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Abstract Based on an alternative expression for Q-function, a simple bit error rate expres-
sion is derived in this paper for multicarrier code division multiple access systems with
maximal ratio combining in correlated Nakagami-g channels. Furthermore, in this paper,
we derive bounds on the probability of error and ergodic capacity of spatially multiplexed
MC-CDM systems with zero forcing unified successive interference cancellation technique.
Closed-form expressions for Capacities per unit bandwidth and Outage probability using
optimal power and rate adaptation policy are derived and plotted. Asymptotic approxima-
tions and upper bounds on spectrum efficiency are also derived and plotted. Numerical results
for Symbol Error Rate are also derived and plotted using MATLAB.

Keywords Spatially multiplexed multicarrier code division multiplexing -
Zero forcing unified successive interference cancellation - Nakagami Hoyt -
Maximal ratio combining - Optimal power and rate adaptation policy - Outage probability

1 Introduction

The common feature of next generation wireless technologies will be the convergence of
multimedia services such as speech, audio, video, image and data. This indicates that future
wireless communications for high-quality multimedia and internet-based applications require
high throughput and reliability under limited power and bandwidth resources. To improve reli-
ability of communication, Orthogonal Frequency Division Multiplexing (OFDM) has been
combined with spread spectrum to form a new transmission technique known as Multicarrier
Code Division Multiplexing (MC-CDM) or OFDM-CDM [1]. There have been numerous
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research papers on the computation of bit error rate (BER) for multicarrier code division
multiple access (MC-CDMA) systems in independent or correlated fading channels [2,3].

In [4], the capacity of Nakagami Multipath Fading (NMF) channels with an average power
constraint for three power and rate adaptation policies is studied. Closed-form solutions for
NMF channel capacity with and without diversity for each power and rate adaptation strat-
egy are compared with the additive white Gaussian noise channel capacity. Karmani and
Sivarajan found bounds and approximations for the capacity of mobile cellular communica-
tion networks based on CDMA in [5]. In [6], the authors presented a study of the capacity
evaluation of various multiuser MIMO schemes in cellular environments. This study provides
vital information for applying multiuser MIMO schemes in multi-cell environments.

In [7], the channel capacity per unit bandwidth for different adaptation policies over
Generalized Rayleigh fading channels has been computed. Closed-form expressions for the
spectral efficiencies for the three adaptation policies were derived for the single antenna
reception and maximal ratio combining (MRC) diversity reception cases. In [8], closed-form
expressions for the single user capacity of Selection Combining Diversity (SCD) system
were derived, taking into account the effect of imperfect channel estimation at the receiver.
Recently, there has been some work dealing with the channel capacity of Rayleigh fading
channels employing different adaptive schemes such as [9] and the references therein.

In this paper, we present a novel closed-form expression, upper and lower bounds for
average BER for MC-CDMA systems with MRC in correlated Nakagami-g fading channels.
Further, novel closed-form expressions for spectrum efficiency of MC-CDMA systems in
the presence of Nakagami Hoyt fading are derived and plotted. The asymptotic expression
and upper bound of spectrum efficiency are also derived and plotted. Further, bounds on the
probability of error for spatially multiplexed MC-CDM (SM MC-CDM) are also derived and
plotted.

2 BER of MC-CDMA

We consider an asynchronous MC-CDMA communication system in which K simultaneously
active mobiles (users) communicate with a single Base Station (BS), and each of the active
users employ N subcarriers and Binary Phase-Shift Keying (BPSK) modulation. For each
user, we consider a slowly varying Nakagami-q fading channel. All subcarriers are assumed
to experience flat but correlated fading. The fading amplitude, 8, for the nth subcarrier of
user k is Nakagami-q distributed, and is given by

1+ ¢2 (1+q»B? 1 — g2
o == ﬂn,kexp(— TS '*)Io( s ﬂ,%,k) VE>0. (D)

where Q = E [,Bi «J» g € [0, 1]is the Hoyt fading parameter, and Io(x) is the modified Bessel
function of the first kind and order zero [10].

Assume that the users are time synchronous. After demodulation and combining subcar-
rier signals, the decision variable can be written as ¥g = S + I + n, where S represents the
desired signal term, / is the Multiple Access Interference (MAI) from other users, and 7 is
the AWGN term. Decision variable is a Gaussian random variable conditioned on the fading
amplitude B. Since n and [ are mutually independent, the BER using BPSK modulation
conditioned on fading is simply given by
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(77)
Pr(error|8) = O |— ). ()

2 2
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Average BER is obtained by statistically averaging (2) over the joint PDF of fading ampli-
tudes. An alternative representation for the Q-function was presented in [10], and led to a
convenient method for performance analysis. It is given as [10]

1

(1) = — [ exp(—1*/2sin?6) db; t > 0. 3)

S|
O\N\a

To evaluate the average BER, one must then average over the statistics of the fading
amplitudes. Since in the Q function definition, the argument appears in the lower limit of the
integral, it is analytically difficult to perform such averages.

