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Abstract This is the second in a two-part series of papers on information-theoretic capacity
scaling laws for an underwater acoustic network. Part II focuses on a dense network scenario,
where nodes are deployed in a unit area. By deriving a cut-set upper bound on the capacity
scaling, we first show that there exists either a bandwidth or power limitation, or both,
according to the operating regimes (i.e., path-loss attenuation regimes), thus yielding the
upper bound that follows three fundamentally different information transfer arguments. In
addition, an achievability result based on the multi-hop (MH) transmission is presented for
dense networks. MH is shown to guarantee the order optimality under certain operating
regimes. More specifically, it turns out that scaling the carrier frequency faster than or as n1/4

is instrumental towards achieving the order optimality of the MH protocol.
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1 Introduction

In Part I [1] of this two-part series, we studied a large-scale underwater acoustic network of
unit node density (i.e., an extended network [2–6]), in which both bandwidth and received sig-
nal power can be limited significantly, and analyzed its total capacity scaling, first introduced
by Gupta and Kumar [7] in wireless radio networks. More specifically, we characterized the
connection between the number of nodes, n, the carrier frequency, and the sum throughput
while allowing the frequency scaling with n. Both an information-theoretic upper bound and
an achievable rate scaling were derived in extended regular networks, and then using the
nearest-neighbor multi-hop (MH) routing strategy was shown to be order-optimal for all the
operating regimes (i.e., path-loss attenuation regimes) that are characterized by choosing the
frequency based on n.

This work constitutes the second of the two-part series. The focus shifts towards an
underwater network of unit area, i.e., a dense network [4,7,8]. In particular, we show that
different operating regimes are possible by allowing the carrier frequency of narrow-band
transmissions to scale as a function of n. Both upper and lower bounds on the capacity scaling
are derived for the different operating regimes.

We explicitly characterize an attenuation parameter depending on the frequency scaling
as well as the transmission distance, and then identify fundamental path-loss attenuation
regimes according to the parameter. For dense networks with n regularly distributed nodes
on a square, we derive an upper bound on the total throughput scaling using the cut-set bound.
Our upper bound basically follows the arguments, similarly as in [9]: there exists either a
bandwidth or power limitation, or both, according to the operating regimes. Our results hence
indicate that the upper bound for dense networks follows three fundamentally different infor-
mation transfer arguments according to the attenuation parameter. Specifically, the network
is bandwidth-limited as the path-loss attenuation is small. This is because network perfor-
mance on the total throughput is roughly linear in the bandwidth. However, at the medium
attenuation regime, the network is both bandwidth- and power-limited since the amount of
available bandwidth and received signal power affects the performance. Finally, the network
becomes power-limited as the attenuation parameter increases exponentially with respect to
more than

√
n, i.e., as the frequency scales faster than or as n1/4, which corresponds to the

high attenuation regime. In addition, we present a constructive achievability result based on
the nearest-neighbor MH transmission, which is suitable in practice for underwater networks
due to the very long propagation delay of acoustic signal in water [10], for dense regular
networks. By showing frequency scaling conditions, we identify the operating regimes such
that the optimal capacity scaling is guaranteed. More importantly, our results demonstrate
that the MH protocol is not able to achieve a total network throughput scaling of

√
n (i.e.,

the scaling obtained by MH in wireless radio networks) without scaling the carrier frequency
with respect to the number of nodes, n. In fact, we point out the correct scaling of the carrier
frequency to achieve

√
n scaling.

The rest of this paper is organized as follows. Section 2 describes our system and channel
models. In Sect. 3, the cut-set upper bound on the throughput is derived. In Sect. 4, the
achievable throughput scaling is analyzed. Finally, Sect. 5 summarizes the paper with some
concluding remarks.

Throughout this paper, [·]ki denotes the (k, i)th element of a matrix. In is the identity
matrix of size n × n, det(·) is the determinant, and |X | is the cardinality of the set X . C is the
field of complex numbers and E[·] is the expectation. Unless otherwise stated, all logarithms
are assumed to be to the base 2.
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On the Effects of Frequency Scaling Over Capacity Scaling 1703

2 System and Channel Models

In order to set up the discussions in this paper, we reiterate the system and channel models
described in Part I. Our model used in this paper follows exactly the same line [1] as the
extended network case except for per-node distance.

We consider a two-dimensional underwater network that consists of n nodes on a square
such that two neighboring nodes are 1/

√
n unit of distance apart from each other, i.e., a

regular network [3,5]. We randomly pick a matching of S–D pairs. Each node has an average
transmit power constraint P (constant), and we assume that the channel state information
(CSI) is available at all receivers, but not at the transmitters. It is assumed that each node
transmits at a rate T (n)/n, where T (n) denotes the total throughput of the network.

