks.
In: IEEE international conference on mobile ad hoc and sensor systems conference (pp. 354–363).

24. Flury, R., & Wattenhofer, R. (2006). MLS: An efficient location service for mobile ad hoc networks.
In Proceedings of the 7th ACM international symposium on mobile ad hoc networking and computing
(MOBIHOC) (pp. 226–237).

25. Li, J., Jannotti, J., De Couto, D. S. J., Karger, D. R., & Morris, R. (2000). A scalable location service
for geographic ad hoc routing. In Proceedings of the 6th annual international conference on mobile
computing and networking, MobiCom’00 (pp. 120–130).

26. Sá, Silva J., Camilo, T., Pinto, P., Ruivo, R., Rodrigues, A., Gaudêncio, F., et al. (2008). Multicast and ip
multicast support in wireless sensor networks. Journal of Networks, 3(3), 19–26.

27. Royer, E. M., & Perkins, C. E. (1999). Multicast operation of the ad-hoc on-demand distance vector routing
protocol. In Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing
and networking (MobiCom’99) (pp. 207–218).

28. Bhattacharyya, S. (Ed.) (2003). An overview of source-specific multicast (SSM). RFC 3569.
29. Clausen, T., & Herberg, U. (2010). Comparative study of RPL-enabled optimized broadcast in wireless

sensor networks. In Proceedings of the sixth international conference on intelligent sensors, sensor
networks and information processing (ISSNIP 2010). Brisbane, Australia: IEEE.

30. Levis, P., Patel, N., Culler, D., & Shenker, S. (2004). Trickle: A self-regulating algorithm for code
propagation and maintenance in wireless sensor networks. In Proceedings of the first USENIX/ACM
symposium on networked systems design and implementation (NSDI) (pp. 15–28).

31. Levis, P., Clausen, T.H., Hui, J., Gnawali, O., & Ko, J. (2011). The trickle algorithm. RFC 6206.
32. Levis, P., Brewer, E., Culler, D., Gay, D., Madden, S., Patel, N., et al. (2008). The emergence of a

networking primitive in wireless sensor networks. Communications of the ACM, 51(7), 99–106.
33. Hui, J., & Culler, D. (2004). The dynamic behavior of a data dissemination protocol for network pro-

gramming at scale. In Proceedings of the 2nd international conference on Embedded networked sensor
systems (SenSys) (pp. 81–94).

34. Lin, K., & Levis, P. (2008). Data discovery and dissemination with DIP. In Proceedings of 7th international
conference on information processing in sensor networks, IPSN’08 (pp. 433–444). Washington, DC, USA:
IEEE.

35. Hui, J., & Vasseur, J. P. (2012). The routing protocol for low-power and lossy networks (RPL) option for
carrying RPL information in data-plane datagrams. RFC 6553.

36. Dunkels, A. (2011). The ContikiMAC radio duty cycling protocol. Technical Report T2011:13, Swedish
Institute of Computer Science.

37. Dunkels, A., Mottola, L., Tsiftes, N., Österlind, F., Eriksson, J., & Finne, N. (2011). The announcement
layer: Beacon coordination for the sensornet stack. In Proceedings of the European conference on wireless
sensor networks (EWSN).

38. Österlind, F., & Dunkels, A. (2008). Approaching the maximum 802.15.4 multi-hop throughput. In
Proceedings of the fifth ACM workshop on embedded networked sensors (HotEmNets 2008).

39. Duquennoy, S., Österlind, F., & Dunkels, A. (2011). Lossy links, low power, high throughput. In
Proceedings of the 9th ACM conference on embedded networked sensor systems (SenSys 2011).

40. Michopoulos, V., Guan, L., Oikonomou, G., & Phillips, I. (2012). DCCC6: Duty cycle-aware congestion
control for 6LoWPAN networks. In Proceedings of the 2012 IEEE international conference on pervasive
computing and communications workshops (PERCOM Workshops). Switzerland: Lugano.

