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Abstract Space–time coding can achieve transmit diversity and power gain over spatially
uncoded systems without sacrificing bandwidth. There are various approaches in coding
structures, including space–time block codes. A class of space–time block codes namely
quasi-orthogonal space–time block codes can achieve the full rate, but the conventional
decoders of these codes experience interference terms resulting from neighboring signals
during signal detection. The presence of the interference terms causes an increase in the
decoder complexity and a decrease in the performance gain. In this article, we propose a
modification to the conventional coding/decoding scheme that will improve performance,
reduce decoding complexity, and improve robustness against channel estimation errors as
well.

Keywords Space–time block code · QOSTBC · Decoder complexity ·
Transmit diversity · Zero-forcing decoding

1 Introduction

In multiple antenna systems, space–time coding provides an effective way to achieve trans-
mit diversity and power gain without sacrificing bandwidth. There are various approaches in
space–time coding structures, including space–time block codes (STBC), space–time trellis
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codes (STTC), space–time turbo trellis codes and layered space–time codes (LST). STBC
gained a lot of interests after their introduction by Alamouti [1], and by other researchers
[2–4].

The STBC proposed by Alamouti for two transmit antenna provides a full rate and full
diversity and allows for a simple linear maximum likelihood (ML) decoding. The rate of a
space–time block code is defined as the ratio between the number of symbols the encoder
takes as its input and the number of space–time coded symbols transmitted from each antenna.
It is given by R = k

p , where k is the number of symbols the encoder takes as its input and
p is the number of space–time symbols transmitted from each antennas for each block of
k input symbols. These kinds of STBC are known as orthogonal space time block codes
(OSTBC). Tarokh et al. proposed generalized OSTBC for more than two antennas using the
theory of orthogonal designs in [5–7]. The objective in [7] was to design codes that provide
full diversity. It was shown that STBC from a complex orthogonal design, which provides
full diversity and full rate, is not possible for more than two antennas. An STBC that has a
full diversity provides a maximum rate of 3/4 for three and four transmit antennas without
linear processing [6,8,9]. It is also difficult to construct STBC with rate higher than 1/2 for
more than four transmit antenna [6,8]. Moreover, OSTBC from orthogonal designs provides
STBC with full diversity and enables linear decoding.

In order to achieve the advantages of OSTBC schemes with properties close to such
optimal codes providing full rate, the so called quasi-orthogonal space–time block codes
(QOSTBC) were proposed in [10–14]. These STBC were developed from quasi-orthogonal
designs, where the orthogonality is relaxed to provide higher rate. QOSTBC allows a trade-
off between higher rate and maximum diversity. The full rate QOSTBC provides only half
of the maximum diversity for four transmit antennas. The decoder of QOSTBC processes
pairs of transmitted symbols instead of a single symbol. Two maximum likelihood detectors
are used in parallel to decode pairs of transmitted symbols in QOSTBC. The decision met-
ric of [12, eqn.(3)] is shown as the sum of two terms; thus minimizing the decision metric
is equivalent to minimizing two terms independently. Two maximum likelihood detectors
are used either in sequence or in parallel. Therefore, decoding pairs for QOSTBC is more
complex than decoding single symbols for space–time block codes [6], [12, p.44]. This
results in higher complexity decoding at the receiver. Specifically, the decoding complexity
increases with the modulation level. In order to minimize the decision metric [12, eqn.(3)]
using maximum likelihood method, the receiver computes the decision metric over all pos-
sible symbols of a constellation or modulation level and decides in favor of the constellation
symbols that minimize the decision metric. As the size of the constellation increases, the
receiver must minimize the decision metric over large number of symbols. This will, subse-
quently, increase the transmission delay when high modulation schemes or more antennas
are employed.

