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Abstract Wireless communications systems in a frequency reuse environment are subject
to cochannel interference. In order to improve the system performance, diversity techniques
are deployed. Among the practical diversity schemes used, Equal-Gain Combining (EGC)
appears as a reasonably simple and effective one. Unfortunately, the exact analysis of the out-
age probability of EGC receivers is rather intricate for it involves the evaluation of multifold
nested integrals. It becomes mathematically intractable with the increase of the number of
diversity branches and/or interferers. For example, for NB diversity branches and NI arbitrary
independent cochannel interferers, the exact formulation using the convolutional approach
requires 2 + NB + (NB × NI ) nested integrals, which, very quickly, and for any practical
system, turns out to be mathematically intractable. In this paper, we propose accurate approx-
imate formulations for this problem, whose results are practically indistinguishable from the
exact solution. In our model, the system is composed by NB branches and NI interferers so
that the desired signals are coherently summed, whereas the interfering signals are incoher-
ently summed at the EGC receiver. Three sets of fading scenarios, namely α-μ, κ-μ, and
η-μ, are investigated. The proposed approach is indeed flexible and accommodates a variety
of mixed fading scenarios for desired and interfering signals.
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1 Introduction

Sums of random variables (RVs) arise in a number of wireless communications applications,
such as maximal ratio combining, equal-gain combining (EGC), signal detection, phase jitter,
intersymbol interference, outage probability, and others [1–3,26]. In several circumstances,
obtaining the exact formulation of some statistics for such sums may be mathematically
cumbersome. As an attempt to circumvent this, a number of approaches concerning approx-
imation methods have been proposed in the literature for the well-known RVs [4–11]. In a
pioneering work [4], a Nakagami-m approximation to the sum of independent identically
distributed (i.i.d.) Nakagami-m RVs was proposed. Anchored on that idea, the parameters
of the approximate Nakagami-m distribution of the sum of two correlated identically dis-
tributed Nakagami-m RVs were obtained in [5]. In [6,7], closed-form approximations to
Rayleigh and Rice sum probability density functions (PDFs) were derived, based either on
a modification of the small argument approximation (Rayleigh case) or on a modification of
the sum distribution of squared Ricean RVs (Rice case). In such cases, the coefficients of
the approximate formulations were optimized using the non-linear squares method based on
the interior reflective Newton method [12]. A number of works employing moment-based
estimators were successfully presented in [8–11] with the aim at approximating sums of
Weibull, Nakagami-m, Rice, and Hoyt (Nakagami-q) RVs.

The rapid and thriving expansion of wireless communication systems along the recent
years, with the demand for new services growing in an incredible pace, has propelled the
urge for an efficient use of the radio spectrum. In this sense, frequency reuse has certainly
proved to be an effective and practical strategy. However, as is well known, such a technique
gives rise to the so-called cochannel interference (CCI). Possible means of combating the
deleterious effects of CCI are cell sectoring and diversity combining techniques. A number
of researchers have investigated CCI-limited communication systems [1,2,13–15], but only
a few examined CCI in an EGC scenario. EGC by itself is a rather intricate technique as
far as its performance analysis is concerned, because it involves sums of fading envelopes.
Including CCI to the model renders the intractability of the problem even more accentuated,
because in such a case the required statistics are those of a ratio of sums of envelopes. To the
best of the authors’ knowledge, the outage probability (OP) of signals undergoing α-μ, η-μ,
or κ-μ fading with CCI is not yet available in the technical literature.

A pioneering work in the CCI performance analysis was carried out by Abu-Dayya and
Beaulieu in [16] for a Nakagami-m fading scenario and assuming equal interfering powers. In
that case, a method for computing the OP was presented for EGC as well as for other diversity
techniques. In [17], an exact formulation for the OP of Rayleigh channels was derived taking
into account distinct interfering powers and EGC. More recently [18], the OP and other per-
formance metrics were derived for EGC considering a Rayleigh environment. All of these
works make use of the Beaulieu series in order to obtain the statistics of the sum of RVs.
Such a methodology is certainly very useful, but it is approximate and does require a careful
choice of the parameters in order to achieve the necessary accuracy [19]. On the other hand,
for NB branches and NI interferers, the exact formulation using the convolutional approach
requires 2 + NB + (NB × NI ) nested integrals, which, very quickly, and for any practical
system, turns out to be mathematically intractable.