Now let us turn to channel modeling. We assume frequency-flat channel of bandwidth W
Hz around carrier frequency f , which satisfies f � W , i.e., narrow-band model. We simply
focus on a line-of-sight channel between each pair of nodes. An underwater acoustic channel
is characterized by an attenuation that depends on both the distance rki between nodes i and
k (i, k ∈ {1, . . . , n}) and the signal frequency f , and is given by

A(rki , f ) = c0rα
ki a( f )rki (1)

for some constant c0 > 0 independent of n, where 1 ≤ α ≤ 2 is the spreading factor
and a( f ) > 1 is the absorption coefficient [11]. As in Part I, we consider the case where
the frequency scales at arbitrarily increasing rates relative to n. From a common empirical
model of the absorption coefficient a( f ) for f [11,12], it follows that

a( f ) = Θ
(

ec1 f 2
)

(2)

for some constant c1 > 0 independent of n.1 The noise ni at node i ∈ {1, . . . , n} is assumed to
be circularly symmetric complex additive colored Gaussian with zero mean and power spec-
tral density (PSD) N ( f ), and thus to be frequency-dependent. Since the PSD N ( f ) decays
linearly on the logarithmic scale in the operating frequency region [11,14], its approximation
is given by

N ( f ) = Θ

(
1

f a0

)
(3)

in terms of f increasing with n, where a0 > 0 is some constant independent of n. From (2)
and (3), we may then have the following relationship between the absorption a( f ) and the
noise PSD N ( f ):

N ( f ) = Θ

(
1

(log a( f ))a0/2

)
. (4)

From the narrow-band assumption, the received signal yk at node k ∈ {1, . . . , n} at a given
time instance is given by

yk =
∑
i∈I

hki xi + nk,

1 We use the following notation: (i) f (x) = O(g(x)) means that there exist constants C and c such that

f (x) ≤ Cg(x) for all x > c. (ii) f (x) = o(g(x)) means that limx→∞ f (x)
g(x)

= 0. (iii) f (x) = Ω(g(x))

if g(x) = O( f (x)). iv) f (x) = ω(g(x)) if g(x) = o( f (x)). v) f (x) = Θ(g(x)) if f (x) = O(g(x)) and
g(x) = O( f (x)) [13].
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Fig. 1 The cut L in a
two-dimensional dense regular
network. SL and DL represent
the sets of source and destination
nodes, respectively, where DL is
partitioned into two groups DL ,1
and DL ,2

where

hki = e jθki

√
A(rki , f )

(5)

represents the complex channel between nodes i and k, xi ∈ C is the signal transmitted by
node i , and I ⊂ {1, . . . , n} is the set of simultaneously transmitting nodes. The random
phases θki are uniformly distributed over [0, 2π) and independent for different i , k, and time.
We thus assume a narrow-band time-varying channel.

Based on the above channel characteristics, operating regimes of the network are identified
according to the following physical parameters: the absorption a( f ) and the noise PSD N ( f )

which are exploited here by choosing the frequency f based on the number of nodes, n. In
other words, if the relationship between f and n is specified, then a( f ) and N ( f ) can be
given by a certain scaling function of n from (2) and (3), respectively.

Further details on the system and channel models can be found in Sect. 2 of Part I.

3 Cut-Set Upper Bound

To access the fundamental limits of a dense underwater network, a new cut-set upper bound
on the total throughput scaling is analyzed from an information-theoretic perspective [15].
Consider a given cut L dividing the network area into two equal halves, as in [1,4,9] (see
Fig. 1). Under the cut L , source nodes are on the left, while all nodes on the right are
destinations. In this case, assuming an Θ(n)×Θ(n) multiple-input multiple-output (MIMO)
channel between the two sets of nodes separated by the cut leads to the best we can hope for,
i.e., a fundamental upper bound on the throughput performance.2

Unlike the extended network case (refer to Sect. 3 of Part I), it is necessary to narrow
down the class of S–D pairs according to their Euclidean distance to obtain a tight upper
bound in a dense network. In this section, we derive a new upper bound based on hybrid
approaches that consider either the sum of the capacities of the multiple-input single-output
(MISO) channel between transmitters and each receiver or the amount of power transferred
across the network according to operating regimes, similarly as in [9].

2 Note that such an upper-bounding technique has been commonly used when we would like to characterize
a cut-set upper bound in large-scale ad hoc networks [4,16].
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On the Effects of Frequency Scaling Over Capacity Scaling 1705

For the cut L , the total throughput T (n) for sources on the left half is bounded by the
capacity of the MIMO channel between SL and DL , corresponding to the sets of sources and
destinations, respectively, and thus is given by

T (n) ≤ max
QL≥0

E

[
log det

(
In/2 + 1

N ( f )
HL QL HH

L

)]
, (6)

where HL is the matrix with entries [HL ]ki = hki for i ∈ SL , k ∈ DL , and QL ∈ C
Θ(n)×Θ(n)

is the positive semi-definite input signal covariance matrix whose kth diagonal element
satisfies [QL ]kk ≤ P for k ∈ SL . In the extended network framework [1], upper bounding
the capacity by the total received signal-to-noise ratio (SNR) yields a tight bound due to poor
power connections for all the operating regimes. In a dense network, however, we may have
arbitrarily high received SNR for nodes in the set DL that are located close to the cut, or even
for all the nodes, depending on the path-loss attenuation regimes, and thus need the separation
between destination nodes that are well- and ill-connected to the left-half network in terms
of power. More precisely, the set DL of destinations is partitioned into two groups DL ,1

and DL ,2 according to their location, as illustrated in Fig. 1. Then, by applying generalized
Hadamard’s inequality [17], we then have