In this paper, based on the quasi-orthogonal code structures in the Jafarkhani scheme, the
Tirkkonen–Boariu–Hottinen scheme, and the Papadias–Foschini scheme, we propose a mod-
ification for the generalized QOSTBC that allows linear decoding at the receiver. We propose
an implementation technique that reduces computational load at the receiver. Diversity order
of the proposed QOSTBC with full rate and linear processing will be 1. The proposed method
demonstrates robustness to imperfect knowledge of the channel as well.

The rest of the paper is organized as follows: Sect. 2 provides an introduction to Quasi-
Orthogonal Space Time Block Codes. Section 3 explains some of the famous schemes of
QOSTBC. Section 4 explains the proposed linear decoding solution. A numerical simula-
tion that validates the effectiveness of the proposed solution is provided in Sect. 5. Finally,
conclusions are discussed in Sect. 6.
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2 Quasi-Orthogonal Space Time Block Code System Model

For a given multiple-input single-output (MISO) wireless communication system, let the
number of transmit antennas be m. A space–time block code encodes the input symbols
vector of length l, s = [s1, s2, . . . , sl ]T , into k × m matrix S, where k is the number of time
slots over which the transmission occurs, and T stands for the transpose operator. The code
rate in this case is r = l

k . The received signal model is given as

y = Sh + w, (1)

where h is the m × 1 complex channel vector, y and w are k × 1 received vector and noise
vector respectively. The entries of h and w are assumed to be independent samples of a
zero-mean complex Gaussian random variable with variance of 1 and σ 2

w respectively. The
channel is assumed to be quasi-static, meaning that the channel coefficients will not change
during one codeword transmission (i.e., for k time samples). The average energy of the sym-
bol transmitted from each antenna is normalized to be 1, so the average signal-to-noise ratio
(SNR) is 1

σ 2
w

.

We will continue our overview mostly on the basis of four antennas at the transmitter and
one antenna at the receiver side. However, we would like to point out that the statements
we give are equivalently true for more antennas. Further, four antennas are more likely to
be used in the near future than for example 8 or 16 antennas. For the case of four transmit
antennas, k will be equal to 4. Therefore, let the code matrix S, in general form, be given by
a 4 × 4 matrix, where the elements of S ∈ {±s1,±s2,±s3,±s4,±s∗

1 ,±s∗
2 ,±s∗

3 ,±s∗
4 }. Let

us define the received signal vector y = [
r1 r2 r3 r4

]T
and the complex channel vector as

h = [
h1 h2 h3 h4

]T
. Then Eq. (1) will be

y = S

⎡

⎢⎢
⎣

h1

h2

h3

h4

⎤

⎥⎥
⎦ + w. (2)

Complex conjugating of some rows of S leads to the equivalent highly structured MIMO
channel matrix H. Then Eq. (1) can be transformed into

ỹ = Hs + w̃, (3)

where s = [
s1 s2 s3 s4

]T
, H is a channel matrix with space (in columns) and time (in rows)

dimensions defined as a 4×4 matrix, the elements of H ∈ {±h1,±h2,±h3,±h4,±h∗
1,±h∗

2,±h∗
3,±h∗

4}, and ỹ and w̃ are transformed versions of y and w respectively.
The Grammian matrix, also known as detection matrix, is essential for analyzing the

decoder performance. The Grammian matrix is defined as

G = HH H, (4)

where HH is the complex conjugate transpose of H. The diagonal elements of G represent the
overall channel gain and the non-diagonal elements represent the channel interference ele-
ments. For OSTBC schemes, the Grammian matrix G is proportional to the identity matrix.
This means simple linear decoding can be applied at the receiver, and an estimate of s, denoted
as s̃, can be found as [15]

s̃ = HH ỹ

= HH Hs + HH w̃. (5)
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The interference terms in G in the QOSTBC case result in a more complex decoding
method to estimate s̃. In this case, the estimate can be found as [16]

s̃ = (HH H)−1HH ỹ

= s + (HH H)−1HH w̃. (6)

The need to compute the inverse of the Grammian matrix in order to estimate the transmitted
symbols makes this method computationally expensive. If we can transform G such that it is
proportional to a diagonal matrix, then simple linear decoding can be applied. We propose
a modification to the way the signal is formed at the transmitter side in order to achieve a
linear decoding for QOSTBC at the receiver side, this modification is based on an important
observation of Grammian matrix of most popular QOSTBC in literature.