Using the alternative Q-function in (3) and the assumption of independent fading channels
at different subcarriers, the average BER of the kth user can be expressed as [3]

N—-1

[T #n (%0, 0)d0, @
0 n=0

| -
\mw

Pe(k) =

where N is the number of subcarriers, and
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Equation (5) is the average Signal to Interference plus Noise Ratio (SINR) for the nth sub-
carrier of the kth user. If all N subcarriers are identically distributed with the same average
SINR per bit, then (4) simplifies to

T

1
Pe(k) = ;/[Ik,n(Qk,,,,G]NdG. (6)

0

Since a multiuser system is considered, the average BER is given as

15
BER = — ; P, (k). 7

3 Performance of SM MC-CDM with ZF USIC

A ZF-USIC detector for SM-MC-CDM was proposed in [11]. The error probability of
ZF-USIC is dominated by the detection error of the first layer. As a result, the error probability
of the first layer could be considered as an upper bound of error probability of the SM-MC-
CDM system with zero forcing unified successive interference cancellation (ZF USIC) [11].
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An approximation for the Probability Density Function (PDF) of y is obtained as (Equa-

tion (20) of [11])
C(BY et (2P L
fy(y)—(;_) Y eXP( ; )F(a), r >0, (®)

Ey
Mo?2’®

of transmit antennas, E; is the signal energy, and 0,12 represents the noise variance. The BER
for QPSK signaling is then upper bounded by

M denotes the number

where « is the shape parameter, § is the scale parameter, { =

P = / 0 (V7) £, () dy. ©
0

The three upper bounds of Q(x) are given by Equation (3.35), (3.37) and (3.38), respectively,
from [12]

Ox) < ! exp (—xz); x>0, (10)
T oxV27w 2

Q(x)<lexp(—xz); x >0, (11)
-2 2

o) < ;exp(—x\/z); ¥ =0, (12)

Substituting the upper bounds of Q(x), from (10), (11) and (12) into (9), the expressions for
the upper bound 1, upper bound 2, and upper bound 3, respectively, are derived. The closed
form expressions for these bounds follow:

1 T'(e—0.5) (? + 0-5)1/2

Upper bound 1: P, < ;. o> 0.5, (13)
r
F (1 (5)
LB\ (B -
Upper bound 2: P, < S\C —+40.5 ;o> 0.5, (14)
S S

and Upper bound 3: P,

IA

,B * _ (XZ C1
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In (15), D is the Parabolic Cylinder function [13], and ¢y, ¢ are constants. Now, Q(x) is
lower bounded as (Equation (3.34) of [12])

0(x) > (1 —x_z)e_%; x> 1. (16)

1
x/2m

Substituting (16) into (9), the lower bound on the BER for ZF-USIC is obtained as

1 Mo —0.5) —T'(e—3/2
P> pe @ =0 -T@=3/2) 5, 17)
V27 (B+¢6)“
The theoretical BER for ZF-USIC is expressed as
B\ 1 7 Bt t
P=(=) —— — )i 0.5, = )dt. 18
‘ (g) 2ﬁF(oc)/exP( g) CIGF( 2) (%)
0
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By definition, I'(a) = fooo 12~ le='dt is the Gamma function, and Tcigr(a, yo) =
/] C(’)o t*~le~!dt is the Complementary Incomplete Gamma Function (CIGF) (section 8.35,
page 890 of [13]).

Ergodic capacity is computed by averaging over the PDF of instantaneous received SNR.
This quantity is defined when there is only one sample function of a stochastic process. The
ergodic capacity is given by Equation (56) of [14]

C=/M10g2(1+)/)fy(y)d)/~ 19)
0

Substituting f), () into (19), the ergodic capacity is expressed as

C = M (é) Iy (é) i (20)
In2I'(@) \ ¢ S

hi B _ 0 a—ll 7(§)t . £ 2 .
where I, (?) = fO t n(l +1t)e dt (Equation (77) of [15]). In (20), capacity

increases with the number of transmit antennas (M).