T (n) ≤ E

[
log det

(
In/2 + P

N ( f )
HL HH

L

)]

≤ E

[
log det

(
I|DL ,1| + P

N ( f )
HL ,1HH

L ,1

)]

+E

[
log det

(
I|DL ,2| + P

N ( f )
HL ,2HH

L ,2

)]
, (7)

where HL ,l is the matrix with entries [HL ,l ]ki = hki for i ∈ SL , k ∈ DL ,l , and l = 1, 2.
Here, the first inequality comes from the fact that Lemmas 1 and 2 of Part I also hold for a
dense network, i.e., the covariance matrix QL maximizing the upper bound (6) is given by
the diagonal Q̃L with entries [Q̃L ]kk = P for k ∈ SL (see [1] for more description). Note
that the first and second terms in the right-hand side (RHS) of (7) represent the information
transfer from SL to DL ,1 and from SL to DL ,2, respectively. Here, DL ,1 denotes the set of
destinations located on the rectangular slab of width xL/

√
n immediately to the right of the

centerline (cut), where xL ∈ {0, 1, . . . ,
√

n/2}. The set DL ,2 is given by DL \ DL ,1. It then
follows that |DL ,1| = xL

√
n and |DL ,2| = (

√
n/2 − xL)

√
n.

Let Tl(n) denote the lth term in the RHS of (7) for l ∈ {1, 2}. It is then reasonable to
bound T1(n) by the cardinality of the set DL ,1 rather than the total received SNR. In contrast,
using the power transfer argument for the term T2(n), as in the extended network case, will
lead to a tight upper bound. It is thus important to set the parameter xL according to the
attenuation parameter a( f ), based on the selection rule for xL [9], so that only DL ,1 contains
the destination nodes with high received SNR. To be specific, we need to decide whether the
SNR received by a destination k ∈ DL from the set SL of sources, denoted by P(k)

L /N ( f ),
is larger than one, because degrees of freedom (also known as capacity pre-log factor) of the
MISO channel are limited to one. If destination node k has the total received SNR greater
than one, i.e., P(k)

L = ω(N ( f )), then it belongs to DL ,1. Otherwise, it follows that k ∈ DL ,2.
For analytical tractability, suppose that

a( f ) = Θ
(
(1 + ε0)

nβ
)

for β ∈ [0,∞) , (8)
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Fig. 2 Upper (solid) and lower
(dashed) bounds on the capacity
scaling T (n)

where ε0 > 0 is an arbitrarily small constant, independent of n, which represents all the
operating regimes with varying β. As in the extended network case, we define the following
parameter

P(k)
L = P

c0

∑
i∈SL

r−α
ki a( f )−rki (9)

for some constant c0 > 0 independent of n, which corresponds to the total power received
from the signal sent by all the sources i ∈ SL at node k on the right [see (1) and (5)].
Let us index the node positions such that the source and destination nodes are located at

positions
(−ix +1√

n
,

iy√
n

)
and

(
kx√

n
,

ky√
n

)
, respectively, for ix , kx = 1, . . . ,

√
n/2 and iy, ky =

1, . . . ,
√

n. We then obtain the following scaling results for P(k)
L as shown below.

Lemma 1 In a dense regular network, the term P(k)
L in (9) is upper- and lower-bounded by

P(k)
L =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O(n) i f 1 ≤ α < 2
and kx = o

(
n1/2−β+ε

)
O (n log n) i f α = 2

and kx = o
(
n1/2−β+ε

)

O

(
nα/2

(1+ε0)kx nβ−1/2 max
{
1, n1/2−β

})
i f kx = Ω

(
n1/2−β+ε

)

(10)

and

P(k)
L =

⎧⎪⎨
⎪⎩

Ω
(

nα/2−ε

kα−1
x

)
i f kx = o

(
n1/2−β+ε

)

Ω

(
1

(1+ε0)kx nβ−1/2 max

{
1, n1/2−β

(1+ε0)nβ−1/2

})
i f kx = Ω

(
n1/2−β+ε

)
,

(11)

respectively, for arbitrarily small positive constants ε and ε0, where kx/
√

n is the horizontal
coordinate of node k ∈ DL ,2.

The proof of this lemma is presented in Appendix 6.1. Although the upper and lower
bounds for P(k)

L are not identical to each other, showing these scaling results is sufficient
to make a decision on xL according to the operating regimes. It is seen from Lemma 1 that
when kx = o

(
n1/2−β+ε

)
, P(k)

L does not depend on the parameter β (or a( f )), while for
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kx = Ω
(
n1/2−β+ε

)
, node k ∈ DL ,2 gets ill-connected to the left half in terms of power

since P(k)
L decreases exponentially with n. More specifically, when kx = o

(
n1/2−β+ε

)
, it

follows that P(k)
L = ω(nαβ) from (11), resulting in P(k)

L = ω(N ( f )) due to N ( f ) = O(1).

