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Abstract The performance of a wireless network is related to the Euclidean distance dis-
tribution between the communication nodes, which in turn depends on network geometry.
In this paper, we provide an analytical framework for the description of distance statistics
in convex polygons with arbitrary number and length of sides. Simulation results validate
the formulation. Comparisons with models in the literature indicate that our approach is a
generalization of previous works. Representative examples show the merits of the proposal
and assess its applicability in wireless networking. The main contribution of this work is the
consideration of polygonal-shaped networks. The obtained formulation reduces the complex-
ity and computational cost of the modeling and simulation of wireless systems and it is more
convenient than other approaches when network planning considers n-gonal coverage areas.
Moreover, it provides adequate results for the calculation of distance-dependent parameters
and performance metrics of wireless networks.

Keywords Euclidean distance · Polygon · Distance-related metrics · Routing protocol ·
Voronoi diagram · Wireless network

1 Introduction

The advances in wireless networks have resulted in a significant increase in the required
recourses and effort for their design and study. These demands are usually met through the
use of powerful computer-aided analysis tools, but at the same time, several research attempts
target to the analytical description of system characteristics and performance metrics so as
to reduce the required complexity and computational cost for their analysis and study.

A topic that has been extensively studied in the past is the internode distance distribution.
This knowledge is crucial in system configuration, protocol design, resource management
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and throughput analysis. In fact, distance statistics are related to several topics in wireless
networking such as coverage [1,2], connectivity [2–4], capacity [3,5], spectral efficiency
[3,6], power consumption [4,7–9], interference [3–6,10], error probability [10,11], path loss
estimation [6,10,12,13], routing [3,4,7–9,11,14,15] and localization [4,9,14].

Distance distribution depends on network shape. In practice, the coverage area of a wire-
less network is irregularly shaped and influenced by man-made structures and terrain contour.
However, approximate methods are often suggested for analytical convenience. A simplistic
approach is the circular one [6,10,12,16] and it rises from the fact that the coverage area
of an omni-directional transmitter is, ideally, a circular disk. The hexagonal approximation
[5,13,15–17] is flexible and convenient and allows the coverage of the network area with-
out gaps. This is employed in the planning and analysis of cellular networks such as in
macrocellular ones with base station antennas placed at great height. Another reasonable
assumption, esp. for small-scale networks in indoor environments, is the rectangular-shaped
networks [8,15,18,19]. The approach provides full network coverage and it is simpler than
the previous one. In hexagonal tessellations, the covered area may also be described by rhom-
buses when directional antennas are employed [15,20,21]. Rhombuses are further used in
the study of wireless sensor networks (WSNs) for the sake of deployment convenience and
increased connectivity [2,20]. However, the coverage area of WSNs usually comprises Voro-
noi polygons [11,22–24] to assure full network coverage and reduced energy consumption.
In highly non-static systems, such as mobile and vehicular ad hoc networks, and in WSNs
with mobile nodes that are relocated from their initial deployment locations for coverage
improvement, the nodes are distributed according to a stochastic process (Poisson, Gaussian,
etc.) [3,4,25,26].

In this paper, we consider that the communication nodes are distributed within an area
bounded by an arbitrary convex polygon of n sides (n-gon). The purpose of this paper is
twofold. First, we provide analytical expressions for the Euclidean distance density (pdf)
and distribution (cdf) from a fixed point within a region bounded from an n-gon. Com-
parisons with simulation results and models in the literature validate the model. Then, the
obtained formulation is used to describe certain distance-dependent network parameters and
performance metrics assuming uniform node distribution,1 and their application in radio
propagation, WSNs’ sensitivity, network routing and energy consumption.

