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Abstract The problem of joint beamforming and power allocation for cognitive multi-input
multi-output systems is studied via game theory. The objective is to maximize the sum
utility of secondary users (SUs) subject to the primary user (PU) interference constraint, the
transmission power constraint of SUs, and the signal-to-interference-plus-noise ratio (SINR)
constraint of each SU. In our earlier work, the problem was formulated as a non-cooperative
game under the assumption of perfect channel state information (CSI). Nash equilibrium
(NE) is considered as the solution of this game. A distributed algorithm is proposed which
can converge to the NE. Due to the limited cooperation between the secondary base station
(SBS) and the PU, imperfect CSI between the SBS and the PU is further considered in this
work. The problem is formulated as a robust game. As it is difficult to solve the optimization
problem in this case, existence of the NE cannot be analyzed. Therefore, convergence property
of the sum utility of SUs will be illustrated numerically. Simulation results show that under
perfect CSI the proposed algorithm can converge to a locally optimal pair of transmission
power vector and beamforming vector, while under imperfect CSI the sum utility of SUs
converges with the increase of the transmission power constraint of SUs.

Keywords Cognitive radio · Multi-input multi-output · Power allocation · Beamforming ·
Imperfect channel state information · Game theory

1 Introduction

With the rapid deployment of various wireless systems, the limited radio spectrum is becom-
ing increasingly crowded. On the other hand, it is evident that most of the allocated spectrum
experience low utilization. As a novel approach to enhancing the utilization efficiency of the
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scarce radio spectrum, cognitive radio (CR) has attracted tremendous interests recently. A
key feature of the CR network is to allow an secondary user (SU) to simultaneously share
a licensed spectrum as long as the secondary transmission does not interfere with the pri-
mary link. As a result, the challenge of the CR network is to protect the primary users (PUs)
from harmful interference induced by the SUs as well as to meet the quality of service (QoS)
demands of SUs. Multi-input multi-output (MIMO) technique, with its significantly increased
transmission capacity, has become a dominating technique in next-generation wireless sys-
tems. It is thus quite natural to combine these two techniques to achieve higher spectral
efficiency. This technological combination results in the so-called cognitive MIMO radio
[1].

Beamforming and power control are two well-known approaches that can mitigate
co-channel interference (CCI) and enhance the system capacity. Recently, joint beamforming
and power control has been widely studied for CR networks as a quite promising interference
suppression technique [2–5]. For such a system, it has additional challenge of keeping the
operation of SUs such that the received interference at the PUs remains below a tolerable
limit. In [3], the joint beamforming and power allocation for a single-input multiple-output
(SIMO) multiple access channels in CR networks was considered. The problem of joint
beamforming and power control for SUs when they are allowed to transmit simultaneously
with PUs was studied in [4]. The objective is to optimize the network sum rate under the
interference constraints of PUs, which is a non-convex problem. Iterative dual subgradient
algorithm was proposed to solve such problems. In [5], the authors considered the downlink
of CR systems with multiple SUs and multiple PUs. Precoding and power allocation were
performed at the secondary base station (SBS) to maximize the throughput of the secondary
network. The problem is difficult to solve due to its non-convex property. Then, the authors
converted it into a convex optimization problem.

As multiple non-cooperative SUs share the same frequency band licensed to a PU, game
theory can be naturally applied to CR networks. In recent years, game theory has been applied
to solve the problem of power control for providing the maximum throughput in CR networks
[6]. The authors in [7] further considered both power and rate control using a game-theoretic
approach, where the SUs were considered as active players in the game. The extension to
the cognitive MIMO system was considered in [1,8,9]. Therein, both theoretic analysis and
algorithm were carefully investigated. However, the problem of joint beamforming and power
allocation for cognitive MIMO systems is different from the traditional radio networks and
to the best of our knowledge, few studies have been performed to look at this problem in a
cognitive MIMO radio environment via game theory.