In contrast, under the condition kx = Ω
(
n1/2−β+ε

)
, it is observed from (10) that P(k)

L is

exponentially decaying as a function of n, thus leading to P(k)
L = o(N ( f )). As a consequence,

using the result of Lemma 1, three different regimes are identified and the selected xL is
specified accordingly:

xL =
⎧
⎨
⎩

√
n/2 if β = 0

n1/2−β+ε if 0 < β ≤ 1/2
0 if β > 1/2

(12)

for an arbitrarily small ε > 0. It is now possible to show the proposed cut-set upper bound
in dense networks.

Theorem 1 Consider an underwater regular network of unit area. Then, the upper bound
on the total throughput T (n) is given by

T (n) =

⎧
⎪⎪⎨
⎪⎪⎩

O(n log n) i f β = 0
O
(
n1−β+ε log n

)
i f 0 < β ≤ 1/2

O

(
n(1+α+βa0)/2

(1+ε0)nβ−1/2

)
i f β > 1/2,

(13)

where ε and ε0 are arbitrarily small positive constants, and a0 and β are defined in (3) and
(8), respectively.

Proof We first compute the first term T1(n) in (7), focusing on the case for 0 ≤ β ≤ 1/2
since otherwise T1(n) = 0. Since the nodes in the set DL ,1 have good power connections to
the left-half network and the information transfer to DL ,1 is limited in bandwidth (but not
power), the term T1(n) is upper-bounded by the sum of the capacities of the MISO channels.
More specifically, by generalized Hadamard’s inequality [17], T1(n) can be easily bounded
by

T1(n) ≤
∑

k∈DL ,1

log

⎛
⎝1 + P

N ( f )

∑
i∈SL

1

A(rki , f )

⎞
⎠

≤ xL
√

n log

(
1 + Pnα/2+1

a( f )1/
√

n N ( f )

)

≤ xL
√

n log

(
1 + Pnα/2+1

N ( f )

)

≤ c2xL
√

n log n (14)

for some constant c2 > 0 independent of n, where the last two steps are obtained from the
fact that 0 < a( f ) ≤ 1 and N ( f ) tends to decrease polynomially with n from the relation
in (4). The upper bound for the second term T2(n) in (7) is now derived under the condition
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β ∈ (0,∞). From the fact that log(1 + x) ≤ x for any x , it follows that

T2(n) ≤
∑

k∈DL ,2

log

⎛
⎝1 + P

N ( f )

∑
i∈SL

1

A(rki , f )

⎞
⎠

≤
∑

k∈DL ,2

∑
i∈SL

P

A(rki , f )N ( f )

= 1

N ( f )

∑
k∈DL ,2

P(k)
L , (15)

which corresponds to the sum of the total received SNR from the left-half network to the
destination set DL ,2. Hence, combining the two bounds (14) and (15) along with the choices
for xL specified in (12), we obtain the following upper bound on the total throughput T (n):

T (n) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c2n log n if β = 0
c2n1−β+ε log n + 1

N ( f )

∑
k∈DL ,2

P(k)
L if 0 < β ≤ 1/2

1
N ( f )

∑
k∈DL

P(k)
L if β > 1/2

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c2n log n if β = 0

c2n1−β+ε log n + 1
N ( f )

√
n/2∑

kx =xL

√
n∑

ky=1

nα/2+1/2−β

(1+ε0)kx nβ−1/2 if 0 < β ≤ 1/2

1
N ( f )

√
n/2∑

kx =1

√
n∑

ky=1

nα/2

(1+ε0)kx nβ−1/2 if β > 1/2

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c2n log n if β = 0
c3n1−β+ε log n if 0 < β ≤ 1/2

n(1+α)/2

N ( f )

√
n/2∑

kx =1

1
(1+ε0)kx nβ−1/2 if β > 1/2

(16)

for an arbitrarily small ε > 0 and some constant c3 > 0 independent of n, where the equality

comes from (10). The second inequality holds due to the fact that the term nα/2

(1+ε0)kx nβ−1/2 tends

to decay exponentially with n under the conditions 0 < β ≤ 1/2 and xL ≤ kx ≤ √
n/2, and

thus the total is dominated by the information transfer T1(n) in (14). Now let us focus on the
last line of (16), which corresponds to the total amount of SNR received by all nodes for the
condition β > 1/2. For β > 1/2, using the two relationships (4) and (8) follows that

n(1+α)/2

N ( f )

√
n/2∑

kx =1

1

(1 + ε0)kx nβ−1/2 ≤ n(1+α)/2

N ( f )

1

(1 + ε0)nβ−1/2 − 1

≤ c4n(1+α+βa0)/2

(1 + ε0)nβ−1/2

for some constant c4 > 0 independent of n, where the second inequality holds due to
(1 + ε0)

nβ−1/2 = ω(1) under the condition. This coincides with the result shown in (13),
which completes the proof.

Note that the upper bound [4] for wireless radio networks of unit area is given by
O(n log n), which is the same as the case with β = 0 (or equivalently a( f ) = Θ(1)) in
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the dense underwater network. Now let us discuss the fundamental limits of the network
according to three different operating regimes shown in (13).