3 Popular QOSTBC Schemes

3.1 Jafarkhani Code

Jafarkhani proposed STBCs from quasi-orthogonal designs in [12]. For four antennas, a
QOSTBC was constructed from the Alamouti scheme as follows

SJ =

⎡

⎢⎢
⎣

s1 s2 s3 s4

−s∗
2 s∗

1 −s∗
4 s∗

3−s∗
3 −s∗

4 s∗
1 s∗

2
s4 −s3 −s2 s1

⎤

⎥⎥
⎦ , (7)

and the corresponding equivalent channel matrix HJ is given by

HJ =

⎡

⎢⎢
⎣

h1 h2 h3 h4

−h∗
2 h∗

1 −h∗
4 h∗

3−h∗
3 −h∗

4 h∗
1 h∗

2
h4 −h3 −h2 h1

⎤

⎥⎥
⎦ . (8)

Jafarkhani proposed different versions of the same code but our result is applicable to all
versions with slight modifications. For Jafarkhani code given in Eq. (7), the Grammian matrix
can be computed using Eq. (4) as

GJ = HH
J HJ =

⎡

⎢⎢
⎣

α 0 0 β

0 α −β 0
0 −β α 0
β 0 0 α

⎤

⎥⎥
⎦ , (9)

where α = |h1|2 +|h2|2 +|h3|2 +|h4|2 and β = 2 Re(h1h∗
4 −h2h∗

3). Notice that GJ has off
diagonal terms which are interference terms, and this will affect the performance and lead to
complex and computationally expensive decoding as well. Since the terms α and β are real,
GJ is a real symmetric matrix (i.e., GT

J = GJ ).
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3.2 Tirkkonen Code

Tirkkonen et al. proposed QOSTBC structure for four antennas as follows [10]

ST =

⎡

⎢
⎢
⎣

s1 s2 s3 s4

s∗
2 −s∗

1 s∗
4 −s∗

3
s3 −s4 s1 s2

s∗
4 −s∗

3 s∗
2 −s∗

1

⎤

⎥
⎥
⎦ , (10)

and similarly, the corresponding equivalent channel matrix HT is given by

HT =

⎡

⎢
⎢
⎣

h1 h2 h3 h4

−h∗
2 h∗

1 −h∗
4 h∗

3
h3 h4 h1 h2

−h∗
4 h∗

3 −h∗
2 h∗

1

⎤

⎥
⎥
⎦ . (11)

For Tirkkonen code given above, the Grammian matrix can be computed using Eq. (4) and
is given as

GT = HH
T HT =

⎡

⎢⎢
⎣

α 0 β 0
0 α 0 β

β 0 α 0
0 β 0 α

⎤

⎥⎥
⎦ , (12)

where α = |h1|2 + |h2|2 + |h3|2 + |h4|2, and β = 2 Re(h1h∗
3 + h2h∗

4). Since the terms α

and β are real, GT is also a real symmetric matrix.

3.3 Papadias and Foschini Code

And finally, we consider QOSTBC code proposed by Papadias and Foschini as [13]

SP =

⎡

⎢⎢
⎣

s1 s2 s3 s4

s∗
2 −s∗

1 s∗
4 −s∗

3
s3 −s4 −s1 s2

s∗
4 s∗

3 −s∗
2 −s∗

1

⎤

⎥⎥
⎦ , (13)

and the corresponding equivalent channel matrix HP is given by

HP =

⎡

⎢⎢
⎣

h1 h2 h3 h4

−h∗
2 h∗

1 −h∗
4 h∗

3−h3 h4 h1 −h2

−h∗
4 −h∗

3 h∗
2 h∗

1

⎤

⎥⎥
⎦ . (14)