The above works were all based on the assumption of perfect channel state information
(CSI) between SUs and PUs. In practice, however, perfect channel knowledge could be
difficult to obtain due to the loose cooperation between PUs and SUs, as well as many other
factors such as inaccurate channel estimation, limited feedback or lack of channel reciprocity.
There are two common ways to model imperfect CSI: Bayesian and worst-case approaches.
The worst-case approach is more suitable for characterizing instantaneous CSI with errors,
assuming that the actual channel lies in the channel uncertainty region of a known nominal
channel. The size of this region represents the amount of channel uncertainty. The worst-case
approach has been used to design robust beamforming for SUs in a multiple-input single-
output (MISO) CR system [10,11]. In [10], the software assisted method and a geometric
method were considered for single SU and single PU to find suboptimal solution for the
certainty and uncertainty models. For more SUs or PUs, [12] made some approximations for
the uncertainty channel model between SUs and PUs. In [13], the worst-case of uncertainty
was considered and the initially nonconvex uncertainty problems are transformed into a
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second order cone programming (SOCP) or other convex problems, which can be solved by
software. A robust distributed uplink power allocation algorithm for underlay cognitive radio
networks was proposed in [14]. The objective is to maximize the sum utility of SUs when
channel gains from SUs to primary base stations and interference caused by PUs to the SBS
are uncertain.

Uncertainty in game theory has only recently been investigated. In [15], following the
worst-case robust theory, the authors took into account the imperfectness of SU-to-PU CSI by
adopting proper interference constraints. The existence and uniqueness of the NE of the robust
game is studied by relying on the variational inequality theory. A distribution-free robust
framework for the rate-maximization game has been proposed in [16], where the authors
analyzed the social properties of the equilibrium under varying channel uncertainty bounds
for the two-user case. Robust equilibrium in additively coupled games in communications
networks has been presented in [17]. The objective is to present a complete analysis of the
NE in robust games as compared to that of NE in nominal games with complete information.

In our earlier work [18], we studied the problem of joint beamforming and power allocation
in a cognitive MIMO system under the game-theoretic framework when the CSI is known.
The aim is to maximize the sum utility of SUs by jointly optimizing the beamforming vector
and the power allocation vector among the SUs. Compared with the existing works, it is
cumbersome to find the optimal solution to joint beamforming and power allocation through
convex optimization because the objective function in the optimization problem is non-
convex. Therefore, a non-cooperative game is formulated and the NE is considered as the
solution of this game. However, due to the lack of cooperation between SBS and PU in
practice, in this work the imperfect CSI is taken into account by the robust interference
constraint. The optimization problem in the formulated robust game is converted into a
SOCP problem.

The rest of this paper is organized as follows. The cognitive MIMO system is described in
Sect. 2. The games formulated under perfect CSI and imperfect CSI are discussed in Sects. 3
and 4, respectively. Simulation results are presented in Sect. 5. Some concluding remarks are
made in Sect. 6.

2 System Model

We consider a CR downlink network which shares the spectrum resource with a primary
system, as illustrated in Fig. 1. Similar system models have been considered in [19]. The
primary system consists of a primary base station (PBS) that transmits signals to a single
PU. The secondary network has a single SBS, equipped with M antennas, serving K SUs.
Throughout this paper, we assume that the PBS and the PU are equipped with a single antenna.
Due to the sharing of the same frequency band, the received signal at the PU is interfered
by the signals transmitted from SBS. Similarly, the received signals at the SUs are interfered
by the signal transmitted from the PBS. Without loss of generality, each SU equips only one
antenna. The transmitted signal vector of SUs is compactly written as

X = FPS, (1)

where S = [s1, s2, . . . , sK ]H denotes the transmitted signal vector, in which sk (�= 1, . . . , K ,
k ∈ �) is the desired signal for user k, F = [f1, f2, . . . , fK ] denotes the beamform-
ing matrix, with fk being an (M × K ) beamforming vector for the k-th SU. Likewise,
P = diag{√p1, . . . ,

√
pK } accounts for the power allocation matrix. For simplicity, we

assume that all SUs are homogeneous and experience independent fading.
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Fig. 1 Cognitive MIMO system model

