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Abstract This paper investigates the receive antenna selection problem to maximize capac-
ity in wireless MIMO communication system, which can be formulated as an integer pro-
gramming optimization problem and can not be directly solved because of its non-convex
characteristics caused by the discrete binary antenna selection factor. To deal with this chal-
lenge, a computationally efficient approach, particle swarm optimization(PSO) algorithm is
introduced, in which the particle is defined as the discrete binary antenna selection factor and
the objective function is associated with the capacity corresponding to the specified antenna
subsection represented by the particle. Furthermore, in order to meet the condition that the
number of selected antennas should keep fixed, the particle elements are relaxed to change
between [0 1] and the position of the higher elements are taken as the index of the antenna
subsection to be activated. Then the best antenna subset can be found by seeking the global
optimal particle in PSO. Numerical results reveal that PSO algorithm exhibits a promising
performance when applied to both the classical benchmark function and our antenna selection
scenario.

Keywords MIMO · Antenna selection · Channel capacity · Particle swarm optimization

1 Introduction

Multiple-input multiple-output (MIMO) communication is widely acknowledged as a key
technology in bandwidth-constrained wireless systems because it can achieve a drastic
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increase in capacity by taking the full advantage of multiple antennas without extra spec-
trum. However, a major critical factor in the deployment of MIMO systems is the cost of
multiple analog chains (such as low noise amplifiers, mixers, and analog-to-digital convert-
ers at the receiver terminal) and the increase of signal processing complexity; Furthermore,
with increasing number of antennas, the probability that at least some antennas are experi-
encing deep fading increases. To deal with such challenges, a promising technique referring
to antenna subset selection has been proposed [1]. The core idea of antenna selection is to
use a limited number of analog chains that are adaptively switched to a subset of the avail-
able antennas, which can effectively reduce the number of radio frequency chains required,
yet preserving the selection diversity gains. Therefore, the antenna selection technique has
attracted considerable interests of researchers.

Previous work of comprehensive tutorial papers on antenna selection can be found in
[2,3]. The criteria for antenna selection can be mainly divided into two kinds, aiming at
minimizing the error probability [4,5] or maximizing the capacity performance [6,7]. These
antenna selection techniques can be implemented either at the single transmit (receive) side
[1,8] or at the both transmit and receive sides [6,9]. At the transmit side, antenna selection
reduces complexity and increases capacity if a minimal amount of feedback is allowed when
compared with an open loop MIMO system [2]. At the receive side, antenna selection can
reduce the complexity. For spatial multiplexing systems, [10] provides several antenna selec-
tion algorithms where linear receivers are employed. Space time code system combined with
antenna selection have been considered in [11–13]. To the best of the authors’ knowledge,
the simplest antenna selection methods are the norm-based selection algorithm (NBS) [2] as
well as the correlation-based selection method (CBS) [14]. Concretely speaking, NBS seeks
antennas with the largest channel gains and CBS chooses antennas with the lowest corre-
lation between them. However, NBS performs well only at low signal to noise ratio (SNR)
regime and CBS can develop its advantage when applied in correlated channel. Generally, the
optimal antenna selection algorithm requires an exhaustive search (ES) over all possible can-
didates, which is computationally prohibitive particularly for large array systems. Therefore,
recently great effort has been attached to find suboptimal algorithms that can obtain better
capacity performance but with much lower computational complexity [15–17], for example,
Dua et.al. in [15] attempts to address the receive antenna selection problem by using convex
optimization to achieve the better trade-offs between performance and complexity. But the
original antenna selection problem is reformulated by relaxing or approximating in order
to be solved by convex optimization, which may be counterproductive and compromise the
capacity performance. In [16], an adaptive markov-chain monte-carlo(AMCMC) optimiza-
tion method is employed to address the antenna selection problem to obtain the near optimal
capacity performance. In order to improve the convergence and efficiency of AMCMC, a
Kullback-Leibler divergence between is defined in the algorithm. Also, a priority generic
algorithm (GA)-based antenna selection algorithm has been proposed in [17], which aims at
achieving close performance to the optimum algorithm but with lower computational com-
plexity. However, the genetic manipulation such as crossover and mutation may still take
much computational time.