The proposed model suits for the design, analysis and simulation of polygonal-shaped
networks. Applications can be found in areas such as WSNs, mobile ad hoc networking
and irregular (non-uniform) cellular systems. The obtained results can also be viewed as a
generalization of recent works in computational geometry and their application in the study
of wireless networks with simpler geometric layouts such as hexagonal, square and circular
ones. The analytical description of distance statistics and performance metrics simplifies the
analysis and simulation of a wireless network and reduces the computational requirements.
The calculated results are exact, they do not require further statistical inspection and they can
be used as first-order approximation for more complex models and real nodes distributions
[28]. Moreover, the derived formulation is more convenient than other approaches when
network planning assumes n-gonal coverage areas (Voronoi polygons, for example).

The rest of the paper is organized as follows: Sect. 2 presents related work in the area. Sec-
tion 3 derives the probabilistic distance distributions for the proposed model. In Sect. 4, we
provide comparisons with simulation results and models in the literature. Section 5 discusses
representative applications in wireless networking. Finally, Sect. 6 concludes the paper.

1 This assumption is quite common in the literature; see, for example, [2,4–13,15–19,21,24,25,27].
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2 Related Work

The knowledge of the internode distance distribution is essential for the design, analysis and
performance evaluation of a wireless network. The network geometry plays an important
role in the determination of the distance statistics. Thus, despite the fact that there are infinite
network shapes, the assumption of regular-shaped ones that allows an analytical descrip-
tion of networks characteristics and performance metrics is popular because it reduces the
computational requirements, provides key insights into the stochastic characteristics of the
system and, in general, gives adequate results.

This issue is concisely treated in the published literature. Next, we give the pdf of the
distance from a fixed reference point within a region bounded from a circle, a square and a
hexagon. In a circular disk of radius R, the pdf of the distance d from a fixed point located
at a distance D ≤ R from the center of the circle is [10]

fc (d) =
{ 2d

R2 , d ≤ R − D
2d

π R2 cos−1
(

d2+D2−R2

2Dd

)
, R − D < d ≤ R + D

(1)

In a square with side a, the Euclidean distance densities from the center of the square, a
midpoint of a side, and a square vertex, are, respectively, [19]:

fs,c (d) =
{

2πd
a2 , d ≤ a

2
2πd
a2

[
1 − 4

π
cos−1
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2d

)]
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2 < d ≤ a√
2
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{

πd
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d
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2a
(4)

Finally, the pdf of the distance from a vertex or the center of a hexagon are [5,13]

fh,v (d) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πd
3
√
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(5)

and

fh,c (d) =
{ πd√

3ρ2 , d ≤ ρ

2
√

3d
ρ2

[
π
6 − cos−1

(
ρ
d

)]
, ρ < d ≤ 2ρ√

3

(6)

respectively, where ρ is the inradius of the hexagon. Under the assumption of uniform node
distribution, (1)–(6) describe the internode distance pdf in wireless networks with the afore-
mentioned geometries.

The previous formulas are used for the description of distance statistics in networks with
simple geometric layouts. However, none of these expressions can be generalized to complex
systems due to the constraints imposed by the systems’ geometry. A more general model for
the description of distance distribution in complex systems follows.
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3 The Proposed Model

In this section, we provide analytical expressions for the cdf and pdf of the distance between
a fixed reference point and a random point within a convex n-gonal region, such as a Voronoi
polygon; see Fig. 1. The formulation is also applicable in regular-shaped networks such as
hexagonal, rectangular, etc. (see, next section).

We consider a polar coordinates system with its origin at a fixed reference point O bounded
from an n-gon with vertices at (ri , ϕi ), i = 1 . . . n. The cdf Fp(d) of the distance d between
O and a random point within the n-gonal region is given by the ratio of the overlapping area
between a circle with radius d centered at O (let us call this circle C(O, d)) and the n-gon, to
the area of the n-gon. The first is the sum of the overlapping areas Ai , i = 1 . . . n, between
the circle and each of the n triangles with vertices at (0, 0), (ri , ϕi ) and (ri+1, ϕi+1) (it is
rn+1 = r1 and ϕn+1 = ϕ1). Thus, Fp(d) is