The received signal at the k-th SU is given by

yk = hH
k X + √

ppgk x + nk

= √
pkhH

k fksk + hH
k

K∑

i=1,i �=k

√
pi fi si

+√
ppgk x + nk, (2)

where hk denotes the (M×1) channel vector from the SBS to the k-th SU, which is assumed to
be independent and identically distributed (i.i.d.), complex Gaussian, with zero mean and unit
variance, pp denotes the transmission power of the PU, gk represents the channel coefficient
between the PBS and the k-th SU, x represents the transmitted signal from the PBS, nk is
an additive white Gaussian noise with zero mean and variance σ 2

k . The received signal at the
PU is given by

yp = √
ppgpx + hH

p

K∑

i=1

√
pi fi si + n p, (3)

where gp denotes the channel coefficient between the PBS and the PU, hp is an (M × 1)
vector representing the channel coefficients between the SBS and the PU, n p is an additive
white Gaussian noise with zero mean and variance σ 2

p .
The signal-to-interference-plus-noise-ratio (SINR) of the k-th SU is calculated by

SINRk = pk |hH
k fk |2

∑K
i=1,i �=k pi |hH

k fi |2 + pp|gk |2 + σ 2
k

. (4)

The achievable rate of the k-th SU can be expressed as

Rk = log2(1 + SINRk). (5)
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In the cognitive MIMO system, to guarantee the QoS requirements of SUs, the received
SINR of each SU should be greater than a threshold γk [2], i.e.,

SINRk ≥ γk . (6)

On the other hand, to guarantee the QoS of the PU, interference to the PU caused by SUs
should be below a interference threshold Ith , i.e.,

K∑

k=1

pk |hH
p fk |2 ≤ Ith . (7)

In practice, the CSI between the SBS and the PU is often imperfect due to lack of coop-
eration. To take into account imperfect CSI, we adopt the following general model [11–14].
The true channel coefficient vector hp can be written as

hp = ĥp + �p, (8)

where ĥp is the CSI available at the SBS and �p is a norm-bounded uncertain vector, namely,

‖�p‖2 ≤ cpε
2
p. (9)

Here, cp and ε2
p are uncertainty parameter and estimation error, respectively. The achievable

rate of the k-th SU under imperfect CSI can be written as

Rrob
k = log2(1 + SINR′

k), (10)

where SINR′
k is the received SINR of the k-th SU under imperfect CSI.

3 Game Under Perfect CSI

To better understand the joint beamforming and power allocation game under imperfect CSI
in the cognitive MIMO system, the game under perfect CSI is recalled in this section.

3.1 Game-Theoretic Formulation

Game theory is an effective tool to analyze competitive optimization problems. For the cog-
nitive MIMO system, each SU’s transmission is a source of interference for the others. When
a SU selfishly chooses a strategy to increase its own utility, it may increase the interference
level of other SUs. Therefore, the strategies chosen by different SUs depend on each other.
Based on the system model described above, a non-cooperative game is formulated as follows
[20]:

G = {�, {fk, pk}k∈�, {uk}k∈�} (11)

where � = {1, 2, . . . , K } is the set of the K SUs, {fk, pk} is the set of admissible strategies
of the k-th SU, which is non-negative. uk is the utility function of the k-th SU in sharing
spectrum with the PU and other SUs. Consequently, the utility function can be designed
based on the achievable rate, i.e.,

uk = log2(1 + SINRk). (12)

Due to greediness, a utility function like (12) leads to an inefficient outcome, i.e., each player
focuses on the forming of its own beam without nulling the interference to the PU. To prevent
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this selfish behavior, pricing has been used as an effective tool to give players incentives to
cooperate for resource usages. Therefore, the utility function with pricing is rewritten as
follows:

uk = log2(1 + SINRk) − λpk

∣∣∣hH
p fk

∣∣∣
2
, (13)

where λ is a positive constant and has an effect to reflect the potential interference to the PU.
The non-cooperative game is formulated as [18]

max
K∑

k=1

uk

s.t.
K∑

k=1

pk

∣∣∣hH
p fk

∣∣∣
2 ≤ Ith,

K∑

k=1

pk ≤ PT ,

SINRk ≥ γk, (14)

Here, each SU competes against the others by choosing its beamforming vector fk and
power pk to maximize the sum utility of SUs with the following three constraints. The first
constraint restricts the interference power to the PU. The second constraint is to guarantee
the total transmission power from the SBS is bounded by a certain limit PT . In the third
constraint, the SINR requirement for each SU is guaranteed. Consequently, the objective of
the non-cooperative game is to coordinate the beamforming vector and power allocation for
SUs to reach to NE.