For this code, the Grammian matrix is given as follows

GP = HH
T HT =

⎡

⎢⎢
⎣

α 0 β 0
0 α 0 −β

−β 0 α 0
0 β 0 α

⎤

⎥⎥
⎦ , (15)

where α = |h1|2 + |h2|2 + |h3|2 + |h4|2, and β = 2 I m(h1h∗
3 + h2h∗

4). Since the terms α

and β are real and imaginary respectively, GP is a Hermitian matrix (i.e., GH
P = GP ).
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4 Proposed Linear Decoding

The presence of the interference terms in each of the Grammian, or detection, matrices
described above requires complex decoding given by Eq. (6) instead of the linear decoding
given by Eq. (5). We present a method to eliminate the interference terms in order for the
linear decoding to be applied. We will consider each case at a time.

4.1 Jafarkhani Code

The Grammian matrix given in Eq. (9) is a real symmetric matrix. There is a theorem in
linear algebra that can help us diagonalize a real symmetric matrix as follows

Theorem 1 Let A be a symmetric real n × n matrix. Then there exists an n × n real unitary
matrix U such that UT AU = U−1AU is a diagonal matrix [17, (p. 221)].

Proof Any symmetric real n × n matrix A can be expressed in the form of

A = QDQT ,

where Q is an n × n real unitary matrix and D is a diagonal matrix. For unitary matrix Q we
know that Q−1 = QT . Pre and post multiplying the above equation by QT and Q we get

QT AQ = QT QDQT Q

= D, (16)

and this concluded our proof. ��

A unitary matrix of the form given by

UJ =

⎡

⎢⎢⎢⎢
⎣

1√
2

0 0 − 1√
2

0 1√
2

− 1√
2

0

0 1√
2

1√
2

0
1√
2

0 0 1√
2

⎤

⎥⎥⎥⎥
⎦

, (17)

yields the desired result. By pre and post multiplying GJ with UJ and UT
J respectively, we

get a diagonal matrix represented as

UT
J GJ UJ = G′

J =

⎡

⎢⎢
⎣

α + β 0 0 0
0 α − β 0 0
0 0 α + β 0
0 0 0 α − β

⎤

⎥⎥
⎦ . (18)

The new channel matrix can be evaluated as

G′
J = UT

J GJ UJ

= UT
J HT

J HJ UJ

= (HJ UJ )T (HJ UJ ).

(19)

Thus, H′
J = HJ UJ and is given as
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H′
J = 1√

2

⎡

⎢
⎢
⎣

h1 + h4 h2 + h3 −h2 + h3 −h1 + h4

−h∗
2 + h∗

3 h∗
1 − h∗

4 −h∗
1 − h∗

4 h∗
2 + h∗

3−h∗
3 + h∗

2 −h∗
4 + h∗

1 h∗
4 + h∗

1 h∗
3 + h∗

2
h4 + h1 −h3 − h2 h3 − h2 −h4 + h1

⎤

⎥
⎥
⎦ , (20)

and the corresponding S′
J can be shown to equal

S′
J = 1√

2

⎡

⎢
⎢
⎣

s1 − s4 s2 − s3 s2 + s3 s1 + s4

s∗
2 − s∗

3 −s∗
1 + s∗

3 s∗
1 + s∗

3 −s∗
2 − s∗

3−s∗
2 + s∗

3 s∗
1 + s∗

4 −s∗
1 + s∗

4 −s∗
2 + s∗

3
s1 + s4 −s2 − s3 −s2 + s3 s1 − s4

⎤

⎥
⎥
⎦ . (21)

The new encoding matrix given in Eq. (21) is quasi-orthogonal rather than orthogonal.
Nevertheless, since its channel matrix H′

J is orthogonal, decoding can be achieved via simple
linear decoding, and the transmitted symbols estimate can be found as

s̃ = (H′H
J H′

J )s + H′H
J w̃

= D s + H′H
J w̃, (22)

where D is a diagonal matrix.