Remark 1 The upper bound on the total capacity scaling is illustrated in Fig. 2 versus the
parameter β (logarithmic terms are omitted for convenience). We first address the regime
β = 0 (i.e., low path-loss attenuation regime), in which the upper bound on T (n) is active
with xL = √

n/2, or equivalently DL ,1 = DL , while T2(n) = 0. In this case, the total
throughput of the network is limited by the degrees of freedom of the Θ(n) × Θ(n) MIMO
channel between SL and DL , and is roughly linear in the bandwidth, thus resulting in a
bandwidth-limited network. In particular, our interest is in the operating regimes for which
the network becomes power-limited as β > 0. In the second regime 0 < β ≤ 1/2 (i.e.,
medium path-loss attenuation regime), as pointed out in the proof of Theorem 1, the upper
bound on T (n) is dominated by the information transfer from SL to DL ,1, that is, the term
T1(n) in (14) contributes more than T2(n) in (15). The total throughput is thus limited by
the degrees of freedom of the MIMO channel between SL and DL ,1, since more available
bandwidth leads to an increment in T1(n). As a consequence, in this regime, the network
is both bandwidth- and power-limited. In the third regime β > 1/2 (i.e., high path-loss
attenuation regime), the upper bound (15) is active with xL = 0, or equivalently DL ,2 = DL ,
while T1(n) = 0. The information transfer to DL is thus totally limited by the sum of the
total received SNR from the left-half network to the destination nodes in DL . In other words,
in the third regime, the network is limited in power, but not in bandwidth.

Note that the upper bound on T (n) decays polynomially with increasing β in the regime
0 < β ≤ 1/2, while it drops off exponentially when β > 1/2. In addition, two other
expressions on the total throughput T (n) are summarized as follows.

Remark 2 From (4) and (8), the upper bound and the corresponding operating regimes can
also be presented below in terms of the attenuation parameter a( f ):

T (n) =

⎧⎪⎪⎨
⎪⎪⎩

O(n log n) if a( f ) = Θ(1)

O
(

n1+ε log n
log a( f )

)
if a( f ) = ω(1) and a( f ) = O

(
(1 + ε0)

√
n
)

O
(

n(1+α)/2(log a( f ))a0/2

a( f )1/
√

n

)
if a( f ) = ω

(
(1 + ε0)

√
n
)

.

Note that as a( f ) = ω
(
(1 + ε0)

√
n
)

, we also obtain

T (n) = O

(
n(1+α)/2

a( f )1/
√

n N ( f )

)
,

which is expressed as a function of the spreading factor α as well as the absorption a( f ) and
the noise PSD N ( f ). Using (2) and (3) further yields the following expression

T (n) =

⎧⎪⎪⎨
⎪⎪⎩

O(n log n) if f = Θ(1)

O
(

n1+ε log n
f 2

)
if f = ω(1) and f = O

(
n1/4

)

O
(

n(1+α)/2 f a0

ec1 f 2/
√

n

)
if f = ω

(
n1/4

)
,

which represents the upper bound for the operating regimes identified by frequency scaling.
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4 Achievability Result

In this section, to show the order optimality of underwater networks, we analyze the achievable
throughput scaling for dense networks. We focus on the achievability based on the nearest-
neighbor MH routing. In a dense regular network, we also identify the operating regimes for
which the achievable throughput matches the upper bound shown in Sect. 3.

As in the extended network case (refer to Sect. 4 of Part I), the nearest-neighbor MH
routing [7] is used with a slight modification. The basic procedure of the MH protocol under
our dense regular network is briefly described as follows:

– Divide the network into n square routing cells, each of which has the same area.
– Draw a line connecting an S–D pair.
– At each node, use the transmit power of

P min

{
1,

a( f )1/
√

n N ( f )

nα/2

}
.

The scheme operates with the full power when a( f ) = Ω
(

nα
√

n/2

N ( f )
√

n

)
. On the other hand,

when a( f ) = o
(

nα
√

n/2

N ( f )
√

n

)
, the transmit power Pa( f )1/

√
n N ( f )/nα/2, which scales slower

than Θ(1), is sufficient so that the received SNR at each node is bounded by 1 (note that
having a higher power is unnecessary in terms of throughput improvement).

The amount of interference is now quantified to show the achievable throughput based on
MH.

Lemma 2 Consider a dense regular network that uses the nearest-neighbor MH protocol.
Then, the total interference power PI from other simultaneously transmitting nodes, corre-
sponding to the set I ⊂ {1, . . . , n}, is bounded by

PI =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O

(
max

{
n(1/2−β)(2−α),log n

}
nβa0/2

)
i f 0 ≤ β < 1/2

O
(
n−βa0/2

)
i f β = 1/2

O

(
nα/2

(1+ε0)nβ−1/2

)
i f β > 1/2

(17)

for an arbitrarily small ε0 > 0, where a0 and β are defined in (3) and (8), respectively.

The proof of this lemma is presented in Appendix 6.2. From (4) and (8), we note that
when β = 1/2, it follows that PI = O(N ( f )), i.e., PI is upper-bounded by the PSD N ( f )

of noise. Using Lemma 2, a lower bound on the capacity scaling can be derived, and hence
the following result shows the achievable rates under the MH protocol in a dense network.