3.2 Existence of NE

To analyze the outcome of the game, the existence of a NE is a well-known optimality
criterion. In a NE point, every player is unilaterally optimal and no player can increase its
utility alone by changing its own strategy. According to the fundamental game theory, the
strategic non-cooperative game admits at least one NE point if for all k ∈ �,

(i) The feasible set Bk = {fk, pk} is a nonempty compact convex subset of a Euclidean
space.

(ii) The utility function uk(·) is continuous and quasi-concave on Bk = {fk, pk}.
Obviously, the feasible set Bk = {fk, pk} is nonempty and convex, so the first condition could
be satisfied. Utility function is continuous in strategy space Bk = {fk, pk}, thus it will be
proved as quasi-concave function only. By taking the first derivative of uk(·) with respect to
pk and |fk |2, respectively, we have

∂uk

∂pk
= 1

ln 2

|hH
k fk |2

∑K
i=1,i �=k pi |hH

k fi |2 + pp|gk |2 + σ 2
k + pk |hH

k fk |2
−λ|hH

p fk |2, (15)

∂uk

∂|fk |2 = 1

ln 2

pk |hH
k |2

∑K
i=1,i �=k pi |hH

k fi |2 + pp|gk |2 + σ 2
k + pk |hH

k fk |2
−λpk |hH

p |2. (16)

123



Joint Beamforming and Power Allocation 685

Then, by setting these first derivatives to zero, we get

pk =
|hH

k |2
λ ln 2|hH

p |2 −
[∑K

i=1,i �=k pi |hH
k fi |2 + pp|gk |2 + σ 2

k

]

|hH
k fk |2

, (17)

|fk |2 =
|hH

k |2
λ ln 2|hH

p |2 −
[∑K

i=1,i �=k pi |hH
k fi |2 + pp|gk |2 + σ 2

k

]

pk |hH
k |2 . (18)

Moreover, by finding the second derivative of uk(·) with respect to pk and |fk |2, respec-
tively, we get

∂u2
k

∂2 pk
= − 1

ln 2

|hH
k fk |4

[∑K
i=1,i �=k pi |hH

k fi |2 + pp|gk |2 + σ 2
k + pk |hH

k fk |2
]2 , (19)

∂u2
k

∂2|fk |2 = − 1

ln 2

p2
k |hH

k |4
[∑K

i=1,i �=k pi |hH
k fi |2 + pp|gk |2 + σ 2

k + pk |hH
k fk |2

]2 . (20)

As |hH
k fk |4 ≥ 0 and p2

k |hH
k |4 ≥ 0, it is easy to check that

∂u2
k

∂2 pk
≤ 0 and

∂u2
k

∂2|fk |2 ≤ 0.
Consequently, the utility functions of SUs satisfy all the required conditions for the existence
of at least one NE.

3.3 Uniqueness of NE

The key aspect of the uniqueness of the NE is that the best response function is a standard
function. Assuming that the beamforming strategy is given. In order to prove that the NE is
unique, the best response function B Rk(pk) should be a standard function, which fulfills the
following axioms [21]:

(i) Positivity: for all k ∈ K , B Rk(pk) > 0.
(ii) Monotonicity: if pk > p′

k , then B Rk(pk) > B Rk(p′
k).

(iii) Scalability: for all μ > 1, μB Rk(pk) > B Rk(μpk).

Positivity: To ensure the normal operation of the system, the best response function must
meet the positivity condition.

Monotonicity: If pk > p′
k , then

∑K
i=1,i �=k pi |hH

k fi |2 <
∑K

i=1,i �=k p′
i |hH

k fi |2. We can get

BRk(pk) − BRk(p′
k) =

|hH
k |2

λ ln 2|hH
p |2 −

[∑K
i=1,i �=k pi |hH

k fi |2 + pp|gk |2 + σ 2
k

]

|hH
k fk |2

−
|hH

k |2
λ ln 2|hH

p |2 −
[∑K

i=1,i �=k p′
i |hH

k fi |2 + pp|gk |2 + σ 2
k

]

|hH
k fk |2

=
∑K

i=1,i �=k p′
i |hH

k fi |2 − ∑K
i=1,i �=k pi |hH

k fi |2
|hH

k fk |2
≥ 0. (21)

As a result, the monotonicity property is satisfied.
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Scalability: for all μ > 1, we have