Fp (d) = 2

(
n∑

i=1

ri ri+1 sin ϕi+1,i

)−1 n∑
i=1

Ai (7)

where ϕi, j = ϕi − ϕ j and
∑n

i=1 ri ri+1 sin ϕi+1,i/2 is the area of the n-gon.
In order to calculate Fp(d), we first find the area At of the overlapping region of a triangle

with vertices at O (0, 0) , A (r1, ϕ1) and B (r2, ϕ2) and the circle C (O, d), see Fig. 2. We
assume that r1 ≤ r2 and 0 ≤ ϕ1 < ϕ2 ≤ π/2. We distinguish four different cases depending
on the overlap between the two shapes: the circle intersects with the triangle only at the sides
OA and OB at C (d1, ϕ1) and D(d1, ϕ2), respectively, the circle intersects the triangle at the
side AB at two points, the F (d2, ϕd1) and G (d2, ϕd2), or at one point, the J (d3, ϕd3), and,
finally, the triangle is inside the circle.

In the first case (d = d1 in Fig. 2), the circle C (O, d) does not intersect with AB. The
intersection region is the circular sector OCD with area

At = 1

2
ϕ2,1d2 (8)

Fig. 1 Voronoi diagram for a set
of 14 arbitrary positioned nodes
[29]
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Fig. 2 Circle-triangle intersection cases

where d ranges from 0 to an upper limit which is the radial coordinate d0 of the tangent
point when AB is tangent to C (O, d0) (point I in Fig. 2); otherwise, it is the r1. The first
occurs when the opposite angle to OB is acute which happens if the side OA is larger than
the projection of OB on OA, i.e., for r1 > r2 cos φ21. The distance d0 is calculated [30] from
the expression

[d0d (A, B)]2 − [det (A, B)]2 = 0 (9)

with d (A, B) the Euclidean distance between points A (r1, ϕ1) and B (r2, ϕ2) and det (A,B)

the determinant of the 2 × 2 matrix with elements the polar coordinates of the two points.
After some algebraic manipulation, (9) gives that

d0 = r1r2 sin ϕ2,1√
r2

1 + r2
2 − 2r1r2 cos ϕ2,1

(10)

The circle C (O, d) intersects the side AB at two points only when the interior angle between
OA and AB is acute (this happens for d ∈ (d0, r1] when r1 > r2 cos φ21). In this case (d = d2

in Fig. 2), the overlapping region is the triangle OFG and the circular sectors OEF and OGK.
Its area is given by

At = 1

2

(
sin ϕd2,d1 + ϕ2,1 − ϕd2,d1

)
d2 (11)

where ϕd1 and ϕd2 (ϕd2 > ϕd1) are the azimuths of points F and G, respectively. In order to
calculate them, we should express AB in polar coordinates. The two-point form of a straight
line r = r (ϕ) through the points with polar coordinates (r1, ϕ1) and (r2, ϕ2) is

r sin ϕ − r1 sin ϕ1 = r2 sin ϕ2 − r1 sin ϕ1

r2 cos ϕ2 − r1 cos ϕ1
(r cos ϕ − r1 cos ϕ1) (12)
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that gives

rAB = c1

sin ϕ − c2 cos ϕ
(13)

with c1 = r1r2 sin ϕ2,1
r1 cos ϕ1−r2 cos ϕ2

and c2 = r1 sin ϕ1−r2 sin ϕ2
r1 cos ϕ1−r2 cos ϕ2

. It can easily be shown, that (13) can
be written in quadratic from as

sin2 ϕ − 2c1(
1 + c2

2

)
rAB

sin ϕ + c2
1 − c2

2r2
AB(

1 + c2
2

)
r2

AB

= 0 (14)

The roots of (14) for rAB = d, ϕd1 and ϕd2, are

ϕ±
d = sin−1

⎛
⎝c1 ± c2

√(
1 + c2

2

)
d2 − c2

1(
1 + c2

2

)
d

⎞
⎠ , ϕ±

d ∈
[
0,

π

2

]
(15)

with ϕd1 = ϕ−
d and ϕd2 = ϕ+

d when c2, i.e., the slope of AB, is positive and vice versa for
negative c2.