4.2 Tirkkonen Code

The Tirkkonen QOSTBC structure is given by Eqs. (10) and (11), and the corresponding
Grammian matrix is given by Eq. (12). In this case, GT is a real symmetric matrix as well,
thus there exists a unitary matrix which diagonalizes the detection matrix. The unitary matrix
which will diagonalize GT is given as

UT =

⎡

⎢⎢⎢⎢
⎣

1√
2

0 1√
2

0

0 1√
2

0 1√
2

− 1√
2

0 1√
2

0

0 − 1√
2

0 1√
2

⎤

⎥⎥⎥⎥
⎦

. (23)

By pre and post multiplying GT with UT
T and UT respectively, we get a diagonal Grammian

matrix

UT
T GT UT = G′

T =

⎡

⎢⎢
⎣

α − β 0 0 0
0 α − β 0 0
0 0 α + β 0
0 0 0 α + β

⎤

⎥⎥
⎦ . (24)

The new channel matrix can be evaluated as

G′
T = UT

T GT UT

= UT
T HT

T HT UT (25)

= (HT UT )T (HT UT ).

Thus, H′
T = HT UT and is given as
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H′
T = 1√

2

⎡

⎢
⎢
⎣

h1 − h3 h2 − h4 h1 + h3 h2 + h4

h∗
2 − h∗

4 h∗
3 − h∗

1 h∗
2 + h∗

4 −h∗
1 − h∗

3
h3 − h1 h4 − h2 h1 + h3 h2 + h4

h∗
4 − h∗

2 h∗
1 − h∗

3 h∗
2 + h∗

4 −h∗
1 − h∗

3

⎤

⎥
⎥
⎦ , (26)

and the corresponding S′
T will be

S′
T = 1√

2

⎡

⎢
⎢
⎣

s1 + s3 s2 + s4 −s1 + s3 −s2 + s4

−s∗
2 − s∗

4 s∗
1 + s∗

3 s∗
2 − s∗

4 −s∗
1 + s∗

3−s1 + s3 −s2 + s4 s1 + s3 s2 + s4

s∗
2 − s∗

4 −s∗
1 + s∗

3 −s∗
2 − s∗

4 s∗
1 + s∗

3

⎤

⎥
⎥
⎦ . (27)

The decoding will be accomplished using simple linear decoding similar to that in Eq. (22).

4.3 Papadias and Foschini Code

For Papadias and Foshchini code, GP is Hermitian matrix. The previous theorem can be
applied for a complex symmetric matrix with a slight change.

Theorem 2 Let A be a Hermitian n × n matrix then there exists an n × n complex unitary
matrix such that UH AU = U−1AU is a diagonal matrix.

The proof for this theorem is similar to that of the previous theorem.
The unitary matrix, which will diagonalize GP , is as follows

UP =

⎡

⎢⎢⎢⎢
⎣

1√
2

0 j 1√
2

0

0 1√
2

0 j 1√
2

j 1√
2

0 1√
2

0

0 j 1√
2

0 1√
2

⎤

⎥⎥⎥⎥
⎦

. (28)

Pre and post multiplying GP with UH
P and UP respectively, we get a diagonal matrix repre-

sented as

UH
P GP UP = G′

P =

⎡

⎢⎢
⎣

α − β 0 0 0
0 α + β 0 0
0 0 α + β 0
0 0 0 α − β

⎤

⎥⎥
⎦ . (29)

