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Abstract In cognitive radio networks, an important issue is to share the detected available
spectrum among different secondary users to improve the network performance. Although
some work has been done for dynamic spectrum access, the learning capability of cognitive
radio networks is largely ignored in the previous work. In this paper, we propose a rein-
forcement-learning-based double auction algorithm aiming to improve the performance of
dynamic spectrum access in cognitive radio networks. The dynamic spectrum access process
is modeled as a double auction game. Based on the spectrum access history information, both
primary users and secondary users can estimate the impact on their future rewards and then
adapt their spectrum access or release strategies effectively to compete for channel opportuni-
ties. Simulation results show that the proposed reinforcement-learning-based double auction
algorithm can significantly improve secondary users’ performance in terms of packet loss,
bidding efficiency and transmission rate or opportunity access.
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1 Introduction

Recently, with a variety of existing and emerging wireless applications, the radio spectrum
demand has been increased dramatically. The current wireless networks are characterized by
the fixed spectrum assignment policy, where the wireless spectrum is assigned and restricted
to the licensed users on a long-term basis. However, some licensed frequency bands lie
idle at spatial and temporal dimensions under the current static spectrum policy, leading
to under utilization of a significant amount of spectrum. Cognitive radio has emerged as a
key enabling technology for dynamic spectrum access (DSA), which provides the capability
to share the wireless spectrum with licensed users to improve spectrum efficiency and net-
work performance by adaptively coordinating different users’ access according to spectrum
dynamics [1].

Since secondary users (SUs) (i.e., unlicensed users) are allowed to access the spectrum
allocated to primary users (PUs) (i.e., licensed users) in the cognitive radio network, a fun-
damental requirement is to avoid the interference to PUs in their vicinity [2]. Therefore, SUs
should be able to detect the presence of PUs through spectrum sensing [3,4] occasionally.
Another important issue in cognitive radio networks is how to share the detected available
spectrum among different SUs to improve the network performance [5,6].

Most existing work in the area of cognitive radio focuses on the technical aspects of spec-
trum sensing and dynamic spectrum sharing. Recently, market theories [7–13] bring a novel
approach of spectrum sharing from economic aspects. In [8], the authors study a decentral-
ized dynamic spectrum access scheme using the theory of multivariate global game, and
Bayesian Nash equilibrium of the resulting global game is investigated. A non-cooperative
game is formulated in [9] to obtain the spectrum allocation schemes for SUs. The authors also
consider the case of bounded rationality, in which SUs gradually and iteratively adjust their
strategies based on the observations on their previous strategies. Considering the selfishness
of SUs that may deteriorate the efficiency of DSA seriously, the authors of [10] propose a
collusion-resistant dynamic spectrum sharing scheme, and a belief-assisted dynamic pricing
approach is studied in [11] to improve the robustness and spectrum efficiency. The authors
of [12,13] analyze spectrum sharing and competition from the economic perspective, com-
pare several applicable market theories, and propose a market-equilibrium-based approach
to settle the trading price.

Although some work has been done in using market theories for dynamic spectrum access
in cognitive radio networks, the learning capability of cognitive radio networks is largely
ignored in the previous work. However, since the cognitive radio paradigm imposes human-
like characteristics in wireless networks, the learning mechanism is one of the important
characteristics in cognitive radio networks [1]. Particularly, cognitive radio networks can
learn from the history of spectrum usage, which can be used for more efficient and effective
dynamic spectrum access in cognitive radio networks. The learning mechanism has been
studied extensively in other disciplines, such as artificial intelligence [14]. In deed, machine
learning has been central to artificial intelligence from the beginning [15]. Recently, rein-
forcement learning (RL) [16] has become a topic of intensive research, which has been used
successfully in solving the quality of service provisioning problem in wireless multimedia
networks [17] and the interference management problem in OFDM networks [18], among
others. However, little work has been done to consider the learning capability of cognitive
radios for dynamic spectrum access.

In this paper, we propose a reinforcement-learning-based double auction algorithm
(RL-DA) aiming to improve the performance of dynamic spectrum access in cognitive radio
networks. Specifically, we model the dynamic spectrum access process as a double auction
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game [19], in which potential buyers (SUs) submit their bids and potential sellers (PUs)
simultaneously submit their ask prices to an auctioneer, and then the auctioneer chooses
some price that clears the market. Moreover, during the repeated spectrum access interac-
tions between SUs and PUs, cognitive users (users involved in the cognitive radio network,
including PUs and SUs are called cognitive users in this literature) can partially observe
the history information. Based on this history information, they can estimate the impact on
their future rewards and then adapt their spectrum access strategies effectively to compete
for channel opportunities or release channels. Simulation results show that not only the bid-
ding price coming from Q-Learning mechanism improves the bidding efficiency but also the
reserved price for PUs helps to combat collision occurs among SUs, which might distort the
supply and demand relationship of spectrum resource. The proposed RL-DA algorithm can
significantly improve cognitive users’ performance in terms of packet loss, bidding efficiency
and transmission rate or access opportunity.