The circle C (O, d) intersects the triangle OAB at a single point at AB when d ∈ (r1, r2)

under the constraint r1 �= r2. In this case (d = d3 in Fig. 2), the intersection region is the
triangle OAJ and the circular sector OJH. The area of this region is

At = 1

2
d

(
ϕ2,d3d + r1 sin ϕd3,1

)
(16)

where ϕd3 is the root of (14) within the range (ϕ1, ϕ2).
Finally, for d > r2 (d = d4 in Fig. 2) the circle covers the whole triangle that gives

At = 1

2
r1r2 sin ϕ2,1 (17)

In the previous analysis, we assumed that ϕ2,1 ≤ π/2. In order to generalize for ϕ2,1 >

π/2, we consider that the axis ϕ = π/2 splits the triangle OAB into two new ones and then
we calculate the overlapping area from the intersection of the circle C(O, d) with each of
the triangles. By setting ϕ = π/2 in (13), we get that the length of the common side of
the triangles is c1. Thus, their vertices coordinates are (0, 0) , (c1, ϕ1), (c1, π/2) and (0, 0),
(r2, π − ϕ2), (c1, π/2).

The formulation for r1 > r2 is similarly obtained. In the general case, it can easily be
shown that the area of the intersection region between the circle C (O, d) and the triangle
OAB is a piecewise function defined as

At =
⎧⎨
⎩

1
2

[
ϕ2,1 + F (ϕd1, ϕd2)

]
d2, d ≤ rd

1
2 sgn

(
ϕd3,0

) (
ϕd3,0d − rd sin ϕ̄d3,0

)
d, rd < d < ru

1
2r1r2 sin ϕ2,1, d ≥ ru

(18)

where ϕd3,0 and ϕ̄d3,0 are ϕd3 − ϕ2 and ϕd3 − ϕ1, respectively, if r1 < r2 and vice versa
when r1 ≥ r2, sgn (·) is the signum function, rd = min (r1, r2), ru = max (r1, r2) and

F (ϕd1, ϕd2) =
{

sin ϕd2,d1 − ϕd2,d1, d > d0 and rd > ru cos ϕ21

0, otherwise
(19)

As a result of the rotational symmetry of the model, the area At does not depend on the
values of ϕ1 and ϕ2 but on their difference ϕ2,1. Therefore, each Ai term in (7) may be
obtained by setting r1 = ri , r2 = ri+1, ϕ1 = 0 and ϕ2 = ϕi+1,i , i = 1 . . . n, in (18).

123



Distance Distribution in Convex n-Gons 1493

The distance pdf f p (d) is the partial derivative of Fp (d) with respect to d , i.e.,

f p (d) = 2

(
n∑

i=1

ri ri+1 sin ϕi+1,i

)−1 n∑
i=1

∂ Ai

∂d
(20)

After some manipulation, we get from (15), (18) and (19) that

∂ At

∂d
=

⎧⎪⎪⎨
⎪⎪⎩

(
ϕ2,1 + F (ϕd1, ϕd2) + d

2
∂ F(ϕd1,ϕd2)

∂d

)
d, d ≤ rd

1
2 sgn

(
ϕd3,0

) (
2ϕd3,0d − rd sin ϕ̄d3,0 + d

(
d − rd cos ϕ̄d3,0

)
∂ϕd3
∂d

)
, rd < d < ru

0, d ≥ ru

(21)

where

∂ F (ϕd1, ϕd2)

∂d
=

⎧⎨
⎩

2c1(cos ϕd2,d1−1)

d
√(

1+c2
2

)
d2−c2

1

, d > d0 and rd > ru cos ϕ21

0, otherwise
(22)

and ∂ϕd3/∂d is, depending on the value of ϕd3, equal to ∂ϕ+
d /∂d or ∂ϕ−

d /∂d , with

∂ϕ±
d

∂d
= sgn

(
±c1c2 −

√(
1 + c2

2

)
d2 − c2

1

)
c1

d
√(

1 + c2
2

)
d2 − c2

1

(23)