Thus, H′
P = HP UP will be equal to

H′
P = 1√

2

⎡

⎢⎢
⎣

h1 + jh3 h2 + jh4 jh1 + h3 jh2 + h4

−h∗
2 − jh∗

4 h∗
1 − jh∗

3 − jh∗
2 − h∗

4 h∗
1 + jh∗

3−h3 + jh1 h4 − jh2 − jh3 + h1 jh4 + h2

−h∗
4 + jh∗

2 −h∗
3 + jh∗

1 − jh∗
4 + h∗

2 − jh∗
3 + h∗

1

⎤

⎥⎥
⎦ , (30)

and the corresponding S′
P will be

S′
P = 1√

2

⎡

⎢⎢
⎣

s1 + js3 s2 + js4 js1 + s3 js2 + s4

−s∗
2 − js∗

4 s∗
1 − js∗

3 − js∗
2 − s∗

4 s∗
1 + js∗

3−s3 + js1 s4 − js2 − js3 + s1 js4 + s2

−s∗
4 + js∗

2 −s∗
3 + js∗

1 − js∗
4 + s∗

2 − js∗
3 + s∗

1

⎤

⎥⎥
⎦ . (31)
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4.4 Proposed Encoder and Decoder

The multiple-input-single-output system under consideration is usually deployed for the
downlink (base station to mobile unit). Base stations usually have more processing capabil-
ity and surplus power whereas mobile units have limited processing capability and limited
power. If the decoding computations on the mobile unit can be reduced, the cost of the
decoder will be reduced and the battery life will be extended. Therefore, to minimize the
computations done on the mobile unit during the decoding process, we propose to change
the way the transmitted signal is formed in order to enable the use of a linear decoder at the
mobile unit side.

As was seen in the previous subsections and described in Eq. (22); pre and post multiply-
ing the Grammian matrix by the unitary matrix U will result in a diagonal matrix D. In order
to achieve the pre multiplication step, we propose to change the way the transmitted signal
is formed. If we multiply the transmitted vector s by U, then the modified transmitted vector
will be Us instead of s. Because of the way U is structured, the power of the modified trans-
mitted signal will not change, (i.e., E{|Us|2} = E{|s|2}), where E represents the expectation
operator.

With Us being transmitted over the channel H, the received signal, ỹ, in the proposed
scheme will be

ỹ = HUs + w̃. (32)

The decoder will only need to multiply the received signal by (H U)H , and by doing so it
will get the data estimate as

s̃ = (H U)H H U s + (H U)H w̃

= UH G U s + UH HH w̃ (33)

= D s + UH HH w̃.

In this case D is a diagonal matrix with positive elements and can be found in Eq. (18) for
the Jafarkhani case.

The proposed scheme decodes the received signal by a standard, simple, linear decoding
process in contrast to the needed matrix inversion in the conventional schemes. As a result,
the decoding complexity will be reduced in the proposed scheme compared to those in the
standard QOSTBC decoding schemes.

5 Numerical Results

In this section we display some numerical results in order to compare the performance of the
proposed scheme with the conventional ones. As an example, a Monte Carlo simulation was
conducted for the proposed scheme, described in Eqs. (32) and (33), and Jafarkhani scheme,
described in Eqs. (7) and (8). Quadrature Phase-Shift Keying (QPSK) was chosen as the
modulation format.

Figure 1 displays the symbol error rate results for the two schemes; here we see that the
proposed scheme outperforms the Jafarkhani scheme when the SNR is less than 9.3 dBs
for the QPSK case. As the SNR exceeds that value, Jafarkhani scheme performs better. As
obvious from the figure, the SNR value at which the two schemes have similar performance
increase with increasing the constellation order. For example, at SNR of 20 dB, the two
schemes have comparable symbol error rate for the 16-PSK modulation scheme. In either
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Fig. 1 Symbol error rate versus SNR

case, the difference in performance is marginal. This result indicates that the two schemes,
at least for the practical SNR range, have comparable error rates. The loss in performance in
the proposed algorithm in higher SNR values is believed to be due the loss of the diversity
order.