The remainder of the paper is organized as follows. Section 2 presents the the system
models and auction market formulation. In Sect. 3, we formulate the Q-Learning (QL) meth-
odology and propose a RL-based double bidding algorithm. Section 4 is devoted to present
the simulation results and discussion, comparing RL-DA with other bidding strategies of
SUs and different reserved price of PUs. Finally, Sect. 5 concludes the paper.

2 System Models and Auction Market Formulation

In this section, we present the system models considered in this paper. Then, the dynamic
spectrum access problem is modeled as a spectrum auction process.

2.1 Cognitive Radio Network

Consider a cognitive radio network with I PUs and J SUs, indicated by the set P =
{p1, p2, . . . , pI } and S = {s1, s2, . . . , sJ } respectively, as illustrated in Fig. 1. Typically,
each PU is assigned with licensed bands by a centralized primary base station (PBS). SUs
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Fig. 1 A cognitive network with multiple primary users and multiple secondary users
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Fig. 2 Spectrum opportunities modeled as a two-state Markov chain

coexisting around seek for the spectrum access opportunities competitively and exclusively.
Assume that they register in different network operators, for instance, PUs work as the spec-
trum owners and market auctioneers connected to a core network and SUs come from various
unlicensed networks, e.g. self-organized networks (SONs).

Assume that both PUs and SUs access the channel in an OFDMA fashion. There are
totally NC subchannels in the system. PU pi , i ∈ {1, 2, . . . , I } is assigned with Ni OFDM
subchannels at time t indicated by a channel index vector V t

i = {δt
i,n}, where δt

i,n = {0, 1},
n ∈ {1, 2, . . . , NC }. Herein, δt

i,n = 1 means that the channel n is assigned to pi currently.
Meanwhile, each SU can simultaneously access multiple channels exclusively. If some anti-
out-of-band emission measures are imposed, the OFDM subchannels are assumed to be
perfect orthogonal without interference. Furthermore, we assume that wireless users move
slowly, and thus, the experienced channel condition changes slowly. The cognitive users
deploy constant transmission power and experience no interference during one resource allo-
cation period.

2.2 Spectrum Opportunity

Due to the PU’s action of joining or leaving the network occasionally, the available trans-
mission opportunity in each channel changes over time and can be modeled as a two-state
Markov chain [20,21], alternating between state ON (active) and state OFF (inactive). An
ON-state represents the time period when the licensed channel is occupied by the PU, while
an OFF-state is regarded as a potential opportunity for unlicensed radio networks. Suppose
that the usage pattern of PU in each channel is independent and identically distributed (i.i.d.).
Let ui,n be the transition probability of pi from ON to OFF on the n channel and vi,n the
reverse way. The spectrum opportunity in the cognitive network is illustrated in Fig. 2.

2.3 Spectrum Auction Model

Considering that PUs may not take up the owning spectrum all the time, it is possible for
them to release the spectrum usage to SUs by marketing approaches. Specifically, PUs can
offer the spectrum price and size that are to share with SUs to maximize their revenues.
Similarly, the SUs can adapt their strategies to buy the spectrum opportunities competitively
and provide sellers with a certain payoff in terms of performance and price [22]. Therefore,
SUs pursue the access opportunities at a payoff while PUs snatch the revenue by leasing
the vacant spectrum to the lessees, such that both of them will benefit from the win-win
business. In the auction market, each participant (PU or SU) will attempt to maximize his
profit in the long run by the bidding and asking process. Like in the real market, both PUs and
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SUs have valuations of the goods (spectrum, transmission slot, etc.) to trade in an auction.
In the double auction, not only the potential buyers (SUs) bid for the available spectrum, but
also the potential sellers (PUs) try to rent out their band items and asking prices for monetary
gain.

The following assumptions are placed throughout this paper:

• SUs work in a half-duplex mode at all time, thus either sense vacant channels at a par-
ticular time slots, or access one or more channels for data transmission exclusively.
Meanwhile, PUs can receive payoff indicator information from all the appealing SUs
and choose one as the favorite buyer for available channels.

• All the auction participants are risk neutral and they would like to maximize their own
valuations according to their private action with reinforcement learning function.