The ∂ Ai/∂d terms in (20) are obtained by setting r1 = ri , r2 = ri+1, ϕ1 = 0 and
ϕ2 = ϕi+1,i , i = 1 . . . n, in (21). Moreover, if ϕi+1,i > π/2, we split the triangle into two
new ones and calculate the ∂ Ai/∂d as a sum of two terms that correspond to the intersections
of the circle C (O, d) with each of the new triangles.

The validation of (7) and (20) through comparisons with simulation results follows in the
next section. In the same section, we further show that the proposed model extends previous
proposals in the published literature.

4 Model Validation

In order to validate our model, we performed Monte-Carlo simulations [31] for different
n-gons. Here, we show the results for two representative cases. System parameters were
chosen so as to verify the accuracy of the model in a complex system. In particular, we con-
sider a pentagon and a heptagon, scenarios #1 and #2, respectively, with vertices coordinates
(ri , ϕi ), i = 1 . . . n, see Table 1. In both scenarios, distances are normalized to max

i=1...n
{ri }.

Table 1 Vertices coordinates of n-gons with 5 and 7 sides

i 1 2 3 4 5 6 7

Scenario

#1 ri 0.70 1.00 0.20 0.65 0.60 – –

ϕi (deg) 50 80 230 320 340 – –

#2 ri 0.85 1.00 0.70 0.55 0.65 0.60 0.50

ϕi (deg) 15 30 70 140 190 210 330
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Fig. 3 Spatial distribution of points within the n-gons; Scenarios #1 (a) and #2 (b)
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Fig. 4 Distance distribution: simulation results and analytical curves

In the simulations, a single node was randomly positioned for each snapshot within a
unit circle centered at the coordinate origin. Next, the random points inside the n-gon were
generated with the acceptance/rejection method (in order to do so, the sides of the n-gon
were expressed in polar coordinates by using (13)) and the distance between each point and
the origin was calculated. Figure 3a and b illustrates the spatial distribution of the generated
points for the scenarios in Table 1 and 104 runs.

The analytical and simulated (for 106 independent runs) distance cdf and pdf curves are
plotted in Figs. 4 and 5. The simulated values were averaged over a normalized distance size
of 0.02. An excellent agreement between theory and simulation is observed. The pdf curves
show peaks at the minimum distances at which the circle intersects the triangles’ sides which
are opposite to O; these peaks respond to the maxima of ∂ Ai/∂d , i = 1 . . . n. Up to these
distances, the intersection region between the circle and each of the triangles included in the
n-gon is a circular sector and the derivatives ∂ Ai/∂d increase linearly with d; see (19), (21)
and (22).

In order to further validate and demonstrate the generalization of our approach, we compare
it with the models discussed in Sect. 2 that refer to circular-, square- and hexagonal-shaped
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Fig. 5 Distance density: simulation results and analytical curves

Table 2 The proposed model as a generalization of models in the literature

Layout Model Fixed point
position

Substitutions to obtain the statistics of other models

n ri , ϕi+1,i (in deg) , i = 1 . . . n

Circular Adelantado et al. [10] Arbitrary ∞ ri = √
R2 + D2 + 2RD cos ϕi , ϕi+1,i = 360/n

Square Pirinen [19] Center 4 ri = const., ϕi+1,i = 90
Side midpoint 3 r2,3 = √

5r1, ϕ2,1 ≈ 63.43, ϕ3,2 ≈ 53.13
Vertex 2 r2 = √

2r1, ϕ2,1 = 45
Hexagonal Zhuang et al. [5] Vertex 4 r2,4 = √

3r1, r3 = 2r1, ϕi+1,i = 30
Baltzis [13] Center 6 ri = const., ϕi+1,i = 60

networks. It can be shown2 that the aforementioned models and the corresponding distance
cdfs and pdfs, deduce from the proposed model and (7), (20), respectively, with an appropriate
choice of parameters as specified in Table 2.