μBRk(pk) − BRk(μpk) = μ

|hH
k |2

λ ln 2|hH
p |2 −

[∑K
i=1,i �=k pi |hH

k fi |2 + pp|gk |2 + σ 2
k

]

|hH
k fk |2

−
|hH

k |2
λ ln 2|hH

p |2 −
[∑K

i=1,i �=k μpi |hH
k fi |2 + pp|gk |2 + σ 2

k

]

|hH
k fk |2

=
(μ − 1)

[∑K
i=1,i �=k pi |hH

k fi |2 − (pp|gk |2 + σ 2
k )

]

|hH
k fk |2

. (22)

According to the positive requirement

K∑

i=1,i �=k

pi |hH
k fi |2 ≥

K∑

i=1,i �=k

pi |hH
k fi |2 + pp|gk |2 + σ 2

k

>
(

pp|gk |2 + σ 2
k

)
. (23)

so μBRk(pk) > BRk(μpk) ≥ 0. Consequently, the scalability property is satisfied.
From the above proof, we can see that the best response function BRk(pk) is a standard

function, i.e., it has only one solution. Similarly, when the power allocation strategy is fixed,
we can also prove that the best response function BRk(fk) is a standard function. To sum up,
the NE point of the game is unique.

3.4 Joint Beamforming and Power Allocation Algorithm

In this section, we present an iterative algorithm that repeats the beamforming and power
allocation steps until convergence [22]. The algorithm has two parts: First, using some initial
beamforming matrix, a power vector is computed when the power allocation part operates
for a certain number of iterations. Then, with this power vector, the generalized eigenvalue
solver finds the optimal beamforming matrix. This set of power allocation and beamforming
steps is repeated, using the power in each round and then the beamforming vectors that are
calculated from the previous round, until convergence to a locally optimal pair of power and
beamforming vectors is achieved.

The iterative algorithm is summarized as follows:
Set n = 0. Initialize powers p(0)

k and beamforming vectors f (0)
k , k ∈ �.

Step 1: At each iteration, set n0 = n. Repeat{ For each user k ∈ � calculate the interference

I (n)
k =

K∑

i∈�,i �=k

p(n)
i |hH

k f (n)
i |2 + p(n)

p |gk |2 + σ 2
k . (24)

For each user k ∈ � update power

p(n)
k+1 =

|hH
k |2

λ ln 2|hH
p |2 − I (n)

k

|hH
k f (n)

k |2
. (25)

Set n = n + 1, f (n)
k = f (n−1)

k for each k ∈ �. } until n = n0 + N .
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Step 2: For each user compute the beamforming vector, which are generalized eigenvalue
problems, i.e.,

f (n)
k = arg max‖x‖=1

x H M S
k x

x H M I
k x

, (26)

where M S
k = p(n)

k |hH
k |2, M I

k = ∑K
i∈�,i �=k p(n)

i |hH
k |2 + (p(n)

p |gk |2 + σ 2
k )I.

Step 3: Repeat Steps 1 and 2 until convergence.

3.5 Convergence of the Algorithm

For any fixed λ > 0, p(n)
k+1 =

|hH
k |2

λ ln 2|hH
p |2 −I (n)

k

|hH
k f(n)

k |2 . If λ1 > λ2, then the corresponding optimal

solutions p̂(λ1) and p̂(λ2) are obtained, satisfying p̂(λ1) < p̂(λ2) regardless of the initial
values. The algorithm can be implemented to obtain the fixed point of Eq. (26). Assuming that
the order of power allocation is from SU 1 to SU K , The process of Step1 could be regarded as
a power allocation game with a coordinated utility function, as the power allocation strategy
of each SU is the best response of the utility function. So the convergence in Step1 can be
guaranteed.

The beamforming and power allocation algorithm can be interpreted as the best response
in a beamforming and power allocation game [22]. Considering the algorithm, the power
updates and beamforming updates result in an increase of the objective function. That is,
the utility function satisfies U (P(n+1), F(n+1)) ≥ U (P(n), F(n)), for n = 0, 1, . . . . The local
optimization of F and P are implemented alternately until the sum utility of SUs converges
to a stable value.