• We assume a symmetric independent private value (SIPV) [16] cases where buyers and
sellers only know their own valuation but no competitors’ while getting the opposing
parties’ payoff information unilaterally and simultaneously.

• We consider only the case that channels are available for SUs to transmit once successful
trading, focusing only on the cognitive spectrum access behavior, thus ignore the task of
sensing the frequency spectrum, which has been well studied by many researchers [2,3].

• A common channel either dedicated or dynamic allocated, is assumed between PUs
and SUs to carry the interactive information in our scheme and maintains synchroni-
zation between SUs so that SUs bid timely and tune to the correct channel to receive
transmissions.

3 RL-Based Double Auction Algorithm for Dynamic Spectrum Access

In this section, we provide a RL-DA algorithm for SUs to access the network. Cognitive
user will learn to improve its asking policy (reserved cost for the PU) and its bidding policy
(bidding price for the SU) by participating in the auction. The optimal bidding policy for
PU pi is to generate an asking price that represents the cost for leasing the channels with
respect to the marketing fluctuation, while the optimal bidding policy for SU s j is to bring
out a bid vector that illuminates its preference for using different channels. In this paper, we
adopt a Q-Learning algorithm to acquire the reinforcement learning through an action-value
function that gives the expected utility of taking a given action in a given state and following
a fixed policy thereafter. We define two RL algorithms LQ1, LQ2 for PU and SU as functions
taking the observation as input and having the auction policy as output, respectively.

3.1 Spectrum Auction with Reinforcement Learning

Generally, reinforcement learning systems are composed of a policy, a reward function and
a value function, by which we can cope with the separate spectrum access problem. At each
moment t, a secondary user s j perceives the environment’s state st

(s j )
and performs an action

at
(s j )

. One time step later, in part as a consequence of its action, the primary user receives a

reward r t+1
(pi )

, and s j resides in a new state st+1
(s j )

. Primary user pi will follow the same process.
Herein and afterwards, we use the superscript as the time index, subscript as the user index
or channel index, and a vacant bracket () indicates either pi or s j for simplicity.

Assume that each user in the cognitive radio network is able to make spectrum access
decisions by itself. Q-Learning algorithm is used by PUs and SUs to dynamically access the
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channels according to the history of states visited and the utility received due to the current
choice of action.

To apply the Q-Learning algorithm, it is necessary to first define the state, action, reward
and learning policy for users.

3.1.1 State

We define the occupation or availability of PU pi on channels n at time t as the state st
pi
=

{xt
pi ,n} ∈ S, where xt

pi ,n = zt
pi ,n · δt

pi ,n , zt
pi ,n ∈ {0, 1} represents the available transmission

opportunity on channel n, i.e., zt
s j ,n = 1 means that pi has data to send on this channel

currently and vice versa. Since the transition of zt
pi ,n to zt+1

pi ,n is determined by two sto-
chastic events, i.e., spectrum occupation and no spectrum access, as described in the Mar-
kov chain of Sect. 2.2, the state transition from st

pi
to st+1

pi
is established, where zt

pi ,n =
zt−1

pi ,n · (1− ui,n)+ (1− zt−1
pi ,n) · vi,n . Similarly, we define SU’ current seized channels state

as st
s j
= {yt

s j ,n} ∈ S, where yt
s j ,n means s j taking transmission opportunity on the chan-

nel n at time t, and yt
s j ,n = 0 otherwise. S is the finite set of possible state space, where

S = {Sk}, Sk = {sn}, sn = {0, 1}, k = 1, . . . 2n .

3.1.2 Action

Applying an action is to assign available channels from PUs to the current appealing SUs’
access request in the network. For PUs, we define at

pi
= {β t

pi ,n, δt
pi ,n Pt

pi ,n} as the action
of choosing a bidder (β t

pi ,n as indicator) at an asking cost price δt
pi ,n Pt

pi ,n . Meanwhile, for
SUs, we define at

s j
= {β t

s j ,n, Pt
s j ,n} as the action of choosing a submitted channel (β t

s j ,n as

indicator) at a bidding price Pt
s j ,n .

At each time step t, the cognitive user senses the current state st
() ∈ S of its environment

and calculates an evaluation for each action at
pi

and at
s j

based on the Q-function. As a result,

he receives an immediate reward r t
() and the environment’s state changes from st

() to a new

state st+1
() with certain transition probability.