Recently, accurate approximate expressions to the sum of α-μ, η-μ, and κ-μ RVs were
proposed in [20,21]. In the present paper, we make use of the approach applied in [20,21]
and present accurate, approximate expressions for the OP of multibranch EGC receivers
undergoing α-μ, κ-μ, and η-μ fading [22,23] and subject to CCI. Such an approach relies
on moment-based estimators and employs multinomial expansion to obtain the required
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An Outage Analysis of Multibranch Diversity 5

moments. In addition, the proposed expressions allow for arbitrary fading parameters and for
distinct desired and interfering powers at the input branches. The approach proposed here is
very flexible and accommodates different combinations of distinct fading scenarios. To attest
the accuracy of our approximations, Monte Carlo simulation data are provided and an excel-
lent match between approximate and simulation curves is observed. The reader is referred to
[20,21] for explanations and justification on the idea behind the proposed approximations.

The remainder of this paper is organized as follows. In Sect. 2, the three general fading dis-
tributions examined in this paper and their respective associated fading models are described.
In Sect. 3, the system model under study is introduced. In Sect. 4, the arduousness inherent
in the exact calculation of the OP in EGC receivers subject to α-μ, η-μ, and κ-μ fading is
depicted, while in Sect. 5 accurate easy-to-compute approximate expressions are proposed.
In Sect. 6, we delineate a way to obtain Nakagami-m, Hoyt (Nakagami-q), Weibull, and Rice
fading models as special cases of the more general α-μ, η-μ, and κ-μ fading models. Section
7 compares the approximated numerical plots with Monte Carlo simulations and a perfect
agreement is attested. Finally, Sect. 8 presents some concluding remarks.

2 The α-μ, κ-μ, and η-μ Fading Distributions

The α-μ [22], κ-μ, and η-μ distributions fading distributions [23] arise from general fading
models, which have recently been proposed in the literature with the aim at providing a better
understanding of the physical phenomena involved and, as a consequence, better adjustment
to field measurement data when compared to other known fading distributions. The α-μ
distribution comprises both Weibull and Nakagami-m as special cases. The κ-μ distribution
encompassees both Rice and Nakagami-m as special cases. And the η-μ one includes Hoyt
(Nakagami-q) and Nakagami-m. In the sequel, a brief description regarding these three new
fading models is carried out.

2.1 The α-μ Fading Model

The fading model for the α-μ distribution considers a signal composed of clusters of multipath
waves propagating in a non-homogeneous environment. Within any one cluster, the phases
of the scattered waves are random and have similar delay times with delay-time spreads of
different clusters being relatively large. The clusters of multipath waves are assumed to have
the scattered waves with identical powers. The resulting envelope is obtained as a nonlinear
function of the modulus of the sum of the multipath components. Such a nonlinearity is
manifested in terms of a power parameter, so that the resulting signal intensity is obtained
not simply as the modulus of the sum of the multipath components, but as this modulus to a
certain given exponent.

The PDF fR(r) of the envelope R is given by

fR(r) = α μμrαμ−1

r̂αμΓ (μ)
exp

(
−μ

rα

r̂α

)
, (1)

where r̂ = α
√

E(Rα), α > 0 (which describes to the non-linearity of the medium), and μ > 0
(which is associated to the number of multipath clusters), Γ (z) = ∫∞

0 t z−1 exp(−t)dt is the
gamma function, and E(·) denotes expectation. The cumulative distribution function (CDF)
of R can be found

FR(r) = Γ (μ, μ rα/r̂α)

Γ (μ)
, (2)
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where Γ (z, y) = ∫ y
0 t z−1 exp(−t)dt is the incomplete gamma function. The k-th moment

E(Rk) can be expressed as

E(Rk) = r̂ k Γ (μ + k/α)

μk/αΓ (μ)
. (3)

For α = 2, (1) particularizes to the Nakagami-m PDF, whereas for μ = 1, (1) reduces to the
Weibull one.