In this paper, different from the previous work, we propose a low complexity approach for
antenna selection based on particle swarm optimization (PSO). PSO is a powerful and promis-
ing optimization method and characterized as a simple but computationally efficient concept.
PSO can solve complex multidimensional problems without solution domain restrictions or
problem reformulations, and it does not have mathematical limitations such as the convexity
requirement on the problem formulation. Therefore, it can perfectly deal with the optimi-
zation of a non-convex function. Compared with other evolutional optimization algorithms,
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PSO has the advantages of cooperation between particles and good flexibility in controlling
the balance between local and global exploration of the problem space. Besides, PSO is easy
to implement and there are few parameters to adjust. Therefore, this optimization method
has been successfully applied to various facets of signal processing [18].

Our major contributions in this paper are described as follows:

(1) The receive antenna selection problem for MIMO system is formulated as a combinato-
rial optimization problem and a low complexity PSO-based receive-antenna-selection
algorithm is proposed.

(2) The implementation that how to apply PSO in antenna selection problem to maximize
the ergodic capacity is provided and preliminary experiments on testifying the perfor-
mance of PSO by benchmark functions compared with genetic algorithm (GA) have
been carried out to show the efficiency of PSO algorithm. Results reveal that PSO has
promising search ability.

(3) Both the capacity performance as well as the complexity evaluation of PSO in address-
ing antenna selection problem are presented to show its efficiency when compared with
other algorithms. Numerical results reveal that PSO offers near optimal capacity perfor-
mance at a lower complexity. Since the capacity performance can be flexibly controlled
by adjusting the parameters of PSO, it can provide a viable approach by striking a better
tradeoff between performance and computational complexity.

The rest of this paper is organized as follows. In Sect. 2 The system model is introduced and
the receive antenna selection problem is formulated. Section 3 presents the basic concept
of PSO and the detailed the PSO-based antenna selection procedure. In Sect. 4, preliminary
numerical experiments are carried out to testify the efficiency of PSO by benchmark func-
tions. Then Monte Carlo simulations are presented in Sect. 5. Finally, Sect. 6 concludes the
paper.

2 System Model and Problem Formulation

2.1 System Model

Consider a narrow band MIMO system with transmitter equipped Nt antennas and receiver
equipped Nr elements. Suppose that antenna selection is implemented at the receiver, where
L out of Nr receive antennas will be activated for transmission. Denote the original Nr × Nt

channel matrix as H, following the correlated channel model provided in [19], the channel
matrix can be written as:

H = R1/2
r x HcR1/2

t x (1)

where R1/2
t x is the Nt × Nt transmit-side normalized correlation matrix, R1/2

r x is the Nr × Nr

receive-side normalized correlation matrix, and Hc is an spatially white zero-mean unit vari-
ance complex i.i.d. Gaussian matrix.Then the received complex signal vector can be written
as:

r = Hs + n (2)

where s ∈ CNt ×1 represents the transmitted data vector and n ∈ CNr ×1 is a complex Gauss-
ian noise vector with zero-mean and covariance matrix σ 2I. As such, the capacity of the
MIMO system is given by:

C = log2 det(INt + γ · �sHH H) (3)
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where γ denotes the average SNR and �s=E
{
ssH

}
is the covariance matrix of the trans-

mitted signals. INt denotes the Nt × Nt identity matrix and det(·) denotes the determinant
manipulation.