Theorem 2 In an underwater regular network of unit area,

T (n) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Ω
( √

n
max{n(1/2−β)(2−α),log n}

)
i f 0 ≤ β < 1/2

Ω
(√

n
)

i f β = 1/2

Ω

(
n(1+α+βa0)/2

(1+ε0)nβ−1/2

)
i f β > 1/2

(18)

is achievable.
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Proof Suppose that the nearest-neighbor MH protocol described above is used. Then, from
(1), the received signal power Pr from the desired transmitter is given by

Pr =
P min

{
1,

a( f )1/
√

n N ( f )

nα/2

}
nα/2

c0a( f )1/
√

n
,

which can be rewritten as

Pnα/2

c0(1 + ε0)nβ−1/2 min

{
1,

(1 + ε0)
nβ−1/2

n(α+βa0)/2

}

=
⎧
⎨
⎩

P
c0nβa0/2 if 0 ≤ β ≤ 1/2

Pnα/2

c0(1+ε0)nβ−1/2 if β > 1/2
(19)

with respect to the parameter β using (4) and (8). To obtain a lower bound on the capacity
scaling, the signal-to-interference-and-noise ratio (SINR) seen by receiver i ∈ {1, . . . , n} can
be computed using (17) and (19). By assuming the worst case noise, which lower-bounds
the transmission rate, and full CSI at the receiver, the achievable throughput per S–D pair is
then lower-bounded by

log(1 + SINR)

= log

(
1 + Pr

N ( f ) + PI

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ω
(

log
(

1 + 1
max{n(1/2−β)(2−α),log n}

))
if 0 ≤ β < 1/2

Ω(1) if β = 1/2

Ω

(
log

(
1 + n(α+βa0)/2

(1+ε0)nβ−1/2

))
if β > 1/2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ω
(

1
max{n(1/2−β)(2−α),log n}

)
if 0 ≤ β < 1/2

Ω(1) if β = 1/2

Ω

(
n(α+βa0)/2

(1+ε0)nβ−1/2

)
if β > 1/2,

where the second equality holds since N ( f ) = Θ(n−βa0/2) and thus PI = ω(N ( f )) for
0 ≤ β < 1/2, PI = Θ(Pr ) = Θ(N ( f )) for β = 1/2, and PI = o(N ( f )) for β > 1/2.
The last equality comes from the fact that log(1 + x) = (log e)x + O(x2) for small x > 0.
Since there are Ω(

√
n) S–D pairs that can be active simultaneously in the network, the total

throughput is finally given by (18), which completes the proof.

Note that the achievable throughput [7] for wireless radio networks of unit area using MH
routing is given by Ω(

√
n), which is the same as the case for which β = 1/2 (or equivalently

a( f ) = Θ
(
(1 + ε0)

√
n
)

) in a dense underwater network. The lower bound on the total

throughput T (n) is also shown in Fig. 2 according to the parameter β. From this result, an
interesting observation follows. To be specific, in the regime 0 ≤ β ≤ 1/2, the lower bound
on T (n) grows linearly with increasing β, because the total interference power PI in (17)
tends to decrease as β increases. In this regime, note that PI = Ω(Pr ). Meanwhile, when
β > 1/2, the lower bound reduces rapidly due to the exponential path-loss attenuation in
terms of increasing β.

In addition, similarly as in Sect. 3, two other expressions on the achievability result are
now summarized as in the following.
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Remark 3 From (4) and (8), the lower bound on the throughput T (n) and the corresponding
operating regimes can also be presented below in terms of the attenuation parameter a( f ):

T (n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ω

( √
n

max
{

a( f )(2−α)/
√

n ,log n
}
)

if a( f ) = Ω(1) and a( f ) = o
(
(1 + ε0)

√
n
)

Ω
(√

n
)

if a( f ) = Θ
(
(1 + ε0)

√
n
)

Ω
(

n(1+α)/2(log a( f ))a0/2

a( f )1/
√

n

)
if a( f ) = ω

(
(1 + ε0)

√
n
)

.

Furthermore, using (2) and (3) follows that

T (n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ω

( √
n

max
{

ec1(2−α) f 2/
√

n ,log n
}
)

if f = Ω(1) and f = o
(
n1/4

)

Ω
(√

n
)

if f = Θ
(
n1/4

)

Ω
(

n(1+α)/2 f a0

ec1 f 2/
√

n

)
if f = ω

(
n1/4

)
,

which represents the lower bound for the operating regimes obtained from the relationship
between the frequency f and the number n of nodes.

Now let us turn to examining how the upper bound shown in Sect. 3 is close to the
achievable throughput scaling.

Remark 4 Based on Theorems 1 and 2, it is seen that if β ≥ 1/2, then the achievable rate
of the MH protocol is close to the upper bound up to nε for an arbitrarily small ε > 0 (note
that the two bounds are of exactly the same order especially for β > 1/2). The condition
β ≥ 1/2 corresponds to the high path-loss attenuation regime, and is equivalent to a( f ) =
Ω
(
(1 + ε0)

√
n
)

or f = Ω
(
n1/4

)
. Therefore, the MH is order-optimal in regular networks of

unit area under the aforementioned operating regimes, whereas in extended networks, using
MH routing results in the order optimality for all the operating regimes.