2.2 The κ-μ Fading Model

The signal is composed by multipath clusters propagating in a non-homogeneous environ-
ment where, within each cluster, a dominant component is found. The inphase and quadrature
components of each cluster are independent from each other. The powers of the scattered
waves of each quadrature component are identical but those of the dominant components
are arbitrary. As its name implies, this fading model is written in terms of two parameters,
namely κ and μ. The parameter κ > 0 is given by the ratio between the total power of the
dominant components and the total power of the scattered waves, whereas the parameter
μ > 0 is defined as [23]

μ = E2(R2)

V (R2)

(1 + 2κ)

(1 + κ)2 , (4)

which is related to the number of multipath clusters. In (4),V (·) denotes variance.
The PDF fR(r) of the κ-μ envelope R is given by[23]

fR(r) = 2μ(1 + κ)
μ+1

2

κ
μ−1

2 exp(μκ)

rμ

r̂μ+1 exp

(
−μ(1 + κ)r2

r̂2

)
Iμ−1

(
2μ

√
κ(1 + κ)r

r̂

)
, (5)

where r̂ = √
E(R2) and Iν(·) is the modified Bessel function of the first kind and arbitrary

order ν [24, Eq. 9.6.20]. The n-th moment E(Rn) can be expressed as

E(Rn) = Γ
(
μ + n

2

)
exp(−κμ)r̂ n

Γ (μ)((1 + κ)μ)
n
2

1 F1

(
μ + n

2
;μ; κμ

)
, (6)

where 1 F1(·; ·; ·) is the confluent hypergeometric function [24, Eq. 13.1.2]. The CDF is
obtained in closed form as

FR(r) = 1 − Qμ

(√
2κμ,

√
2μ(1 + κ)r

r̂

)
, (7)

where

Qν(a, b) = 1

aν−1

∞∫
b

xν exp

(
− x2 + a2

2

)
Iν−1(a x) dx, (8)

is the generalized Marcum Q-function [23, Eq. 4], with Iν[·] denoting the modified Bessel
function of the first kind and arbitrary order ν [24, Eq. 9.6.20]. For κ → 0 and μ = m, where
m stands for the Nakagami fading parameter, (5) reduces to the Nakagami-m PDF and for
μ = 1 and κ = k, where k denotes the Rice factor, (5) reduces to the Rice PDF.
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An Outage Analysis of Multibranch Diversity 7

2.3 The η-μ Fading Model

The multipath clusters are composed of scattered waves only. The η-μ fading model appears
in two formats, corresponding to two physical fading models. Although this paper investi-
gates only the Format 1, our results can be easily extended to the Format 2. In fact, as pointed
out in [23], these formats can be converted into each other by a simple transformation for-
mula. In Format 1, the inphase and quadrature components within each multipath cluster are
independent from each other and have different powers. The ratio between these powers is
given by the parameter η and the parameter μ is defined as [23]

μ = E2(R2)

2 V(R2)

[
1 +

(
H

h

2)]
, (9)

which is related to the number of multipath clusters. Above, h = (2 + η−1 + η)/4 and
H = (η−1 − η)/4.

The PDF fR(r) of the η-μ envelope R is given by [23]

fR(r) = 4
√

π μμ+ 1
2 hμr2μ

Γ (μ)Hμ− 1
2 r̂2μ+1

exp

(
−2μhr2

r̂2

)
Iμ− 1

2

(
2μHr2

r̂2

)
, (10)

where r̂ = √
E(R2). The n-th moment E(Rn) can be expressed as

E(Rn) = Γ
(
2μ + n

2

)
r̂ n

hμ+ n
2 (2μ)

n
2 Γ (2μ)

2 F1

(
μ + n

4
+ 1

2
, μ + n

4
;μ + 1

2
;
(

H

h

)2
)

, (11)

where 2 F1(·, ·; ·; ·) is the confluent hypergeometric function [24, Eq. 15.1.1]. The CDF is
shown as

FR(r) = 1 − Yμ

(
H

h
,

√
2hμr

r̂

)
, (12)

where[23, Eq. 20]

Yυ(λ, β) �
2−υ+ 3

2
√

π

Γ (υ)

(1 − λ2)υ

λυ− 1
2

∞∫
β

x2υ exp(−x2)Iυ− 1
2
(λ x2) dx . (13)

It is worth noting that, very recently, a closed-form expression for Yυ(λ, β) that is efficiently
computable has been found in [25].

For μ = 0.5, (10) particularizes into the Hoyt PDF, in which the Hoyt parameter is given
by b = − 1−η

1+η
. The Nakagami-m PDF can be attained from (10) in an exact manner by setting

μ = m/2 and η → 1 or, in the same way, by setting μ = m and η → 0 or η → ∞.