Assuming that perfect channel state information (CSI) is available at the receiver, and
L out of Nr receive antennas are activated. Denote the indices of the selected antennas as
s = [s1 . . . sL ] and the L × Nt channel matrix after antenna selection as Hs , which coincides
with H for those rows corresponding to these indices. Choose the covariance matrix of the
transmitted signals as �s = INt

/
Nt , then, the capacity of the MIMO channel with antenna

selection is given by:

C = log2 det(INt + γ
/

Nt · HH
s Hs) (4)

It can be seen that the capacity in (4) becomes a function of the antennas chosen in Hs . Our
goal is to find the best antenna subset to maximize the capacity.

2.2 Problem Formulation

For convenience, we first define the antenna selection operator as follows:

� = [Δ1 . . . ΔNr ] (5)

where

Δi =
{

1, if the i th antenna is selected
0, otherwise

i = 1 . . . Nr (6)

Then the capacity after antenna selection can be expressed as:

C = log2 det(INt + γ
/

Nt · HH
s Hs) (7)

= log2 det

(
INt + γ

/
Nt · [

HH
s 0Nt ×(Nr −L)

]
[

Hs

0(Nr −L)×Nt

])
(8)

Denote

H̄s =
[

Hs

0(Nr −L)×Nt

]

Nr ×Nt

(9)

Then the relationship between H and Hs can be expressed as:

H̄s = Pr · diag(�) · H (10)

where Pr is a row permutation matrix satisfying PH
r Pr = INr and diag(�) is an Nr × Nr

diagonal matrix with �i is its diagonal entry. This gives H̄H
s H̄s = HH · diag(�) · PH

r · Pr ·
diag(�) · H = HH · diag(�) · H = HH

s Hs . With this equation, the capacity with antenna
selection can be rewritten as:

C = log2 det(INt + γ
/

Nt · HH
s Hs) (11)

= log2 det(INt + γ
/

Nt · H̄H
s H̄s) (12)

= log2 det(INt + γ
/

Nt · HH · diag(�) · PH
r · Pr · diag(�) · Ht ) (13)

= log2 det(INt + γ
/

Nt · HH · diag(�) · H) (14)

= log2 det(INr + γ
/

Nt · diag(�) · HHH ) (15)
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Note that the equation in (14) follows the theorem that det(IM + UV) = det(IN + VU). It
can be seen now the channel capacity with antenna selection is a function of �. The receive
antenna selection problem in MIMO system to maximize capacity can be characterized as:

Maxmize: log2 det(INr + γ
/

Nt · diag(�) · HHH )

Subject to: sum(�) = L
Δi ∈ {0, 1}

(16)

For the optimization problem characterized by (16), the variables are binary valued (0 or
1) integer variables rendering the selection problem NP-hard. To deal with this problem, a
direct way is an exhaustive search over all possible candidates to find the antenna subset to
maximize the capacity. However, this task is computationally prohibitive for a large antenna
size. Owing to this fact, PSO is introduced for receive antenna selection to improve the
computational efficiency.

3 The PSO-Based Antenna Selection Algorithm

In this section, basic concept of PSO algorithm is first introduced. After that, the details of
PSO applied in antenna selection problem are presented.

3.1 Basic Concepts of PSO

PSO, first developed by Kennedy and Eberhart in 1995, is a kind of evolutionary computa-
tional technology based on the intelligent behavior of organisms, which is put forward by
learning from the behaviors of bird flock seeking food [20]. In PSO algorithm, a group of
random particles imitating bird flock are initialized in the searching space, all the particles
have fitness values which are evaluated by the objective function to be optimized, and their
velocities which direct their “flying” direction contribute an important part in PSO. The parti-
cles are “flown” through the problem space by following the current optimum particles. PSO
searches for optimal fitness value and the corresponding particle by updating generations of
the particle xi(τ ) and its velocity vi(τ ) according to:

vi (τ + 1) = uvi (τ ) + c1r1 (pi (τ ) − xi (τ )) + c2r2
(
pg(τ ) − xi (τ )