4 Capacity Adaptation Policies

Let us consider a SM-MC-CDM system with ZF-USIC employed at the receiver. We assume
perfect channel knowledge at the receiver. The distribution of the received SNR of SM-MC-
CDM with ZF-USIC is approximated to be the inverse Gamma distribution [11]

4.1 Optimal Simultaneous Power and Rate Adaptation (OPRA) Policy

Given an average transmit power constraint, the channel capacity of a fading channel with
received CNR distribution and optimal power and rate adaptation, (C)qpr,(b/s), is given in

[15] as
(C>o ra T Y
— = / log, (%) £, (ndy. 1)

0
where B is the channel bandwidth and yy is the optimal cut-off CNR level below which data
transmission is suspended. This optimal cut off must satisfy the condition [15]

Tl
/ (* - *)fy(y)dy =1 (22)
oy

Yo

To achieve the capacity in (20), channel fading level must be tracked at both the receiver
and the transmitter, and the transmitter has to adapt its power and rate accordingly, allocat-
ing higher power levels and rates for good channel conditions (y large), and lower power
levels and rates for unfavourable channel conditions (y small). Since no data is sent when
¥y < Yo, the optimal policy suffers a probability of outage, Py, equal to the probability of
no transmission given by [15]

Y0
Pow = Py < 10] = / £,0)dy. 23)
0
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and substituting f, () from (8) into the integral of (22), it is found that yp must satisfy

LCcigr (o, v0)

—Tlagr(a — 1, yo) = I'(@). (24
Y0
Substitute x = yy in (24) and define
Lcigr (e, x)
gx) = E—— Feigr(a — 1, x) = I'(a). (25)
Note that dfi(x") = —X%FCIGF(OL x) < 0Vx > 0.Moreover, from (25), lim, _, o+ g(x) = +00
and lim,_, ;o g(x) = —T'(«) < 0. Thus, it can be concluded that there is a unique positive

yo for which g(yp) = 0, which satisfies (24). MATLAB numerical results show that yy €
[0, 1]. An approximation for the PDF of post processing SNR of SM MC-CDM with
ZF USIC is shown in (8). Substituting (8) into (21), we have

(C)opra :flog (1) (/3)0‘ yafl exp (_é‘y) 1 y
B )7 \n/ e I(@)

Making change of variables in the above integral by substituting t = -, and simplifying,

—1 Bn
(Clopa 1 = Trcr (k. £2)

TP k! ' (20
k=0
Equation (26) can also be written as [9]
_ B
Cla _ 1 [ (P10}, ai Perer (k. 22 o
5~ m2 "'\ o) & k! ’

where Ej(.) is the exponential integral of the first order function defined as Ej(x) =
e;xr dt [13]. Asymptotic approximation for capacity as a result of OPRA policy can
be obtained as y — oo using the series expansion of exponential integral of the first order

given by [8]

Ei) = —E —Tn( - 3 S (28)

‘ i.1!
i=1

where E = 0.5772156659 is the Euler-Mascheroni constant. Then, the capacity per unit
bandwidth (in bps/Hz) using OPRA policy is approximated asymptotically as
k.Byvo

(Copra 1 Bro B\ L raGF(’g)
e (e () (B) 2 ) @

k=1

The capacity per unit bandwidth expression of OPRA policy can be upper bounded by apply-
ing Jensen’s inequality to (21) as follows

()98, T NGRS
= =D =t [ v ody | = (W) (30)
0
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where E[.] is the expectation operator. The outage probability associated with this policy is
obtained by substituting (8) into (23) and is given as

Yo
_ U (B [ e (B 1 B
Pou = T (;) 0/y exp( (c)y)dy_ F(a)FIGF( c ’“)’ GD

where Ngpr(x, @) = f(f 1%~ Le=dt is the Incomplete Gamma Function (IGF) (section 8.36,
page 890 of [13]).

5 Numerical Results

Figure 1 shows a decrease in error probability with increase in ¢. The fading parameter ¢
shows the severity of fading. The Hoyt model can be approximated by a suitable Nakagami-m
model. The relation between the fading parameter, m, of the Nakagami distribution, and the
q fading parameter is given by [16]

(I +4¢%)?
T 2(142¢%)

The analysis of the relation shows that the value of m increases as ¢ increases till 0.7.
After ¢ = 0.7, m decreases with increase in g. A Nakagami-g model with ¢ = 0.25, 0.4 and
0.5 can be approximated to a Nakagami-m fading environment with m = 0.56, 0.64, 0.69,
respectively. Between m = 0.5 and m = 1, its performance is worse than Rayleigh (when
m = 1, Nakagami-m is modelled as Rayleigh). So, the BER decreases as g increases.

Figure 2a, b show BER performance improvement with decreases in the number of
users, and increase in the number of subcarriers, respectively. As the number of subcarriers
increases, the transmitted bits are decoded more accurately thereby decreasing the proba-
bility of error. As observed clearly from Fig. 2a, with increase in the number of users, the
probability of error increases. In the case of MC-CDMA, in addition to MAI, there is Inter
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Fig. 1 Probability of error of MC-CDMA under Nakagami-¢ fading for varying ¢
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Fig. 2 a Probability of error of MC-CDMA under Nakagami-¢ fading for varying number of users. b Prob-
ability of error of MC-CDMA under Nakagami-q fading for varying number of subcarriers

Carrier Interference (ICI). When the number of users increases, noise plus interference (MAI
+ ICI) term increases, thereby increasing the BER.