3 System Model

In our analysis, we consider an EGC receiver composed of NB antennas conveniently spaced
so that the signals arriving at them are independent. In EGC, the received signals are coph-
ased, equally weighted, and added to give the resultant desired signal. We assume that there
are NI cochannel interferers. Desired signals are added in a coherent manner whereas the
addition of interfering signals are pereformed in an incoherent way [26]. In such a case, the
SIR of these systems are modeled as

123
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Z =
(

X

Y

)2

, (14)

where

X =
NB∑
i=1

Xi , (15)

represents the sum of the desired signals Xi at the diversity branches and

Y 2 =
NI∑
j=1

NB∑
i=1

Y 2
i, j , (16)

stands for the sum of the powers of the interference signals Yi, j at the diversity branches.
Note that Xi denotes the desired envelope at branch i and Yi, j stands for the j-th interfering
envelope at branch i .

Considering the α-μ scenario, Xi and Yi, j are α-μ distributed with PDF given by (1) using

the parameters (αi , μi , x̂i ) and (αi, j , μi, j , ŷi, j ), respectively. In this case, x̂i = αi

√
E(Xαi

i )

and ŷi, j = αi, j

√
E(Y

αi, j
i, j ). Regarding the κ-μ case, Xi and Yi, j are κ-μ distributed with a

PDF given by (5) using the respective parameters (κi , μi , x̂i ) and (κi, j , μi, j , ŷi, j ). In this

case, x̂i =
√

E(X2
i ) and ŷi, j =

√
E(Y 2

i, j ). Equivalently, in the η-μ fading scenario, Xi and

Yi, j are η-μ distributed with PDF given by (10) using the respective parameters (ηi , μi , x̂i )

and (ηi, j , μi, j , ŷi, j ). Again, x̂i =
√

E(X2
i ) and ŷi, j =

√
E(Y 2

i, j ). The readers may refer to

[22,23] for further details on these distributions.

4 Outage Probability: Exact Formulation

The OP is defined as the probability that the SIR goes beneath a given threshold, zth . Thus

Pout = Pr [Z < zth], (17)

which is the CDF FZ (z) evaluated at Z = zth . In [27], an unified approach for computing
the OP in wireless system is proposed, which is given by

FZ (zth) =
∞∫

0

y
√

zth∫
0

fX (x) fY (y)dxdy =
∞∫

0

FX (y
√

zth) fY (y)dy, (18)

where fW (·) and FW (·) denote the PDF and CDF, respectively, of an arbitrary RV W . From
(18), note that a tractable exact expression for the OP is very difficult to attain, if not impos-
sible in case the number of branches and interferers grow. This is because the PDF of X and
the PDF of Y cannot be obtained in a simple manner for the general case. One of the possible
exact solutions involves multifold integrals or integral of the product of moment generat-
ing functions, certainly non attractive approaches as the number of diversity branches and
interfering signals increases. For instance, for NB branches and NI interferers the number
of nested integrals necessary to solve this problem is 2 + NB + NB × NI , which turns out
to be intractable for practical applications (e.g., NB = 2 and NI = 6, then 16 integrals are
necessary). Using the convolutional approach, (18) can be expressed in an exact manner as
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An Outage Analysis of Multibranch Diversity 9

FZ (zth) =
∞∫

0

y
√

zth∫
0

⎛
⎜⎜⎝

x∫
0

x−rNB∫
0

. . .

x−∑NB
i=3 ri∫

0

fR1

(
x −

NB∑
i=2

ri

)

×
NB∏
i=2

fRi (ri )dr2 . . . drNB−1drNB

)
×

⎛
⎜⎜⎜⎝

y∫
0

√
y2−rNB ,NI∫

0

. . .

√
y2−∑NB

i=3
∑NI

j=3 ri, j∫
0

× fR1,1

⎛
⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√
y2 −

NB∑
i=1

NI∑
j=1︸ ︷︷ ︸

except i= j=1

ri, j

⎞
⎟⎟⎟⎟⎟⎟⎠

NB∏
i=1

NI∏
j=1︸ ︷︷ ︸

except i= j=1

fRi, j (ri, j )dr1,2 . . . drNB ,NI

⎞
⎟⎟⎟⎟⎟⎟⎠

dx dy

(19)

In what follows, we propose an approximate formulation for the OP given in ( 18). Besides
being very simple, it is highly accurate, as shall be seen from the numerical examples given
in Sect. 7.