)

xi (τ + 1) = xi (τ ) + vi (τ + 1)
(17)

where pi (τ ) is the local best particle that particle i has achieved so far and pg(τ ) is the global
best particle that all particles have achieved so far. c1 and c2 are acceleration constants and
r1 and r2 are uniformly distributed random numbers in [0,1]. The term vi (τ ) is limited to its
bounds. w is the inertia weight factor and in general, it is set according to:

w = wmax − wmax − wmin

T
· τ (18)

where wmax and wmin are maximum and minimum values of the weighting factor respec-
tively. T is the maximum number of iterations and τ is the current iteration number. The
velocity updating equation of each particle in (17) consists of three parts: the first part repre-
sents the degree of momentum of the particle, the second part is the “cognition” part, which
represents the independent behavior of the particle itself, the last part is the “social” part,
which denotes cooperation among particles. This iterative process will stop until the maximal
iteration number is reached or a sufficient good solution is found.
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3.2 PSO-Based Antenna Selection Method

From (17), we know that PSO is an iterative algorithm and continually exploits new and better
solutions by updating generations. In order to apply PSO in solving the antenna selection
problem, the two key parameters, i.e. the particle and its velocity, have to be determined first.
Since the velocity term vi of particle i is correlated with the current individual best particle
pi and the global particle pg , which can be obtained by evaluating this particle according to
the fitness (objective) function. Then the key point becomes how to define the particle and
the fitness (objective) function. Once these two issues have been solved, PSO-based antenna
selection can be implemented by updating the iterative generation.

3.2.1 The Definition of the Particle

From the evolutionary process of PSO, we know that each particle in PSO should be defined
closely related to the antenna subset. Denote the particles in PSO as xi = [

xi1 . . . xi D
]
,

i = 1 . . . Q, where D is the dimension of a particle and Q is the size of a randomly distrib-
uted initial population, then one direct approach is that the particle is defined as the antenna
selection operator, i.e. xi = �, D = Nr . However, this brings about the problem that the total
number of selected antennas may be different in the searching process and may not meet the
fixed numbers of L . To deal with this challenge, we relax the condition by xi j ∈ [0, 1], as in
Eq. (19). And in each particle the L larger values out of the Nr elements are picked out, which
means the L antennas with higher weight will be activated. By this way, a direct relationship
between each particle and the L selected antennas can be successfully established.

xi
Δ= �, 0 < xi j < 1, i = 1 . . . Q, j = 1 . . . Nr (19)

3.2.2 The Definition of the Fitness Function

In PSO, each particle is evaluated by the fitness function to reflect its quality. According to
the particle definition, the fitness function in the antenna selection scenario can be defined
as the capacity value corresponding to the specified antenna subsection, i.e.,

F(xi ) = log2 det(INr + γ
/

Nt · diag(xi ) · HHH ) (20)

It can be seen that this fitness function can readily reflect the capacity achieved by the speci-
fied antenna subset.The larger the fitness value, the better the corresponding particles is. With
the definition of the particle as well as the fitness function above, the detailed PSO-based
antenna selection method can be summarized as follows:

Step 1-Initialization. Randomly generate a total number of Q particles xi , i = 1 . . . Q
as well as their corresponding velocities vi .

Step 2-Evaluation. Evaluate the fitness value of each particle by using the fitness function
in (20). Set the local best particle pi = xi and select the particle xg with the highest fitness
value as the global best particle pg = xg .

Step 3-Evolution. Using pi (τ ) and pg(τ ), each particle and its velocity is evolved accord-
ing to (17) for the next iteration.

Step 4-Updating. Calculate the fitness values of all the particles. Then choose the current
local best particle pi (τ ) of particle i as the better one between xi (τ ) and pi (τ − 1) and
determine the current global best particle pg(τ ) by comparing the best of pi (τ ) at current
iteration with the global best particle at previous iteration pg(τ − 1).
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Step 5-Termination. Repeat the above Step 2 to Step 4 until a stopping criterion, such
as a sufficiently good solution being discovered or a maximum number of generations being
completed is satisfied. The global best one among all the particles is taken as the final answer.