Figure 3 clearly explains that for « = 6 and § = 2, transmission is possible if the prob-
ability of error lies between that of upper bound 2 and lower bound. The theoretical result
also lies between upper bound 2 and the lower bound. The lower bound gives the minimum
measure of BER possible for this detector.

Figure 4a—c show the performance of ergodic capacity for varying o, M and S. From
Fig. 4b, it can be observed that ergodic capacity increases as the number of layers increases.
Similarly, from Fig. 4a, as « increases, ergodic capacity also increases. The shape parameter
indicates fading severity or scintillation index. This indeed varies from deep fade to light
fade. As « increases, the fluctuations in the signal diminishes, and this is in turn improves
system performance.

Figure 5a shows a decrease in capacity for the OPRA policy with increase in 8. The scale
parameter, S, relates to the inverse of average fading power. When f increases the average
fading power decreases, and correspondingly, the capacity also decreases. In Figs. 5b and 6,
outage probability is plotted versus average SNR for varying « and varying B, respectively.
The outage probability is high when « is low as in Fig. 6, and outage probability is low when
B is low as in Fig. 5b. Outage probability is associated with OPRA policy since this policy
adapts power and rate only if the instantaneous SNR of the channel is above the optimal
cut-off SNR. The optimal cut-off SNR is obtained numerically using MATLAB and is found
to be 0.516788 in both Figs. 5b and 6.

Figure 7 shows the asymptotic approximation of OPRA policy. Figure 7 clearly depicts
the comparison between the theoretical result and asymptotic approximation associated with
OPRA policy. This is plotted using closed form expressions, (27) and (29), respectively. The
optimal cut-off SNR is found numerically using MATLAB and is 0.516788. This value of
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Fig.3 Comparison of upper bounds, lower bound and analytical probability of error of SM MC-CDM with

ZF USIC
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Fig. 4 a Ergodic capacity of SM MC-CDM with ZF USIC for varying «. b Ergodic capacity of
SM MC-CDM with ZF USIC for varying number of layers (M). ¢ Ergodic capacity of SM MC-CDM with
ZF USIC for varying 8

@ Springer



1894 V. Bhaskar, L. S. Pai

(a) 45

/

7,=0.516788

Pavs

3.5

—_

N
T
!
i

Capacity per Unit Bandwidth (bps/Hz)

O'SQ 5— =4 ]
f‘ B
s 2 4 6 8 10 12 14
SNR (dB)
0
b) 10
O 5— B=5
. S —S— p=4
ST w\“?\m B— =3
o s e - —%— B=2
% S EEm g
K - L =
= K N S W
8 + D\ L_,\E—\
a . \t\
‘2, a:z \;’\@\
3 10 w\?\ B\EQ\
© SN < N
_8 AN \4[\>\ IS
S : “f S ]
S % )
E >
O . YO=O.51 6788
10
10"
0 2 4 6 8 10 12 14

Average SNR (dB)

Fig. 5 a Capacity per unit bandwidth for OPRA policy for varying 8. b Outage probability of OPRA policy
for varying
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Fig. 6 Outage probability of OPRA policy for varying o
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Fig. 7 Asymptotic approximation of OPRA policy fore =2 and 8 =3

is used to plot expression (27). Asymptote of a curve is a line such that the distance between
the curve and the line approaches zero at infinity. Figure 8 also shows the tightness between
the theoretical result and asymptotic approximation at high SNRs.

Figure 8a, b show the upper bounds and theoretical results for OPRA policy for varying
values of 8. Figure 8a, b clearly depict that the theoretical result is well within the upper
bound curve. The closed form expressions obtained in (27) and (30) are used to arrive at this
result.
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Fig. 8 a Comparison of upper bound and theoretical result of OPRA policy with « = 4 and g = 1.75.
b Comparison of upper bound and theoretical result of OPRA policy with =4 and 8 = 2

6 Conclusions

A novel closed-form BER expression has been derived for the MC-CDMA systems with
MRC in correlated Nakagami-g fading channels. Also, bounds on the probability of error
and ergodic capacity of SM MC-CDM with ZF USIC are derived. Novel expressions for
Spectrum efficiency and outage probability for optimal power and rate adaptation policy are
also derived and plotted. As a future work, we would like to compare the spectrum efficiency
performance of OPRA policy with those of other adaptation policies available in literature
when the distribution of the post processing SNR is as given in this paper.
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