5 Outage Probability: Approximate Formulations

As is well-known, the OP of the SIR Z is defined as the probability that Z falls below a given
threshold, zth . Equivalently, it represents the CDF FZ (z) evaluated at z = zth , as given in
(18). In the following, accurate approximate expressions for the OP in EGC receivers subject
to α-μ, η-μ, and κ-μ fading will be proposed.

5.1 α-μ Fading

Assume that both desired and interfering signals are α-μ faded. We propose to approximate
fY (y) and FX (y

√
zth) by the PDF and CDF of a single α-μ variate, as shown in (1) and

(2), respectively. The motivation for this comes from the fact that the sum of independent
α-μ variates can be very well approximated by a single α-μ variate [20]. The procedure is
detailed next.

The CDF FX (y
√

zth) is approximated by the CDF of an α-μ variate, i.e,

FX (y
√

zth) ≈ Γ
(
μS, μS (y

√
zth)αS /x̂αS

S

)
Γ (μS)

. (20)

In order to render (20) a good approximation, we use moment-based estimators to calculate
αS, μS , and x̂S = αS

√
E(XαS ) from the exact moments of X . Assume, for the moment, the

knowledge of E(X), E(X2), and E(X4). Then, considering EGC receivers, moment-based
estimators for αS, μS , and x̂S can be written as [20, Eqs. 4–6]

Γ 2 (μS + 1/αS)

Γ (μS) Γ (μS + 2/αS) − Γ 2 (μS + 1/αS)
= E2(X)

E(X2) − E2(X)
, (21)

Γ 2 (μS + 2/αS)

Γ (μS) Γ (μS + 4/αS) − Γ 2 (μS + 2/αS)
= E2(X2)

E(X4) − E2(X2)
, (22)
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10 A. C. Moraes et al.

x̂S = μ
1/αS
S Γ (μS)E(X)

Γ (μS + 1/αS)
, (23)

The systems of transcendental equations (21–22) must be numerically solved for αS and
μS . For this, the required function in MATHEMATICA is simply FindRoot. Having obtained
αS and μS , then x̂S is estimated as in (23). The exact moments E(X), E(X2), and E(X4)

required in (21), (22), and (23) can be written in terms of the individual moments of the α-μ
summands as [20, Eq. 7]

E(Xn) =
n∑

n1=0

n1∑
n2=0

. . .

nNB −2∑
nNB −1=0

(
n

n1

)(
n1

n2

)
. . .

(
nNB−2

nNB−1

)
E(Xn−n1

1 )E(Xn1−n2
2 )

. . . E(X
nNB −1

NB
), (24)

where the individual moments above are given in (3) for the respective parameters (αi , μi , x̂i ).
Now, the PDF fY (y) can be approximated by the PDF of an α-μ variate, i.e,

fY (y) ≈ αI μ
μI
I yαI μI −1

ŷαI μI
I Γ (μI )

exp

(
−μI

yαI

ŷαI
I

)
, (25)

Moment-based estimators for αI , μI , and ŷI can be written as [20, Eqs. 22–24]

Γ 2 (μI + 2/αI )

Γ (μI ) Γ (μI + 4/αI ) − Γ 2 (μI + 2/αI )
= E2(Y 2)

E(Y 4) − E2(Y 2)
, (26)

Γ 2 (μI + 4/αI )

Γ (μI ) Γ (μI + 8/αI ) − Γ 2 (μI + 4/αI )
= E2(Y 4)

E(Y 8) − E2(Y 4)
. (27)

ŷI =
[

μ
2/αI
I Γ (μI )E(Y 2)

Γ (μI + 2/αI )

] 1
2

(28)

On the other hand, the exact moments E(Y 2), E(Y 4), and E(Y 8) required in (26), (27),
and (28) can be obtained from [20, Eq. 25]

E(Y 2n) =
n∑

n1=0

n1∑
n2=0

. . .

nNB −2∑
nNB −1=0

(
n

n1

)(
n1

n2

)
. . .

(
nNB−2

nNB−1

)
E
(

Y 2(n−n1)
1

)

×E
(

Y 2(n1−n2)
2

)
. . . E

(
Y

2(nNB −1)

NB

)
, (29)

in which

E(Y 2n
m ) =

n∑
n1=0

n1∑
n2=0

. . .

nNI −2∑
nNI −1=0

(
n

n1

)(
n1

n2

)
. . .