4 Preliminary Numerical Experiments

In this section, in order to show the performance of the PSO algorithm more clearly, several
typical benchmark functions are presented. Besides, the GA algorithms is also simulated
for comparison. For PSO and GA, choose population size Q = 20 and the maximum num-
ber of iterations T = 100; The probability of selecting the best individual in GA is 0.1.
Crossover probability in GA is 0.8. Mutation probability in GA is 0.05. Acceleration con-
stant in PSO are chosen as c1 = c2 = 2.0. The inertia weight factor in PSO are chosen as
wmax = 0.9, wmin = 0.4. For convenience, the benchmark functions are defined in Table 1
and the dimensions of those benchmark functions in the experiment is chosen as D = 10
(Figs. 1, 2, 3, 4).

The first Schaffer function has a global minimum of 0 at (0, . . . , 0) and it is very close
to the local ones. The second Spherical function is a high dimensional unimodal function
with its global minimum at (0, . . . , 0), which is always employed as a measure to evaluate
the local optimal searching ability. The third Rosenbrock function is a non-convex function,
the global optimum of which is inside a long, narrow, parabolic shaped flat valley and the
gradients generally do not point towards the optimum. Since it is difficult to converge to the
global optimum, this problem has been extensively employed in evaluating the performance
of optimization algorithms. The fourth Ackley function is a tough multimodal optimization
problem, because the global minimum is surrounded by a large number of local minima, this
makes the algorithm reach the global peak without being stuck at one of these local minima
extremely difficult. The performance of the PSO method in comparison with GA tested by
those benchmark functions are show in Figs. 5, 6, 7 and 8 respectively. It can be clearly seen
that PSO achieves a much lower fitness value than that of GA as iteration proceeds. However,

Table 1 Benchmark functions used in the experiments

Function Formulation Range Min. value

Schaffer f1(x)

= 0.5 +
(

sin2

√
D∑

i=1
x2

i − 0.5

)

/⎡

⎣1.0 + 0.001

(
D∑

i=1
x2

i

)2
⎤

⎦

2

xi ∈ [−10,10] f1(0) = 0

Spherical f2 (x) =
D∑

i=1
x2

i xi ∈ [−100, 100] f2(0) = 0

Rosenbrock f3 (x)

=
D−1∑

i=1

[
100

(
xi+1 − x2

i

)2 + (xi − 1)2
] xi ∈ [−6, 6] f3(1) = 0

Ackley f4 (x) = −20

×exp

(

−0.2 ×
√

1
D

D∑

i=1
x2

i

)

− exp

(
1
D

D∑

i=1
cos (2πxi )

)

+ 20 + exp(1)

xi ∈ [−32, 32] f4(0) = 0
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Fig. 1 Graph of Schaffer function with D = 2

Fig. 2 Graph of spherical function with D = 2

it should be noted that, in Figs. 7 and 8, sometimes GA performs better than PSO in terms
of fitness values, this is because different types of bench functions may adapt to different
evolutionary mechanisms. Nevertheless, PSO provides better final results as iteration goes
on, which indicates that it has a more efficient exploitative behavior.

5 Simulation Results

In this section, simulations are provided to validate the PSO antenna selection method derived
previously. To demonstrate the performance of the PSO method, simulation results of the
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Fig. 3 Graph of Rosenbrock function with D = 2

Fig. 4 Graph of Ackley function with D = 2

optimal exhaustive search algorithm (ESA), the GA-based antenna selection method the
NBS scheme and the random selection algorithm (RSA) are also provided for comparison.
Performance is evaluated in terms of capacity averaged over 2,000 independent realizations
of the channel matrix. A single user MIMO system is considered and the correlated channel
model described in section 2 is adopted. For simplicity, assuming that the number of transmit
antenna keeps Nt = 4 unchanged, where L out of Nr receive antennas are selected to be
activated. Several scenarios, (Nr , L) = (8, 4), (12, 4), (16, 4), (20, 4) are investigated. For
fair comparison, the population size and the maximum number of iterations in GA are chosen
the same as PSO. For GA, choose the crossover probability 0.8, mutation probability 0.05
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Fig. 5 Comparison of the best value of Schaffer function in 100 runs for PSO and GA
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Fig. 6 Comparison of the best value of spherical function in 100 runs for PSO and GA

and the probability of selecting the best individual 0.1. Parameters of PSO in the simulation
are defined in Table 2 for easy reference.