3.1.3 Reward Function

The design of reward function r t
()(s

t
(), at

()) is based on the thought that there is a reinforcement
signal that directs the decision of action and brings benefit to system performance. In the
cognitive radio scenario, what we expect is that on one side, PU chooses one of its most
beneficial releasing task within its payoff surplus, i.e., to maximize PU’s reward from this
spectrum trade; On the other side, the SU chooses channels with the highest reward to access
from the detected available channels. Hence, we define the reward in the above situations
under current state st

(), performing the action at
() for the PUs and SUs respectively as follows,

r t
pi
=

mt
pi∑

n=1
β t

pi ,nδt
pi ,n Pt

pi ,n (1)

r t
s j
=

mt
s j∑

n=1
β t

s j ,n Pt
s j ,n (2)

s.t. β t
pi ,n ∈ {0, 1}, β t

s j ,n ∈ {0, 1} (C1)
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∑

i
β t

pi ,n ≤
I∑

i=1
Ni ,

∑

j
β t

s j ,n ≤
I∑

i=1
Ni (C2)

Herein, mt
pi

, mt
s j

are the channels assigned to pi and s j respectively. (C1)–(C2) are the

constraints for action space of users. The reward for SUs Pt
s j ,n is defined as the transmis-

sion capability in each subcarrier. Moreover, the SU pays for the spectrum renting by Pt
s j ,n .

Assume that the payoff Pt
s j ,n is transferred to the PU absolutely, i.e., ε=1 in (3). ε is the

bargain factor. This means that the reward of PU equals the payoff of SU once spectrum
access succeed.

Pt
pi ,n = εPt

s j ,n (3)

3.1.4 Learning Policy

A learning policy is used to map the history of states visited st
(), the probability of action

chosen at
(), and the utility received Qt+1

() (st
(), at

()), into current choice of action. Note that
the learning policy being different between the PUs and SUs, the reward values for the two
classes will have different orders and they learn optimally depending on their diverse sit-
uations and locations in the network. Thus we define two Q-functions Qt+1

pi
(st

pi
, at

pi
) and

Qt+1
s j

(st
s j

, at
s j

) for PUs and SUs separately.

Qt+1
pi

(st
pi

, at
pi

) = (1− φpi )Qt
pi

(st
pi

, at
pi

)+ φpi [rpi + ϕpi max
a∈A

Qt
pi

(st+1
pi

, at+1
pi

)] (4)

Qt+1
s j

(st
s j

, at
s j

) = (1− φs j )Qt
s j

(st
s j

, at
s j

)+ φs j [rs j + ϕs j max
a∈A

Qt
s j

(st+1
s j

, at+1
s j

)] (5)

Q-Learning updates the action values and Q-functions by the following rules to approach
the true values under the optimal policy (at+1

pi
)∗ and (at+1

s j
)∗ , which are the expected sum

of rewards discounted by ϕ() under (at+1
pi

)∗ and (at+1
s j

)∗ , i.e.,

(at+1
pi

)∗ ← argmax(Qt+1
pi

(st
pi

, at
pi

)) (6)

(at+1
s j

)∗ ← argmax(Qt+1
s j

(st
s j

, at
s j

)) (7)

Therefore, cognitive entity comes up with a positive preference decision unilaterally.
The learning rate φ(), 0 < φ() < 1, is a convergent step-size parameter that determines the
updating speed of the Q-function. When the learning rate parameter φ() is close to 1, the
reward changes rapidly in response to new experiences. The discount factor ϕ(), 0 ≤ ϕ() ≤ 1,
determines the present value of future rewards. When it is close to 1, future interaction plays
a substantial role in defining the total utility values [23].

The Q-function updates its evaluation of the value for the action while taking into account
(1) the immediate reinforcement value r t+1

() and (2) the estimated Q-value of the new state

Qt
()(s

t+1
() , at+1

() ). The procedure that cognitive user follows to compete for the channel oppor-
tunities is illuminated as Table 1 in Sect. 4.3.

3.2 Convergence of the Q-learning Algorithm

The conditions for convergence of Q-learning with a time varying learning rate φ() that uses
the results derived from Robbins–Monro theory [24] are given here.
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Table 1 Learning procedure

Algorithm1 Q-Learning Algorithm for pi and s j

1 Initialization: Vpi , Q0
pi

, Q0
s j

2 Learning: For every sensing period T, perform the following process:

At every edge node pi and s j

For n = 1, . . . , Ni

Repeat

Initialize Qt
()

(st
()

, at
()

), ∀st
()

, ∀at
()

, st
()
∈ S, at

()
∈ A

At time t, Choose an action at
()

, observe r t
()

, st+1
()

Repeat st+1
()
∈ S, st+1

()
∈ A

Update Qt+1
()

(st
()

, at
()