(
nNI −2

nNI −1

)
E
(

Y 2(n−n1)
m,1

)

×E
(

Y 2(n1−n2)
m,2

)
. . . E

(
Y

2(nNB −1)

m,NI

)
, (30)

where m = 1, 2, . . . , NB and the individual moments in (30) are given in (3) for the respective
parameters (αi, j , μi, j , ŷi, j ). Then, by substituting (20) and (25) in (18), with the appropri-
ate substitutions as far as the evaluation of the exact moments are concerned, we arrive at
approximate expressions for the OP of EGC receivers with CCI in α-μ fading channels.
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An Outage Analysis of Multibranch Diversity 11

5.2 κ-μ Fading

As before, for the κ-μ scenario we propose to approximate fY (y) and FX (y
√

zth), required
in (18), by the PDF and CDF of a κ-μ variate, as shown in (5) and (7), respectively. The
motivation for this stems from the fact that the sum of independent κ-μ variates can be very
well approximated by a single κ-μ variate, as shown in [21].

Here, we approximate FX (y
√

zth) by the CDF of a κ-μ variate, i.e,

FX (y
√

zth) ≈ 1 − QμS

(√
2κSμS ,

√
2μS(1 + κS)

y
√

zth

x̂S

)
. (31)

Moment-based estimators for κS, μS , and x̂S can be expressed from [21, Eqs. 8–10] as

κ −1
S =

√
2 (E(X4) − E(X2)2)√

2E2(X4) − E(X2)2 E(X4) − E(X2)E(X6)
− 2, (32)

μS = E(X2)2

E(X4) − E(X2)2

1 + 2κS

(1 + κS)2 , (33)

x̂S =
√

E(X2). (34)

The exact moments E(X2), E(X4), and E(X6) required in (32), (33), and (34) can be cal-
culated as (24), with the individual moments of the κ-μ obtained from (6) for the respective
parameters (κi , μi , x̂i ).

In the same way, fY (y) is approximated by the PDF of a κ-μ variate, i.e,

fY (y) ≈ 2μI (1 + κI )
μI +1

2

κ
μI −1

2
I exp(μI κI )

yμI

ŷμI +1
I

exp

(
−μI (1 + κI )

(
y

ŷI

)2
)

×IμI −1

(
2μI

√
κI (1 + κI )

y

ŷI

)
, (35)

and the procedure here follows the same steps as described previously, in which the parameters
κI , μI , and ŷI are attained from (32) to (34) using Y instead of X . In this case, the individual
moments needed in (30) are obtained from (6) for the respective parameters (κi, j , μi, j , ŷi, j ).
Then, by substituting (31) and (35) in (18), with the appropriate substitutions as far as the
evaluation of the exact moments are concerned, we arrive at approximate expressions for the
OP of EGC receivers with CCI in κ-μ fading channels.

5.3 η-μ Fading

Using a procedure similar to the one used before, an accurate approximate expression for the
OP of multibranch EGC systems subject to η-μ fading is now presented. In particular, our
formulations consider Format 1 of the η-μ distribution. Therefore, FX (y

√
zth) and fY (y),

as required in (18), will be well approximated by (12) and (10), respectively, in which a good
approximation is achieved by the suitable choice of the parameters of the CDF and PDF of
an η-μ variate, as performed in the previous subsections. This rationale was also applied in
[21] for approximating the sums of independent η-μ variates. Thus, it follows that

FX (y
√

zth) ≈ 1 − YμS

(
HS

hS
,
√

2hSμS
y
√

zth

x̂S

)
, (36)
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fY (y) ≈ 4
√

π μ
μI + 1

2
I hμI

I y2μI

Γ (μI )H
μI − 1

2
I ŷ2μI +1

I

exp

(
−2μI h I

(
y

ŷI

)2
)

IμI − 1
2

[
2μI HI

(
y

ŷI

)2
]

, (37)

Now, turning our attention for the calculation of the required parameters in the equations
above, we have that moment-based estimators for ηS, μS , and x̂S can be written as [23]

ηS =
√

2cS −
√

3 − 2cS ± √
9 − 8cS√

2cS +
√

3 − 2cS ± √
9 − 8cS

, (38)

μS = E(X2)2

E(X4) − E(X2)2

(1 + η2
S)

(1 + ηS)2 , (39)

x̂S =
√

E(X2), (40)

where cS in (38) is defined as

cS �
E(X6)

E(X2)3 − 3E(X4)

E(X2)2 + 2

2
(

E(X4)

E(X2)2 − 1
) . (41)

Regarding the interfering signals, i.e, those associated to the PDF of Y , their respective
parameters ηI , μI , and ŷI are obtained from (38) to (40) using Y in the place of X .