Figure 9 shows the capacity curves versus SNR for different algorithms with Nr = 8
and L = 4. It can be discovered that, the ESA shows the best achievable capacity.
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Fig. 7 Comparison of the best value of Rosenbrock function in 100 runs for PSO and GA
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Fig. 8 Comparison of the best value of Ackley function in 100 runs for PSO and GA

The PSO achieves nearly the same performance as the ESA and the gap between them
can be neglected. PSO outperforms GA and NBS while GA performs better than NBS in
terms of capacity. The RSA shows the worst capacity performance among all these schemes.

123



1024 H. Yongqiang et al.

Table 2 Parameters definition
of PSO

Parameters Description and value

Population number Q = 10

Maximum iteration number T = 5

Inertia weight factor wmax = 0.9, wmin = 0.4

Acceleration constant c1 = c2 = 2.0
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ESA

PSO

GA
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Fig. 9 Capacity curves versus SNR for different algorithms with Nr = 8, L = 4

Figure 10 illustrates the BER versus SNR with various combination of ( Nr , L )using
PSO. It can be discovered when the number of the receive antennas Nr is fixed, the more
the number of the selected antennas, the better the BER performance is. Besides, when the
number of the selected antennas L is fixed, the more the number of the receive antennas, the
better the BER performance is. This indicates a fact that the the BER performance improved
by selection diversity can be achieved either by increasing Nr for fixed L or by increasing L
for fixed Nr .

Figure 11 displays the effect of iteration number on capacity with PSO for Nr = 8
and L = 4. The population number of PSO is fixed at Q = 10. As expected, substantial
improvement in capacity can be achieved as the iteration number increases. This is because
much better antenna subsets may be discovered after sufficient iterations. However, no obvi-
ous capacity improvement can be obtained when the iterations reaches certain number. For
example, the gap between the two capacity curves corresponding to iteration number 5 and
10 respectively in Fig. 11 is small. That is to say, the capacity obtained under 5 iterations is
also a close approximation alternative to that by ESA. This reveals a fact that we may seek
a proper maximal iteration number to get a desired capacity performance, depending on the
practical requirements.
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Fig. 10 BER curves versus SNR for different combinations of (Nr , L) with PSO, Q = 10, T = 5
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Fig. 11 The effect of different iteration numbers in PSO on capacity with Q = 10 and Nr = 8, L = 4

Figure 12 investigates the capacity convergence ratio versus the number of particles using
PSO where the number of the selected antennas is fixed at L = 4 and T = 5. Capacity
convergence ratio can be defined as the capacity obtained by ESA divided by the capac-
ity achieved by PSO. It can be discovered that, the more particles, the higher the capacity
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Fig. 12 Capacity convergence ratio versus number of particles in PSO with T = 5 and L = 4

convergence ratio is, which means the closer between the capacity of the proposed PSO-
based antenna selection algorithm and that of the ESA. Besides, as the number of particles
increases, the capacity convergence ratio also increases, nevertheless, this increase is getting
slow when the particle numbers reach up to some amount. Furthermore, it can be discovered
that when Nr = 8, L = 4 , a 99% of the optimal ESA capacity can be achieved by PSO with
Q = 10. But when Nr = 20, L = 4 a 95% of the optimal ESA capacity can be achieved
by PSO with Q = 10. This reveals a fact that when the number of selected antennas L is
fixed but the number of receive antennas has been increased, then more particles and iter-
ations are required if we want to obtain a high capacity convergence ratio. This is because
more possible combinations need to be considered with the increasing number of the receive
antennas, which directly enlarge the searching space of the antenna selection problem by
using PSO.