4 Game Under Imperfect CSI

Under the assumption of imperfect CSI between the SBS and the PU, in order to enable the
SUs to share the spectrum with the PU, we should find appropriate power and beamforming
weights to distribute them among the SUs so that the sum utility of SUs is maximized and the
interference created to the PU is as low as possible. This can be described by a robust game,
i.e., the SUs compete with each other to maximize the sum utility under imperfect CSI.

4.1 Game-Theoretic Formulation

Adopting the worst-case CSI uncertainty model, the robust game Grob can be formulated as

max
pk ,fk

K∑

k=1

Rrob
k

s.t.
K∑

k=1

pk |(ĥp + �p)
H fk |2 ≤ Ith,

K∑

k=1

pk ≤ PT ,
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SINRk ≥ γk,

‖�p‖2 ≤ cpε
2
p. (27)

This optimization problem is non-convex. After we make some approximations, it is clear
that the objective is equivalent to maximizing

∑K
k=1

√
pk |hH

k fk | [10]. We define wk = √
pkfk .

Then, the objective function can be rewritten as
∑K

k=1 |hH
k wk |. Similarly, the interference

power can be expressed as
∑K

k=1 |(ĥp + �p)
H wk |2. Thus, the problem (27) can be trans-

formed into

max
pk ,fk

K∑

k=1

|hH
k wk |,

s.t.
K∑

k=1

|(ĥp + �p)
H wk |2 ≤ Ith,

K∑

k=1

pk ≤ PT ,

SINRk ≥ γk,

‖�p‖2 ≤ cpε
2
p. (28)

Now we show that the above problem can be reformulated as a second order cone program
(SOCP) problem, following similar steps in [15]. Defining �̂p = 1√

cp
�p , the interference

constraint in (28) is equivalent to

K∑

k=1

max
‖�̂p‖≤εp

|(ĥp + �̂p)
H wk | ≤ √

Ith . (29)

Using the triangle inequality and the Cauchy–Schwarz inequality with ‖�̂p‖ ≤ εp , it follows
that

K∑

k=1

|ĥH
p wk + �̂H

p
√

cpwk | ≤
K∑

k=1

(|ĥH
p wk | + |�̂H

p
√

cpwk |)

≤
K∑

k=1

|ĥH
p wk | + |�̂p

√
cpwk |

≤
K∑

k=1

|ĥH
p wk | + εp‖√cpwk‖, (30)

where the equality is achieved when

�̂p = εpe jφp

√
cpwk

‖√cpwk‖ , (31)

φp = � (ĥH
p wk). This indicates

K∑

k=1

max
‖�̂p‖≤εp

|(ĥp + �̂p)
H wk | =

K∑
k=1

|ĥ H
p wk | + εp‖√cpwk‖ (32)
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So (29) is equivalent to

K∑

k=1

|ĥH
p wk | + εp‖√cpwk‖ ≤ √

Ith (33)

Note that the arbitrary phase rotation of wk does not change the value of the objective
function or the constraints. Therefore, we can assume that wk , hk , hp have the same phase,
i.e.,

Re{hH
k wk} ≥ 0, I m{hH

k wk} = 0, I m{ĥH
p wk} = 0. (34)

By combining (28), (33), and (34), the optimization problem can be converted into a SOCP
problem, as

max
pk ,fk

K∑

k=1

hH
k wk

s.t. I m{ĥH
p wk} = 0,

K∑

k=1

(|ĥH
p wk | + √

cp‖wk‖) ≤ √
Ith,

K∑

k=1

‖wk‖ ≤ √
PT ,

SINRk ≥ γk . (35)

Proposition 1 The joint beamforming and power allocation problem (35) is a convex opti-
mization problem with respect to wk .

Proof According to [23], we introduce a new variable yk = log Re{wk}. Thus, Re{wk} =
exp(yk). The objective function in (35) is transformed to

∑K
k=1 hH

k exp(yk), which is convex
with respect to yk as the sum-exp function is a convex function. The second constraint in
(35) is transformed to

∑K
k=1(|ĥH

p exp(yk)| + √
cp‖ exp(yk)‖) ≤ √

Ith . The left part of the
inequality is a sum-exp function with respect to yk , which is convex. The third constraint in
(35) is transformed to

∑K
k=1 ‖ exp(yk)‖ ≤ √

PT . The left part of the inequality is a sum-exp
function with respect to yk , which is also convex. 	