In order to show the merits of our proposal, we provide in the following section a few
representative examples in the study and analysis of wireless networks. In these examples, we
assume a uniform node distribution; however, the outcomes of this analysis can be extended
under certain conditions to networks with different node distribution such as the stationary
Poisson point process [28].

5 Application Examples

Several issues in wireless networking are related to internode distance. Next, we use the
obtained formulation to describe some distance-dependent network parameters and perfor-
mance metrics and assess the impact of certain system characteristics on network perfor-
mance. Applications in single-hop wireless networks with nearest- and farthest-neighbor
routing [3,4,9,15,32–34] are also discussed. In particular, we present results for the distance

2 The proof is straightforward and it is left to the reader.
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Fig. 6 Distance-dependent path loss cdf curves; γ varies from 2 to 8 with step one

dependent path loss, the sensitivity of WSNs, the minimum and maximum distance between
nodes uniformly distributed within a network and the required energy for single-hop packet
transmission in networks for different routing schemes. In the first three cases, the probabilis-
tic distributions are expressed in closed form; however, analytical solutions for the expected
distance and the consumed energy do not exist, even in simple scenarios such as the ones
examined herein.

5.1 Distance Dependent Path Losses3

The distance-dependent path loss is usually described from an inverse power law [35–37].
In this case, the loss at a distance d greater than a reference distance d0 that is chosen large
enough to be in the far-field region of the transmitting antenna, is

L = L0 (d/d0)
γ , d ≥ d0 (24)

with L0 the loss at d0 and γ the path loss exponent. Thus, the distance-dependent path loss
cdf and pdf are, respectively,

FL (L) = P
(
d ≤ d0 (L/L0)

1/γ
) = Fp

(
d0 (L/L0)

1/γ
)
, L ≥ L0 (25)

fL (L) = ∂ FL (L)

∂L
= d0 L−1+1/γ

γ Lγ
0

f p
(
d0 (L/L0)

1/γ
)
, L ≥ L0 (26)

with P (X ≤ x) the probability that a random variable X is lower than x .
As a sample application, we consider the pentagonal-shaped network with (normalized)

vertices coordinates given in Table 1. We set r2 = 100 m and assume that d0 = 1 m [36].
Figure 6 shows the impact of path loss exponent on FL (L) for γ that ranges from 2 to
8 [37]. The x-axis represent the distance dependent path loss with reference to the loss at
distance d0. The cdf curves shift to the right with γ due to the increased signal absorption
[12,13]; as a result, quantities that depend on the received signal strength such as the trans-
mission range, the connectivity, the error probability, etc., show similar performance. This

3 A generalization that includes small- and large-scale fading terms, though it is feasible, e.g. [13,27,35],
leads to cumbersome mathematical expressions and it is omitted herein.
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Fig. 7 Sensor sensitivity cdf curves for various K

shift depends on the maximum transmission range dmax (in this case, the r2) and on d0 and
varies with L; from (24) and (25) comes that an increase in the path loss exponent equal to �γ

shifts the cdf curve (in dB) from zero (for small values of FL(L)) up to 10�γ log (dmax/d0)

(when FL (L) approaches unity). Finally, we notice that the slope of the cdf curves decreases
with γ .