)← (1− φpi )Qt
pi

(st
pi

, at
pi

)+ φ()[r() + ϕ()maxa∈A Qt+1
()

(st
()

, at
()

)]
Until all the state and action space is terminal (at+1

()
)∗ = argmax(Qt+1

()
(st

()
, at

()
))

Update st+1
()

, at+1
()

Until convergence

End

Theorem 1 The Q-learning algorithm given by (4) and (5) converges to the optimal
(Qt+1

pi
(st

pi
, at

pi
))∗, (Qt+1

pi
(st

pi
, at

pi
))∗ values uniformly over st

() and at
() with probability of

1 if the following conditions are met [25]:

(1) The state and action spaces are finite.
(2)

∑+∞
t=0 φ() = ∞ and

∑+∞
t=0 φ2

() = ∞.

(3) V ar{r t
()(s

t
(), at

())} is finite.
(4) If φ() = 1, all policies lead to a cost free terminal state with probability 1.

Proof See Appendix. �	
3.3 RL-based Double Auction Algorithm

We explore a double auction algorithm based on the above Q-learning iterative policy, the
spectrum access policy (biding price) from the SU and the release policy (asking price) from
the PU. The double auction can be analyzed as a game where potential buyers submit their
bids and potential sellers simultaneously submit their asking prices to an auctioneer, and then
the auctioneer chooses some price Pt

s j ,n that clears the market.
In our proposed RL-DA algorithm, both the bidders and suppliers have some valuations of

a good, that is their separate utility functions. Strategies made accord with their bids or asking
prices for spectrum which depends on the private variation of buyers and sellers. Moreover,
as for PUs, the asking price, also called reserved cost price, changes as the market fluctuates
on the available subchannel. Meanwhile the payoff of SU depends on the private preference
for the channel including the current transaction state and evaluation of the future behavior.
Next, we explore the reserved cost prices for PUs and bidding prices for SUs deeply.

3.3.1 Reserved Cost Prices Ct
pi ,n for the PU

It is intuitive that there is a cost price used to ensure the profitability of spectrum owners in
the market competition. Also, it is necessary in the auction theorem to combat the collusive
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behaviors of SUs. In the spectrum auction framework, the PU presents an adaptive reserved
cost price Ct

pi ,n by updating the Q-function during intervals, which means that the spectrum
resource won’t be sold lower than the reserved price. Therefore the design of reserved cost
price ensures that it is lucrative for the sellers to get from this auction business. Next, we define
the reserved cost Ct

pi ,n in the context of the RL-DA model when using the channel n as the
possible future reward variant with Qt+1

pi ,n(st
pi

, at
pi

), Qt+1
pi ,n(st

pi
, at

pi
) ∈ Qt+1

pi
(st

pi
, at

pi
), n ∈

{1, 2, . . . , Nc}.
Ct

pi ,n = Qt+1
pi ,n(st

pi
, at

pi
) (8)

Accordingly, PUs set the reserve cost price from the Q-Learning process obtained from (4).
Different from fixed or without cost price, this QL-based reserved price involves a learning
and updating process which takes consideration of the history visited and future expectation.

3.3.2 Bidding Prices Pt
s j ,n from the SU

It is evident that SUs as buyers in the market have to bid at some price to achieve the spectrum
transmission. How to produce such price is key to SUs and impacts the on-going of spectrum
market. Herein, we use SU’ preference lt

s j ,n over the channel n to express the optimal bid

price. Assume that at each time slot t, SU s j has preference lt
s j ,n over the channel n, which

captures the benefit derived when using the channel. Thereby, the optimal bid that SU s j can
make is Pt

s j ,n = lt
s j ,n , i.e., the optimal bid for SU s j is to announce its true preference to the

auctioneers.
Next, we define the preference lt

s j ,n as in (9). In the context of the RL-DA model, it

can be interpreted as the accumulative total packets Bt
s j ,n in the buffer plus the future reward

Qt+1
s j ,n(st

s j ,n, at
s j ,n) when s j moves to the next state st+1

() . Herein, f is a parameter that regulates
the tradeoff between the current packet and future market expectation.

lt
s j ,n = f · Bt

s j
+ Qt+1

s j ,n(st
s j

, at
s j

) (9)

We follow the buffer state model of [21], assuming the number of packets arriving into
the buffer during one time slot is a random variable independent of the time t and denoted
as At

s j ,n . At
s j ,n follows the Poisson distribution with the average arrival rate A packets per

second. The buffer capacity is set to be Xs j , therefore, the buffer state of s j at time t can be
calculated as

Bt
s j ,n = min{(Bt−1

s j ,n − Rt−1
s j ,n)+ + At

s j ,n, Xs j } (10)

where Rt
s j ,n is the immediate gain by transmitting the packets, and (•)+ = max{0, •}.