Moreover, the derived achievable rate scaling is compared with the case of wireless radio
networks.

Remark 5 The total throughput scales as Θ(
√

n) when a MH routing is used for nodes
regularly distributed in a wireless radio network of unit area [7]. As illustrated in Fig. 2,
it is shown in dense underwater networks that the MH protocol achieves a total network
throughput scaling of Ω(

√
n), which is the best result we can hope for with MH, only when

β = 1/2 (or equivalently f = Θ
(
n1/4

)
). Our results thus indicate that without a judicious

scaling of the carrier frequency, the MH does not achieve the throughput scaling
√

n, obtained
by MH in dense wireless radio networks.

5 Conclusion

In Part II of a two-part series, dense underwater acoustic networks were analyzed in terms
of capacity scaling. In dense networks, the upper bound was derived characterizing three
different operating regimes, in which there exists either a bandwidth or power limitation,
or both. The nearest-neighbor MH protocol was introduced with a slight modification to
show the achievability result—the MH protocol was shown to be order-optimal in power-
limited regimes (i.e., the case where the frequency f scales faster than or as n1/4) of dense
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networks. Our results indicated that without a judicious scaling of the carrier frequency,
the MH protocol does not achieve the throughput scaling

√
n, obtained by MH in dense

wireless radio networks. We also identified the appropriate carrier frequency scaling required
to achieve a throughput scaling of

√
n with MH. Therefore, it turned out that there exists a

right frequency scaling that makes our scaling results for underwater acoustic networks to
break free from scaling limitations related to the channel characteristics that were described
in [18]. For all the operating regimes, the exact capacity scaling of dense underwater networks
remains still open, which offers an enormous scope for further research in this area.
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6 Appendix

6.1 Proof of Lemma 1

Upper and lower bounds on P(k)
L in a dense network are derived by basically following the

same node indexing and layering techniques as those in Part I. We refer to Appendix A.2
and Figure 4 in [1] for the detailed description (note that the destination nodes are, however,

located at positions
(

kx√
n
,

ky√
n

)
in dense networks). Similarly to the extended network case,

from (9), the term P(k)
L is then given by

P(k)
L = P

c0

√
n/2∑

ix =1

√
n∑

iy=1

nα/2

(
(ix + kx − 1)2 + (iy − ky)2

)α/2
a( f )

√
((ix +kx −1)2+(iy−ky)2)/n

.

First, focus on how to obtain an upper bound for P(k)
L . Assuming that all the nodes in each

layer are moved onto the innermost boundary of the corresponding ring, we then have

P(k)
L ≤ Pnα/2

c0

kx +√
n/2−1∑

i ′=kx

c5(i ′ + 1)

i ′αa( f )i ′√n

≤ 2c5 Pnα/2

c0

√
n∑

i ′=kx

1

i ′α−1a( f )i ′√n

= c6 Pnα/2

√
n∑

i ′=kx

1

i ′α−1 (1 + ε0)
i ′nβ−1/2 (20)

for some positive constants c0, c5, and c6 independent of n and an arbitrarily small ε0 > 0,
where the equality comes from the relationship (8) between a( f ) and β. We first consider
the case where kx = o

(
n1/2−β+ε

)
for an arbitrarily small ε > 0. Under this condition, from

the fact that the term i ′α−1 in the RHS of (20) is dominant in terms of upper-bounding P(k)
L

for i ′ = kx , . . . ,
√

n, (20) is further bounded by
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P(k)
L ≤ c6 Pnα/2

√
n∑

i ′=kx

1

i ′α−1

≤ c6 Pnα/2

⎛
⎜⎝ 1

kα−1
x

+
√

n∫

kx

1

xα−1 dx

⎞
⎟⎠ ,

which yields P(k)
L = O

(
nα/2(

√
n)2−α

) = O(n) for 1 ≤ α < 2 and P(k)
L = O (n log n) for

α = 2. When kx = Ω(n1/2−β+ε), the upper bound (20) for P(k)
L is dominated by the term

(1 + ε0)
i ′nβ−1/2

, and thus is given by

P(k)
L ≤ c6 Pnα/2

√
n∑

i ′=kx

1

(1 + ε0)
i ′nβ−1/2

≤ c6 Pnα/2

⎛
⎜⎝ 1

(1 + ε0)
kx nβ−1/2 +

√
n∫

kx

1

(1 + ε0)
xnβ−1/2 dx

⎞
⎟⎠

= c6 Pnα/2

⎛
⎜⎝ 1

(1 + ε0)
kx nβ−1/2 +

√
n/kx∫

1

kx

(1 + ε0)
xkx nβ−1/2 dx

⎞
⎟⎠

≤ c6 Pnα/2

(
1

(1 + ε0)
kx nβ−1/2 + n1/2−β

(1 + ε0)
kx nβ−1/2

)

≤ c7 Pnα/2

(1 + ε0)
kx nβ−1/2 max

{
1, n1/2−β

}
(21)

for some constant c7 > 0 independent of n, which is the last result in (10).
Next, let us turn to deriving a lower bound for P(k)

L . Since each layer has at least one node
that is onto the innermost boundary of the corresponding ring, the lower bound similarly
follows