5.2 WSNs’ Sensitivity

In wireless sensor networks, the sensitivity of a sensor determines the establishment of a
connection between two communicating nodes and diminishes with distance. In a simple
sensitivity model with wide applicability [1,2], the sensitivity S of a sensor s at an arbitrary
point Q at a distance d (s, Q) is given by the expression

S = λ [d (s, Q)]−K (27)

where λ, K are (positive) sensor-dependent parameters. Due to the stochastic nature of
d (s, Q), S is a random variable with distribution and density functions:

FS (S) = Prob
[
d ≥ (λ/S)1/K

]
= 1 − Fp

(
(λ/S)1/K

)
(28)

fS (S) = ∂ FS (S)

∂S
= λ

K S1+1/K
f p

(
(λ/S)1/K

)
(29)

Figures 7 and 8 illustrate FS(S) and fS(S) for different K (typical values of this parameter
range between 1 and 4 [1]) in a pentagonal-shaped network with vertices coordinates given
in Table 1. Without loss of generality, we set λ = 1. We notice that both FS(S) and fS(S)

depend strongly on K . Figure 7 further shows that the cdf curve shifts to the right with K
which implies that an increase in K causes a significant degradation in the quality of sensing;
moreover, the slope of the cdf curves decrease with K . From Fig. 8, we notice that S takes
values in a limited range for K = 1, 2 but the pdf curves flatten noticeably with K , something
that affects the transmission range, the network coverage, etc. The irregular shape of the pdf
curves is due to the irregularities in the shape of the network coverage area. However, the
curves become smoother when parameter K increases.
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Fig. 8 Sensor sensitivity pdf curves for various K

5.3 Nearest/Farthest Neighbor Distributions in Sparse/Dense Networks

The knowledge of the nearest/farthest neighbor distribution is useful in protocol design. For
example, in sparse networks with size greater than the communication range of the nodes,
nearest-neighbor routing reduces energy consumption and increases throughput; on the other
hand, in small dense networks, the choice of the farthest node as the packet forwarder mini-
mizes the routing overhead, reduces the number of transmissions and improves connectivity
[15,32,34].

Let us consider an n-gonal shaped wireless network with N randomly distributed nodes.
The cdf, Fδ (δ; N ) and F� (�; N ), and pdf, fδ (δ; N ) and f� (�; N ), functions of the min-
imum δ and maximum �, respectively, distance from the reference node to the rest N − 1
ones can be written [15,28] as:

Fδ (δ; N ) = 1 − [
1 − Fp (δ)

]N−1 (30)

fδ (δ; N ) = (N − 1) f p (δ)
[
1 − Fp (δ)

]N−2 (31)

F� (�; N ) = F N−1
p (�) (32)

f� (�; N ) = (N − 1) f p (�) F N−2
p (�) (33)

As a representative example, we consider a pentagonal-shaped network (Scenario #1) and
study the dependence of fδ (δ; N ) and f� (�; N ) on N . Without loss of generality, the
distances are normalized to r2, i.e., to max

i=1...n
{ri }; thus, different values of N imply networks

with different size when the node density is fixed and vice versa. In Fig. 9 the nearest and
farthest neighbor pdf for a set of N values is shown. Clearly, the spread of the curves decreases
and the maxima of fδ (δ; N ) ( f� (�; N )) shift to the left (right) with N , i.e., the hops become
shorter in nearest-neighbor routing while in farthest-neighbor routing they practically reach
the network boundary. Moreover, the curves become smoother at higher values of N and they
have a more regular shape which approaches the shape of common statistical distributions
[38]. In practice, this means that the irregularities of the shape of the network coverage area
have a moderate effect on the shape of the nearest and the farthest neighbor pdf curves at
large-scale and/or dense networks. A comparison between the two families of curves further
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Fig. 10 Normalized expected distance as a function of N for single-hop transmission

exhibits the stronger dependence of fδ (δ; N ) on N (the authors in [15] reached to similar
conclusions for hexagonal-shaped networks).