Consequently, SUs bid at the price with respect to the accumulated packet and learning
process distributedly which relates the practical requirement and dynamic learning.

3.3.3 RL-DA Algorithm Implementation

Assume that the scheduling period of SU is T, and the real sensing time is much less than that.
Also, we assume that the cost of PUs and payoffs of SUs remain unchanged over this period.
In the supply falling short of demand case where PUs dominate in the market, we appoint
PU the auctioneer in order to reduce the exchange information iteration. At each interval T,
the auctioneer settles the spectrum access transaction once he receives the maximal bidding
price from SU under the constraint of the received price. Note that the auctioneers’ goal is
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Fig. 3 Procedure and information exchange for PUs and SUs to play the auction game at time slot t

to maximize their own utility function, thereby the optimization problem of PUs is written
as (11). The detailed algorithm is executed as illustrated in Fig. 3.

o(s j , Pt
s j ,n) = argmax(r t

pi ,n(st
pi ,n, at

pi ,n)) (11)

s.t. Pt
s j ,n ≥ Ct

s j ,n (C1)

4 Simulation Results and Discussions

In this section, we show the performance of our proposed RL-DA framework via computer
simulations. We justify the convergence of QL-based bidding prices and reserved price, test
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Table 2 System parameters

Parameter Value/assumption

Total bandwidth 1.25 (MHz)

power constraint for SU 1W

Noise power spectral density −174 (dBm/Hz)

Bandwidth of subcarriers 10 (kHz)

Number of subcarriers 128

Modulation scheme BPSK, QPSK, 16QAM, 64QAM

time period T (in s) 0.1

learning rate_default As Eq. (15)

discount factor_default 0.5

Maximum Doppler shift 30 (H)z

Propagation model (in dB) 128.1 + 37.6 log10(R) (R in km)

Small-scale fading model Six independent Rayleigh multipaths, exponential power delayprofile with

decaying rate 2 and 10 µs delay speed

the effect of learning factor and discount factor. Also, we compare the performance of our
proposed scheme with other bidding strategies for SUs and different reserved prices for PUs
over time.

4.1 Parameter Setting

We simulate a cognitive radio environment with 5 PUs (i.e., I = 5) and 10 SUs (i.e., J = 10).
Each mobile station’s location is randomly generated and evenly distributed within the cell
radius of 1,000 m. Besides, we assume that the SUs compete for the available spectrum
opportunity to transmit delay-sensitive multimedia data. Set the uniform buffer size for all
SUs Xs j as 25 bit, and the average arrival rate of the Poisson distribution packets A is 10 bit/s.
Other detailed values of the simulation parameters are shown in Table 2. All the performance
evaluation is executed 20 times.

4.2 Convergence of Q-Learning

In Figs. 4 and 5, we test the convergence of Q-Learning algorithm for the bidding price
of SUs and reserved cost of PUs. Generally, both of them converge within 20 iterations.
Taking the default value (0.5, 0.5) for example, (all the legends in Figs. 4, 5 are labeled by
the format of (φ(), ϕ()), in the 10th iteration, it achieves about 96.4 % for bidding price in
Fig. 4 and 93.1 % for reserved price in Fig. 5. Although 20 times iteration is acceptable, we
can also appeal to different iterations considering the balance of the computation complex-
ity and accuracy. In this paper, we set 20 times iteration targeting to reinforce the optimal
effectivity of the proposed algorithm. We also examine the effect of discount factor ϕ() and
learning rate φ() for the convergence of the algorithm, the detailed analysis is given in the
next subsection.
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Fig. 5 Convergence of the reserved cost for PUs

4.3 Effect of Discount Factor and Learning Factor

Considering the restriction of discount factor, we compare the effect of ϕ() in the range of 0
and 1 for both the bidding price and reserved price in Fig. 6. We can see that the prices grow
rapidly with ϕ() when it is over 0.8. This means that when the future rewards play a much
more important role in the Q-function referring to (4–5), thus both the prices rise rapidly.
However, the reserved price of PUs is higher than the bidding price of SUs when the discount
factor is too low or too high. Therefore, there exists an effective range of [0.025, 0.735] for
ϕ(), which ensures that the auction suffices to trade between PUs and SUs. The reason of this
is that PUs won’t release the spectrum unless the bidding price is higher than the reserved
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cost price of PUs. Without loss of generality, we set the default value of ϕ() as 0.5 in the
followed system simulation.