As in the two others fading scenarios, the exact moments of X and Y (orders 2, 4, and 6),
necessary for the calculation of the parameters of (36) and (37), can be obtained from (24)
and (29). As before, the individual moments inherent to these expressions can be found from
(11) for the respective parameters (ηi , μi , x̂i ) and (ηi, j , μi, j , ŷi, j ). Then, by substituting (36)
and (37) in (18), we arrive at an approximate expression for the OP of EGC systems subject
to CCI in η-μ fading channels. Note that two pairs of estimators for ηS and μS are found. To
decide which one is more suitable, we select those that lead to the smallest |E(X) − E(R)|,
by considering ηS and μS , in which case E(R) is attained from [23, Eq. 21]. Concerning ηI

and μI , Eqs. (38–40) have led to the same values in all cases.

5.4 Mixed Fadings

The approach used here is indeed flexible and can be easily applied to cases in which desired
and interfering signals undergo different fading conditions. For instance, desired signals may
experience α-μ or η-μ or κ-μ fading and interfering signals may be α-μ or η-μ or κ-μ distrib-
uted. The procedure simply involves calculating FX (y

√
zth) in one condition and fY (y) in

the other, following the steps given above. Interestingly, because these distributions comprise
many other fading conditions, several combinations of fading scenarios can be exercised. For
instance, if desired and interfering signals are, respectively, α-μ and κ-μ distributed, then
desired signals may comprise different numbers of Rayleigh, Weibull, Nakagami-m, and
α-μ faded signals, whereas interfering signals may comprise different numbers of Rayleigh,
Nakagami-m, Rice, and κ-μ faded signals. The same can be said with respect to η-μ, for
which Hoyt, Rayleigh, Nakagami-m, and η-μ itself are contemplated.

6 Special Cases of Our Formulations

As discussed in the previous sections, the fading scenarios investigated in this paper are indeed
general and include as special cases important other fading models. The Hoyt (Nakagami-q)
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An Outage Analysis of Multibranch Diversity 13

fading model can be obtained from the η-μ one in an exact manner by setting μ = 0.5. In this
case, the Hoyt parameter is given by b = −(1−η)/(1+η) in Format 1 or b = −η in Format
2. The Rice fading model can be attained from the κ-μ one by setting μ = 1 and κ = k,
with k denoting the Rice factor. The Weibull fading model can be obtained from the α-μ
one for μ = 1, where in this case α will represent the non-linearity Weibull parameter. The
Nakagami-m fading model can be obtained from anyone of the three fading models analyzed
here. From the η-μ one, it is attained by setting μ = m/2 and η → 1 in Format 1 or η → 0
in Format 2. In the same way, it can be attained by setting μ = m and η → 0 or η → ∞
in Format 1 or η → ±1 in Format 2. In addition, the Nakagami-m fading model can be
achieved from the κ-μ one using κ = 0 and μ = m. Finally, the Nakagami-m fading model
can also be obtained from the α-μ one when α = 2 and μ = m. Therefore, in what follows,
after performing the appropriate substitutions, each one of the fading scenarios cited above
can be easily investigated.

7 Numerical Results and Discussions

In this Section, we check our approximations against Monte Carlo simulation. As shall be
seen, in all the cases, an excellent match between the respective results is found. A myriad
of other comparisons have been checked by the authors and, in all of them, an excellent
concordance was attested. For the plots, we define a normalized SIR threshold [16]

Norm.SIRth = �s

�I zth
, (42)

where �s is the total average desired signal power and �I is the total average single interferer
power.

By considering the α-μ fading channels, Fig. 1 illustrates the OP versus normal-
ized SIR threshold for several values of NB using μi =μi, j = 2.5, αi =αi, j = 1.5 and

Fig. 1 OP versus normalized SIR threshold in EGC receivers for μi = μi, j = 2.5, αi = αi, j = 1.5, NI = 6,
and varying NB
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14 A. C. Moraes et al.