The expectation of the distance to an arbitrary node, E [d], to the nearest neighbor, E [δ],
and to the farthest neighbor, E [�], is obtained from the integration of the products d f p (d),
δ fδ (δ; N ) and � f� (�; N ), respectively, over the n-gon area. Let us consider the network in
the previous example. Figure 10 plots the normalized expected distance for the three cases as
a function of N . We notice that E [δ] (E [�]) decreases (increases) with N , but as it increases,
its impact on both quantities diminishes. The shape of the two curves for N 	 1 implies,
due to the uniform node distribution, that E [δ] and E [�] increase linearly with the area of
the network size; at moderate values of N , the number of nodes affect more significantly
the expected distance to the nearest neighbor, since the farthest node is already around the
network boundary, see Fig. 9 (similar conclusions were drawn in [15] for regular hexagonal-
shaped networks). Finally, it has to be noticed that the three curves coincide at N = 2, as it
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was expected from (31) and (33). Finally, the normalized expected distance to an arbitrary
node, obviously, does not depend on N . Its value (0.417) is close to the arithmetic mean of
E [δ] and E [�] for any N .

5.4 Energy Consumption

The required energy for packet transmission in a medium with attenuation that follows an
inverse power law is proportional to the γ th power of the link distance. In a simplistic
approach, the average energy ε which is required for a single-hop transmission of a packet
between two nodes is [4,5,7]

εD = k
∫

dγ fD (d) dd (34)

where k is an environment-dependent parameter proportional to the data rate while fD (d) ≡
fδ (d; N ) ( f� (d; N )) when the second node is the nearest (farthest) neighbor [4] and
fD (d) ≡ fd (d) if the second node is an arbitrary one [5,7]. Obviously, the integration
in (34) is over the n-gon area.

As an application example, we consider the network of Scenario #1 and explore the
impact of γ and N on the average required energy for the cases of single-hop transmission
to an arbitrary node and to the nearest and farthest neighbor. In particular, we evaluate the
dependence of the relative average energy consumption ε′

D = εD − ε0
D (in dB) on γ and

N (subscript D stands for d , δ and �, and ε0
D is the average consumed energy for given path

loss exponent γ0 or number of nodes N0).
In Fig. 11, ε′

D is illustrated as a function of γ for the three cases. Clearly, the relative
(average) energy consumption is a linear function of γ , due to the attenuation law, with
slope that depends on the routing scheme and the number of nodes. In nearest-neighbor
routing, power consumption decreases with γ because signal transmission employs nodes
that are close to each other (similar results were derived in [32,33]). As it was expected,
power consumption increases with γ in the case without routing and in the farthest-neighbor
routing scheme (in general, at single large hops, attenuation is proportional to the γ th power
of the transmission distance [8]). Notice also that ε′

δ (ε′
�) decrease (increase) with N . This
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behavior is easily explained from the dependence of fδ (δ; N ) and f� (�; N ) on N , see Fig. 9
(recall that the maxima of fδ (δ; N ) ( f� (�; N )) shift to the left (right) with N . Moreover,
the impact of N is more intense on ε′

δ .
Similar conclusions are obtained from Fig. 12 that shows ε′

� and ε′
δ versus N . The cases

γ0 = 2, 4.2 and 7.7 (typical values for free-space, urban and dual carriage highway propaga-
tion, respectively [37]) are presented. Generally, in single-hop transmission, the impact of γ

and N on energy consumption is more intense in nearest-neighbor routing. In fact, in farthest-
neighbor routing, the number of nodes does not affect noticeably power consumption because
the farthest node is close to the network boundaries; however, even in nearest-neighbor rout-
ing, the impact of N on energy consumption diminishes with increasing N .

6 Conclusions

In this paper, we presented the mathematical framework for the analytical description of
the Euclidean distance distribution in an arbitrary n-gon. The proposed method can also be
regarded as a generalization of simpler models in the literature. Simulation results validated
the proposal. In order to show the applicability of the model, we further discussed represen-
tative applications in wireless networking. Interesting conclusions for the impact of channel
attenuation, number of nodes and routing scheme on system performance were obtained. The
analytical description of distance statistics allows the estimation of distance-dependent met-
rics, offers the capability of determining optimum network parameters and assists in network
planning and routing. The derived formulation simplifies the analysis of wireless networks
and reduces the computational requirements of system-level simulations.
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