Also, Figs. 4 and 5 show effect of the discount factor from the comparison of the blue
lines. We can see that the variance of ϕ() does not impact the convergence speed but only the
converged value, which implicits that the component of current state or future reward in the
final decision works on the future action correspondingly.

The learning rate φ() determines the updating speed of the Q-function. Figure 7 depicts
the effect of learning rate for values of the bidding price and reserved cost. When the learning
rate parameter φ() is over 0.3, both the bidding price and reserved price keep a roughly equal
value, which means that the learning rate won’t sway the value much. However, from the red
lines illustrated in Figs. 4 and 5, we can see that with the variance of φ(), the converged value
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keeps uniform, but gradient differs. This is to say, contrary to ϕ(), the learning rate does not
impact the converged value but only the convergence speed.

Meanwhile, in Fig. 7, the bidding price is over the reserved cost in the whole set of
φ() ∈ [0, 1), which means that all the value between 0 and 1 is fit for φ() to perform the
RL-DA algorithm but still required to satisfy requirement of the Theorem 1-(2).

4.4 Various Bidding Strategies of SUs

In this subsection, we highlight the metrics of the bidding prices in the double auction frame-
work by comparing different bidding strategies for SUs. For comparison, we deploy the
following three strategies when SUs are required to submit the biding vector,

(a) Blind Bidding Strategy πblind
s j

: This strategy generates bidding vectors by considering the
disturbance of transmission only based on the current buffer state; therefore it presents
a uniform bidding prices on all the available channels as (12) without consideration of
diversity on physical channels.

Pt
s j ,n = f · Bt

s j
(12)

(b) Short-sighted Bidding Strategy π short
s j

: Different from πblind
s j

, this strategy not only
focuses on the internal state of the buffer state but the immediate transmission gains,
(i.e., Rt

s j ,n is the perceived rate on the available channels calculated according to Shan-
non Capability) and it presents as (13).

Pt
s j ,n = f · Bt

s j
+ Rt

s j ,n (13)

(c) QL Bidding Strategy π
LQ
s j : This strategy is produced using RL-DA algorithm proposed in

Sect. 4. Under this consideration, SU deduces the learning based strategy by the historical
observation related forecasting function as (14).

Pt
s j ,n ← (at+1

s j ,n)∗ (14)

Note that Each SN announces a static price during the T period for once bidding on each
channels according to the above three strategies simultaneously.

Figure 8 compares the aggregated packet loss with respect to the three scenarios. QL
bidding strategy reduces the packet loss compared with πblind

s j
and π short

s j
strategies. This

significant improvement lies in that cognitive users can accurately value the channel oppor-
tunities by modeling and caring for the experienced dynamics, i.e., channel availability. As
time extends, the aggregated packet loss grows linearly for these three scenarios. However,

π
LQ
s j strategy increases with the slowest speed and keeps lowest packet lost.

Figure 9 shows the average bidding efficiency with time, which is defined as rate per

bidding price (bit/s/p). It can be seen that QL bidding strategy π
LQ
s j keeps the dominance

uniformly. Averagely, the bidding efficiency of π short
s j

strategy is 2 % higher than πblind
s j

,

while π
LQ
s j is 4.4 % higher than πblind

s j
. This is improved by higher packet delivered rate,

since the learning based bidding model takes the future received reward of the agent into
account. Notice that the twitter for the three scenarios is due to disturbance caused by the
transmission opportunity, dynastic channel, varying anticipated reward, i.e., the disturbance
of the network.
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4.5 Reserved Prices for PUs (Without, With_fixed, With_QL)

We compare the operation of double auction framework with different reserved cost for PUs,
i.e., without reserved cost, with fixed reserved cost or with QL reserved cost. The with fixed
reserved price for the πblind

s j
and π short

s j
is equal to the average payoff of the previous bidding

while the π
LQ
s j strategy acquires received price by the π

LQ2
s j as (10). Meanwhile, Ct

pi ,n is
set to be zero for the without case. Table 3 presents the user rate for successful bidders for
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the two cases at 100 s instantaneous slot. We can observe from Table 3 horizontally for the
comparison of different reserved prices strategies of PUs and vertically for that of different
bidding strategies of SUs.

Horizontally for every three cases of the same SU, it gets a higher rate in without cases
than with fixed or with QL cases, however, this higher rate may be caused by cheating or
collusion behavior from multiple SUs, while with with QL reserved cost of PUs, the dynamic
access is regulated dynamically, for with QL allows more access opportunities than without
and with fixed.