41. Dunkels, A., Österlind, F., Tsiftes, N., & He, Z. (2007). Demo abstract: Software-based sensor node
energy estimation. In Proceedings of the fifth ACM conference on networked embedded sensor systems
(SenSys 2007). Sydney, Australia: ACM.

42. Dunkels, A., Österlind, F., Tsiftes, N., & He, Z. (2007). Software-based on-line energy estimation for
sensor nodes. In Proceedings of the fourth workshop on embedded networked sensors (Emnets IV). Cork,
Ireland: ACM.

123

1116 G. Oikonomou et al.

43. Tmote sky: Ultra low power IEEE 802.15.4 compliant wireless sensor module. Moteiv Corporation
(2006). Tmote Sky Datasheet Revision 1.0.2.

44. A True System on Chip solution for 2.4 GHz IEEE 802.15.4/Zigbee®. (2007). CC2430 Data Sheet (rev.
2.1).

Author Biographies

George Oikonomou received the M.Sc. and Ph.D. degrees in com-
puter science from the Athens University of Economics and Busi-
ness, Athens, Greece, in 2002 and 2009 respectively. He is currently
a Research Associate with the Queen’s School of Engineering, Univer-
sity of Bristol, UK. Previously, he worked as a Research Associate at
the Computer Science department, Loughborough University, UK. His
current research focuses on wireless sensor networks and the Internet
of things, with emphasis on IPv6 networking for low-power, severely
constrained devices. Dr Oikonomou is an active developer of the Con-
tiki open source embedded operating system for the internet of things.

Iain Phillips has been involved in computing research for over 20
years, with over 100 publications in this area. His main work has
been in network architectures considering performance and algorithms
for the Internet and Wireless Sensor Networks. He graduated from
Manchester University with a BSc in Computing and Information Sys-
tems and a Ph.D. in Computer Science—Thesis title Workload Dis-
tribution on Massively Parallel Machines. After 7 years post-doctoral
research at Loughborough in the High Speed Networks group in Elec-
trical Engineering (Research Assistant/Research Fellow), he moved to
Loughborough Computer Science as a Lecturer in 1999, Senior Lec-
turer in 2005 and Head of Department 2008-11. From 2009-11 he
was Vice Chair of the Council of Professors and Heads of Computing
(CPHC) and from 2011 Chair. He is a Chartered Fellow of the BCS and
a member of the ACM.

Theo Tryfonas is a senior lecturer in systems engineering at the
University of Bristol. His work is in the areas of software engineer-
ing, network security and forensic investigations, systems architec-
ture as well as risk and resilience of systems across a number of
sectors including telecommunications, transport and healthcare. His
current research interests include looking into uses of wireless and
mobile technologies for improving sustainability of future cities, devel-
oping policies and frameworks for delivering smart transport and game-
theoretic approaches to understanding end-user behaviour implications
of smart urban technologies. He is a Chartered IT Professional member
of the BCS and a Certified Information Systems Auditor.

123

	IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks
	Abstract
	1 Introduction and the Need for Multicast in Wireless Sensor Networks
	2 Related Work
	2.1 Multicast in Traditional WSNs
	2.2 Multicast in 6LoWPANs

	3 Multicast Forwarding with Trickle
	3.1 Advantages
	3.2 Concerns

	4 Stateless Multicast RPL Forwarding---SMRF
	4.1 Cross-Layer Optimizations
	4.2 Benefits and Drawbacks

	5 Simulation Results
	5.1 Simulation Topologies and Configuration
	5.2 Packet Delivery Ratio and Loss
	5.2.1 Line Topology
	5.2.2 Tree Topologies

	5.3 End to End Delay
	5.3.1 Line Topology
	5.3.2 Tree Topologies

	5.4 Out-of-Order Arrivals
	5.5 Energy Consumption
	5.5.1 Line Topology
	5.5.2 Tree Topologies

	6 Hardware Experiments
	7 Code Sizes and Memory Requirements
	8 Conclusions
	References