P(k)
L ≥ Pnα/2

c0

kx +√
n/2−1∑

i ′=kx

1

i ′αa( f )i ′√n

= c6 Pnα/2
kx +√

n/2−1∑
i ′=kx

1

i ′α (1 + ε0)
i ′nβ−1/2 . (22)

For the condition kx = o(n1/2−β+ε), (22) is represented as

P(k)
L ≥ c6 Pnα/2

kx +√
n/2−1∑

i ′=kx

1

i ′α (1 + ε0)
i ′nβ−1/2

≥ c6 Pnα/2
2kx −1∑
i ′=kx

1

i ′α (1 + ε0)
i ′nβ−1/2
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≥ c6 Pnα/2

nε′

2kx −1∑
i ′=kx

1

i ′α

≥ c8 Pnα/2

nε′kα−1
x

for an arbitrarily small ε′ > 0 and some constant c8 > 0 independent of n, where the third
inequality holds due to (1 + ε0)

kx nβ−1/2 = O(nε′
). On the other hand, similarly as in the

steps of (21), the condition kx = Ω(n1/2−β+ε) yields the following lower bound for P(k)
L :

P(k)
L ≥ c6 P

kx +√
n/2−1∑

i ′=kx

1

(1 + ε0)
i ′nβ−1/2

≥ c6 P

⎛
⎜⎝ 1

(1 + ε0)
kx nβ−1/2 +

kx +√
n/2−1∫

kx +1

1

(1 + ε0)
xnβ−1/2 dx

⎞
⎟⎠

≥ c9 P

(
1

(1 + ε0)
kx nβ−1/2 + n1/2−β

(1 + ε0)
(kx +1)nβ−1/2

)

≥ c9 P

(1 + ε0)
kx nβ−1/2 max

{
1,

n1/2−β

(1 + ε0)
nβ−1/2

}

some constant c9 > 0 independent of n, which finally complete the proof of the lemma.

6.2 Proof of Lemma 2

The layering technique used in Part I is similarly applied (see Fig. 2 in [1]). From (1), the total
interference power PI at each node from simultaneously transmitting nodes is upper-bounded
by

PI =
√

n∑
k=1

(8k)
P min

{
1,

a( f )1/
√

n N ( f )

nα/2

}

c0(k/
√

n)αa( f )k/
√

n

=
8Pnα/2 min

{
1,

a( f )1/
√

n N ( f )

nα/2

}

c0

√
n∑

k=1

1

kα−1a( f )k/
√

n
. (23)

Using (4) and (8), the upper bound (23) on PI can be expressed as

PI ≤ c10 Pnα/2 min

{
1,

(1 + ε0)
nβ−1/2

n(α+βa0)/2

} √
n∑

k=1

1

kα−1(1 + ε0)knβ−1/2

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c10 P
nβa0/2

√
n∑

k=1

1
kα−1(1+ε0)knβ−1/2 if 0 ≤ β < 1/2

c10 P
nβa0/2

√
n∑

k=1

1
(1+ε0)k if β = 1/2

c10 Pnα/2

√
n∑

k=1

1
(1+ε0)knβ−1/2 if β > 1/2
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≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c10 P
nβa0/2

√
n∑

k=1

1
kα−1(1+ε0)knβ−1/2 if 0 ≤ β < 1/2

c10 P
nβa0/2

1
(1+ε0)−1 if β = 1/2

c10 Pnα/2 1
(1+ε0)nβ−1/2 −1

if β > 1/2

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c10 P
nβa0/2

√
n∑

k=1

1
kα−1(1+ε0)knβ−1/2 if 0 ≤ β < 1/2

c11 P
nβa0/2 if β = 1/2

c11 Pnα/2

(1+ε0)nβ−1/2 if β > 1/2

for some positive constants c10 and c11 independent of n. Based on the argument in Appen-
dix 6.1, when 0 ≤ β < 1/2, it follows that

√
n∑

k=1

1

kα−1(1 + ε0)knβ−1/2 =
n1/2−β−1∑

k=1

1

kα−1(1 + ε0)knβ−1/2 +
√

n∑

k=n1/2−β

1

kα−1(1 + ε0)knβ−1/2

≤
n1/2−β−1∑

k=1

1

kα−1 + 1

n(1/2−β)(α−1)

√
n∑

k=n1/2−β

1

(1 + ε0)knβ−1/2

≤
⎛
⎜⎝1 +

n1/2−β∫

1

1

xα−1 dx

⎞
⎟⎠

+ 1

n(1/2−β)(α−1)

⎛
⎜⎝ 1

1 + ε0
+

√
n∫

n1/2−β

1

(1 + ε0)xnβ−1/2 dx

⎞
⎟⎠

≤ 2

n1/2−β∫

1

1

xα−1 dx + 2

n(1/2−β)(α−1)

nβ∫

1

n1/2−β

(1 + ε0)x
dx

≤
{

4n(1/2−β)(2−α) if 1 ≤ α < 2
log n if α = 2,

which results in PI = O

(
max

{
n(1/2−β)(2−α),log n

}
nβa0/2

)
. This completes the proof of the lemma.
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