Fig. 2 OP versus normalized SIR threshold in EGC receivers for μi = μi, j = 2.5, NB = 4, NI = 2, and
varying αi = αi, j

Fig. 3 OP versus normalized SIR threshold in EGC receivers for μi = μi, j = 1.5, NI = 2, NB = 3, and
varying κi = κi, j

NI = 6. More specifically, this figure analyzes the effect of interference in a non-
homogeneous environment with a non-linearity parameter (described by the parame-
ter α) in which the signal is composed by clusters of multipath waves (expressed by
the parameter μ). As expected, an improvement of the performance is noticed as NB

increases. Still regarding the α-μ scenario, Fig. 2 outlines, for different values of αi =
αi, j , the case in which there are NB = 4 diversity branches, NI = 2 cochannel
interferers and μi = μi, j = 2.5.

Figures 3 and 4 depict the OP in κ- μ fading channels. The former employs NB = 3
diversity branches, NI = 2 interfering carriers, and varies κi = κi, j by keeping constant
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An Outage Analysis of Multibranch Diversity 15

Fig. 4 OP versus normalized SIR threshold in EGC receivers for μi = 1.5, μi, j = 3, κi = 2.5, κi, j =
1.5, NI = 6, and varying NB

Fig. 5 OP versus normalized SIR threshold in EGC receivers for NB = 4, ηi = ηi, j = 0.4, μi = μi, j = 0.5,
and varying NI

μi = μi, j = 1.5, whereas the latter explores a scenario with NI = 6 cochannel interfer-
ers. Note that here we investigate the OP in an interference scenario where the signal is
composed by multipath clusters and, within each cluster, a dominant component (line-of-
sight condition) is found. The performance is shown to deteriorate as the value of κi = κi, j

decreases.
Assuming an interference scenario where the inphase and quadrature components within

each multipath cluster are independent from each other and have different powers, Fig. 5
portrays the OP of η-μ channels for different values of NI and using ηi = ηi, j = 0.4, μi =
μi, j = 0.5, while Fig. 6 illustrates the case with NI = 6 cochannel interferers for different
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16 A. C. Moraes et al.

Fig. 6 OP versus normalized SIR threshold in EGC receivers for NI = 6, ηi = 0.4, ηi, j = 0.6, μi =
1, μi, j = 0.5, and varying NB

NI

NB

Fig. 7 OP versus normalized SIR threshold in EGC receivers for NB = 4, κi = 1.5, ηi, j = 0.6, μi =
3, μi, j = 2, and varying NI

numbers of diversity branches. Noticeably, the system becomes less reliable as we increase
the number of interfering carriers.

Finally, we consider in Fig. 7 a mixed-fading scenario in which the desired signals undergo
κ-μ fading, whereas the interfering signals are considered to be η-μ faded. Such an envi-
ronment is an example for which the desired signals are subject to a line-of-sight fading,
whereas the interfering signals are experimenting a non-line-of-sight fading. As anticipated,
the performance deteriorates as NI increases.

Although the numerical values will certainly vary from one case to the other, the overall
outage performance basically depends on the fading conditions of the channel, as expected
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and as illustrated in the plots given here. For the α-μ case, this happens with the increase of
α and/or μ. For the κ-μ scenario, this occurs with the increase of κ and/or μ. And for the
η-μ environment, this is characterized by having η moving towards 1 and/or μ increase. A
performance degradation occurs otherwise.

Note in all the cases how exact (simulated) and approximate curves are, in practice, indis-
tinguishable from each other. Note further that the use of these generalized distributions in
conjunction with the proposed approximations provide an important and efficient tool, useful
in the analysis of a multi-branch multi-interferer wireless systems.

8 Conclusions

In this paper, accurate approximate expressions for the OP of multibranch EGC receivers
subject to multiple cochannel interferers were provided. Three different generalized fading
scenarios were analyzed, namely, α-μ, κ-μ, and η-μ. The proposed approximations were
obtained in terms of a singlefold integral, which replaces the multifold nested integrals
required into the exact solution. In all the comparisons, an excellent match between the
approximate and simulation results were observed. The approach shown here is simpler than
the available alternatives and also flexible, in the sense that it admits a wide range of fad-
ing environments. Moreover, it allows for mixed-fading scenarios in which many different
combinations of fading conditions of interest may be exercised.
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