The interference generated by the PU together with the noise at the k-th SU is
pp|gk |2 + σ 2

k = 1. The interference among different SUs has been assumed to be zero
to simplify the formulation of the sum utility, i.e., hH

k wi = 0, i �= k. Then, the fourth
constraint in (35) can be transformed to

∑K
i=1,i �=k |hH

k wi |2 + pp|gk |2 + σ 2
k

|hH
k wk |2

= 1

|hH
k exp(yk)|2

≤ 1

γk
(36)

The left part of the inequality (36) is a nonnegative exponential function, which is convex
with respect to yk [23]. Since the objective function and the constraints are all convex, the
problem (35) is a convex optimization problem. This completes the proof.

This optimization problem is very difficult to solve. So we will resort to numerical simu-
lations to illustrate the convergence property of the sum utility of SUs.
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Fig. 2 Convergence of transmission power for each SU

4.2 Analysis of NE

Because I m{hH
k wk} = 0, [hH

1 , . . . , hH
K ] is not of full column rank [15]. However, the best

response of each SU is a dominant strategy (Generally, if the feasible strategy for a player is a
dominant strategy, regardless of the strategies of the other players, its strategy will maximize
the payoff function of the players). This implies that the above robust game has a unique NE.

5 Simulation Results

In this section, simulations are conducted to examine the performance of the proposed algo-
rithm under i.i.d. Rayleigh flat fading channels. Moreover, we show the convergence property
of joint beamforming and power allocation under imperfect CSI.

5.1 Perfect CSI Case

It is assumed that the SBS has perfect CSI about the fading channel coefficients from the SBS
to both the PU and SUs. For simplicity, we consider a scenario with two SUs and a single
PU. We choose pricing factor as λ = 0.25, noise power as σ 2 = 3e − 3 W, PU transmission
power as Pp = 0.1 W, SU total transmission power as PT = 20 W, the interference threshold
as Ith = 100, the k-th SU minimum SINR constraint as γk = 5 dB, respectively.

In the following, we show the convergence of the joint beamforming and power allocation
algorithm with respect to transmission power and beamforming weights. Figure 2 shows the
convergence of transmission power for each SU, where the power initialization for each SU
is the same as 0. It is observed that the transmission power converges in 5 iterations due
to the preceding update of beamforming weights. Figure 3 depicts the beamforming weight
for each SU when transmission powers converge to the optimal values. The initialization of
beamforming weights is 1 for each SU. Moreover, Fig. 4 plots the sum utility of SUs versus
the pricing factor λ when the interference to the PU caused by SUs is restricted. As observed
from Fig. 4, the sum utility of SUs converges and decreases as λ increases.
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5.2 Imperfect CSI Case

In this subsection, we show the impact of channel uncertainty on sum utility of SUs by
comparing the imperfect CSI case with the perfect CSI case. According to the ratio of the
channel coefficient from the SBS to a SU and the one from the SBS to the PU, i.e. hk/h p , the
transmission power is allocated to each SU in a descending order. The sum utility obtained by
a SOCP approximation algorithm [12] is evaluated. The estimation error is set to ε2

p = ‖ĥp‖2.
Figure 5 shows the sum utility of SUs for a scenario with four SUs and a PU. The uncertainty
parameter is set to cp = 0, 0.05, 0.2, 0.4, respectively. When cp = 0, the CSI is perfect. In
addition, the noise power and the interference threshold between SUs and the PU are set to 1.
Due to the CSI uncertainty, the sum utility is lower than that under perfect CSI. As the value
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Fig. 5 Sum utility of SUs under imperfect CSI

of the uncertainty parameter increases, the sum utility becomes less. The sum utility of SUs
under imperfect CSI converges with the increase of transmission power constraint of SUs.

6 Conclusion

In this paper, the joint beamforming and power allocation problem for a cognitive MIMO
system has been studied via game theory. Imperfect CSI between the SBS and the PU was
considered. An ellipsoid model was adopted to describe the CSI uncertainty. The problem
was formulated as a robust game. The uncertainty optimization problem was transformed
into a SOCP problem, in an effort to maximize the sum utility of SUs. Due to the CSI
uncertainty, the sum utility is lower than that under perfect CSI. Simulation results showed
the convergence property of the sum utility of SUs.
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