It was shown that STBC that provides full diversity and full rate is not possible for more
than two antennas [7]. So for the case of 4 antennas, there are three design parameters: diver-
sity order, rate, and linear processing at the decoder. An STBC with full diversity provides
a maximum rate of 3/4 for four antennas without linear processing [8]. In conventional
QOSTBC, diversity is relaxed in order to obtain higher rate without linear processing. Max-
imum diversity in conventional QOSTBC is half the maximum diversity (i.e., 2 in the case
of 4 antenna). In the scheme proposed in this work, in order to achieve linear processing and
full rate, diversity order is further sacrificed. Thus, the diversity order of our scheme is 1.

Next, we will study the case when the decoder has imperfect knowledge of the channel.
This study is concerned about the robustness of the decoder when there are errors in estimat-
ing the channel gain coefficients. Usually in practice, the decoder has to estimate the channel
gain, and estimation may not be perfect. In this measure, we prefer a scheme that achieves a
better job when the decoder has estimation errors.

Let’s assume that the true channel matrix is denoted Hc and the decoder estimated chan-
nel matrix is denoted as Hd . Then, the two matrices can be related as Hd = Hc + He. In
this case, He represents the estimation errors which are considered random. Assuming the
estimation errors are normally distributed with a variance of σ 2, we need to compare the
performance of the two QOSTBC schemes with varying σ 2. When σ 2 is lower, the decoder
has better estimation to the channel, but when σ 2 becomes higher, the decoder estimation
errors increase.

Figure 2 displays the symbol error rate with varying σ 2 for SNR values of 4.5, 7, 9.5, and
12 dB under the QPSK modulation format. Different SNR values were selected to compare
the performance of the two schemes against channel estimation errors or imperfect channel
knowledge. The SNR of 9.5 dB was chosen specifically because the two schemes have a
very close symbol error rate at this SNR value for the perfect channel estimation case, so
any deviation in performance will be mainly to the way the decoder behaves when there are
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Fig. 3 Computation time versus SNR

estimation errors. As obvious from the figure, the proposed scheme outperforms the conven-
tional scheme. This result proves that the proposed algorithm is more robust to the channel
estimation errors.

Finally, we want to investigate the decoding complexity of the two schemes. As shown
in Eq. (6), the conventional decoder needs to conduct a matrix inversion in order to decode
the signal. On the other hand, the proposed scheme needs to conduct a simple linear oper-
ation in order to accomplish that job. So we expect the proposed scheme to have a lower
computational load on the decoder.

Figure 3 displays the decoder average computational time, this is a measure of how much
time the decoder spends in order to decode the received signal. As expected, the proposed
algorithm has lower computation time than the conventional one. Actually, as shown in
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the figure, the conventional scheme needs around 230% more computation time than the
proposed scheme. The gain in the computation time can translate to more battery time, less
latency, and lower complexity and cost for the decoder.

If we compare the decoder equations of (6) for the conventional algorithm and (33) for
the proposed algorithms, we notice that the operations in the convectional decoder include
an extra n × n matrix multiplication and an n × n matrix inversion, where n is the number of
antennas. As we know, computational complexity order for a matrix multiplication is O(n3)

using regular matrix multiplication method, and the computational complexity order is O(n3)

for matrix inversion using Gauss-Jordan elimination method. Apparently, the conventional
decoder complexity is higher than that of the proposed algorithm. Consequently, the results
in Fig. 3 confirm that the proposed algorithm needs less computation time compared to the
conventional scheme.

6 Conclusion

In this paper, we proposed a modification to the conventional coding/decoding scheme for
full rate QOSTBC. The decoding complexity is a concern in the conventional QOSTBC
schemes. Making use of the properties of the Grammian matrix, the proposed modification
eliminates the need to compute matrix inversion at the decoder, and it results in a simple linear
decoding at the receiver side. The decoder complexity of the proposed scheme is reduced
without sacrificing the performance.

Numerical results indicate that the proposed scheme has comparable error rate, is more
robust against channel estimation errors, and has a much lower computation load than that
of the conventional decoder schemes.
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