Vertically for all SUs in every three cases, they get higher rate for the πblind
s j

and π short
s j

than π
LQ
s j if any, but less users are served in these two than π

LQ
s j . This indicates that blind

bidding from SUs causes resource amass on few users. On the contrary, more users get the

transmission opportunity in π
LQ
s j than π short

s j
and πblind

s j
strategies, which makes fair by long

run reserved price evolving with the learning rate φs j and discounted by discount factor ϕs j .
Figure 10 compares the average rate of reserved cost for three different strategies. Uni-

formly, strategies without reserved price achieve the highest average price; strategies with
fixed reserved price get the lowest average price, while strategies with QL reserved price
stands middle. This is because that without reserved cost strategies allow more SUs to access
of the licensed band, thereby achieve the highest average rate for SUs; However, there is no
protection for PUs’ local interest which may be impaired by collusion or cheating behavior
by SUs. In the with QL strategies, PUs can adjust the reserved cost according to the current
status and future expectation so that the success rate of auction is bigger than the with fixed
strategies.

On the other hand, it turns out that the average rate for π
LQ
s j outperforms πblind

s j
and π short

s j

in every cost price. The π short
s j

bidding price achieves the highest rate, the π short
s j

bidding

price achieve the lower rate but πblind
s j

achieves the lowest rate. This result holds for all the
three reserved prices cases.

4.6 Complexity Issue

After simulating the system performance of the proposed RL-DA algorithm, we further dis-
cuss the communication and computation complexity for implement. It is observed from
Fig. 3 that there are at most two information exchange between each PU and SU. One for
submission of Pt

s j ,n to PU. As for the other, since in our proposed algorithm, the PU accept
the submitted bidding price to clear the auction, there is no settled price feedback but only a
backhaul channel assignment information. Thereby, the network communication iteration is
maximally (2 × I × J ). In this paper, we appoint PU works as auctioneer in the market, so
that the interaction process is greatly reduced.

As to the computation complexity, we measure it from the storage burden and Q-operation.
To perform the QL algorithm, we need three tables to carry the matrix of state, reward, and
Q-function. According to the data size, we set one integer for state, one float for reward and
one float to store each iteration result of Q-function. Therefore, the total storage burden is
(20× [(Nc × I )+ (Nc × J )]), from which we can see that it grows linearly with the subcar-
rier and cognitive users. We can imagine that the main operation involved in our algorithm
comes from the Q-operation. Each interval T has (20× [(Nc × (1− zt

pi ,n)× δt
pi ,n)(I + J )])

Q-operation, from which we can note that the more spectrum opportunity costs the more
operation computation.
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Fig. 10 Average rate comparison of reserved price for three different strategies

5 Conclusions and Future Work

In this paper, we have proposed a reinforcement-learning-based double auction algorithm for
dynamic spectrum access in cognitive radio networks. In the proposed RL-DA algorithm,
both SUs and PUs are allowed simultaneously and independently to make bid decisions
on resource considering their current states, experienced environment and estimated future
reward in the auction market, i.e., SUs are to generate a bidding prices according to the
current transmission requirement and future expectation; meanwhile, PUs are to produce a
reserved cost vector so as to combat the bidding collision and ensure the self-profit. Finally,
we validate the practicality of RL-DA algorithm by convergence analysis and test of the
adjusting variables. Also, simulation results confirm that the proposed RL-DA can improve
not only the bidding efficiency but also average rate for RL-bidding strategies effectively.

We note that both the bidding and reserved prices are executed locally without impuls-
ing information from outside environment, which might result in a trapped self-glorification
condition. This is due to the intrinsical feature of Q-learning that it compares the expected
utility of the available actions without requiring a model of the wide environment. Future
work is in progress to improve the reinforcement learning method with observed information
from a broad environment to reduce blind or inefficacy strategies.
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Appendix

The four conditions of Theorem 1 can be proved as follows:

(1) In the Sect. 4.2, we defined at
() and st

() , which are present owning channels and channels
occupied or released with certain cost or bidding price, is finite. Hence (1) holds.
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(2) In our RL-DA algorithm, we define

φ() =
{

1/t, t > 0.

0, otherwise.
(15)

therefore, it is easy to prove that (2) holds.
(3) According to the rewards defined in (1)–(2), we define rmin

s j
≤ rs j ≤ rmax

s j
. Since (r t

())
2

is finite, V ar{r t
()} = E((r t

())
2)− (E(r t

()))
2 is finite.

(4) When γ = 1, the infinite horizon model tends to the so called gain optimal policy
wherein the objective is to maximize the long term average reward. In such a case, all
policies lead to a terminal state with a probability 1 which is true for any finite horizon
model and hence (4) holds.
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