5.1 Complexity Evaluation

For PSO, the computational effort can be measured as the number of function evaluations,
namely, Q × T , where Q is the number of particles and T is the maximal iteration number.
This is because comparisons and data duplications can be totally negligible when compared
with the function evaluations. Since GA has a same procedure of evaluating the fitness values
of individuals as PSO in the iterative course, its computational complexity is also mainly
determined by the number of fitness function evaluations compared with the genetic(cross-
over,mutation) manipulation. Then as for the antenna selection problem mentioned above,
the ESA need to testify all the C L

Nr
combinations of antennas in order to find the best selected

antenna subset. Table 3 shows the complexity comparisons in terms of the number of function
evaluations for GA, PSO and ESA, under the constraint condition of achieving the required
capacity ratio (C − x/C − E S A), which is defined as the capacity obtained by ESA divided
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Table 3 Computational
complexity comparision for
several algorithms

(Nr , L) PGA PSO PSO ESA

(8,4) 60 50 60 70

(16,4) 300 200 300 1820

(20,4) 550 500 550 4845

C − x/C − E S A >90% >90% >95% 100%

by the capacity achieved by specified algorithm. Note that the two PSOs in Table 3 are the
same algorithm but with different required capacity ratio.

From Table 3, we can notice that the PSO algorithm has lower complexity and better per-
formance than the GA method. Compared with the GA, the PSO algorithm takes comparable
complexity to obtain better results which are with in 95% of the optimal capacity, while
the results obtained by GA are within 90% of the optimal capacity. However, if we relax
capacity performance requirements from 95 to 90%, the complexity of the PSO algorithm
will be reduced. Therefore, the PSO-based antenna selection algorithm has a great advantage
in balancing between capacity performance and complexity.

Taking the feasibility of practical application into account, the antenna selection strategies
mentioned above are evaluated on the hardware chip by the computational time, which mainly
concerns the number of floating-point calculations (FLOPS). A flexible wireless processing
equipment implemented by chip GC5322 with the TMS320C67x DSP family integrated as the
baseband processor is provided by the TI company [21], which is a highly versatile platform
targeted for the TD-SCDMA, WCDMA, HSPA, HSPA+, LTE, WiMAX and CDMA2000
wireless infrastructure market. Advanced features such as MIMO and beamforming can be
easily supported without the need for any hardware redesign. Take the advanced DSP chip
TMS320C6678 as an example, which has a processing capability of 320000 MMACS (mil-
lion of multiplications and additions per second). Consider the MIMO antenna selection
scenario mentioned above with Nr = 20 and L = 4. Assumed that the determinants on a
matrix of size M × N may roughly require max (M N 2, N M2, N 3) FLOPS. On the basis
of the complexity evaluation above, the ESA, PSO and GA roughly require 3.876 × 107,
4 × 106, 4.4 × 106 FLOPS respectively; Accordingly, the corresponding computational time
spent by these schemes are 121.125, 12.5, 13.75 (:us) respectively. In such scenario, the ESA
consumes the longest time, followed by the PSO spending much fewer time. However, if
high restrictions on time delay have been attached on the antenna selection algorithm, then
probably the ESA scheme with higher computational time may encounter some difficul-
ties. Alternatively, the PSO provides a viable approach by striking a better tradeoff between
capacity and computational time.

6 Conclusion

New PSO-based antenna selection strategy is proposed for the MIMO system, which uti-
lizes the particles searching ability to find the best antenna subset to maximize the system
capacity. Moreover, the particle has been attached the new definition of the indices of the
antenna subset and benchmark functions are employed to testify the performance of PSO.
Experiment results show that PSO may strike a much better balance between capacity per-
formance and computational complexity when compared with optimal ES method. As better
characteristic can be achieved, the proposed algorithm is expected to be applied to other
wireless communication problems.
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