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Abstract In wireless sensor networks (WSNs), all the data collected by the sensor nodes
are forwarded to a sink node. Therefore, the placement of the sink node has a great impact on
the energy consumption and lifetime of WSNs. This paper investigates the energy-oriented
and lifetime-oriented sink node placement strategies in the single-hop and multiple-hop
WSNs, respectively. The energy-oriented strategy considers only the minimizing of the total
energy consumption in the networks, while the lifetime-oriented strategy focuses much more
on the lifetime of the nodes which consume energy fastest. Using a routing-cost based ant
routing algorithm, we evaluate the performances of different placement strategies in the net-
works. Simulation results show that the networks with lifetime-oriented strategy achieve a
significant improvement on network lifetime.

Keywords Wireless sensor networks · Sink node placement · Network lifetime ·
Energy consumption

1 Introduction

Wireless sensor networks (WSNs) consist of large numbers of low-power and low-cost sensor
nodes which are deployed in a designated region. Each node can gather information within
its sensing range, and then transmits data to its neighboring nodes. The information collected
by all nodes is finally forwarded to the base station, which is called the sink node.

The deployment of communication nodes is one of most important factors that affect the
lifetime in WSNs. Recently, the research efforts pay much attention to the deployment of
sensor nodes (SNs) [1,2] and relay nodes (RNs) [3–6]. However, the deployments of SNs
and RNs are not easy to carry out since most of the communication nodes are out of our reach
and their distributions are uncontrollable. The sink node placement is easier to be controlled
and it is also essential for prolonging the network lifetime.
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In this paper, we focus on WSNs with a single static sink node. If the sensor nodes are
uniformly deployed in a regular geometric region, such as a circular region or a rectangular
region, the sink node will be placed at the center of the region. Most researches and simula-
tions were carried out based on this placement strategy. Efrat et al. [7] and Jun and Hubaux
[8] applied the P-Median Problem (PMP) model to determine the sink node placement, which
was proved to be non-deterministic polynomial-time hard (NP-hard). It has been proved in
[8] that the center of the circle is the optimal position for a base station in WSNs, but the
conclusion is only suitable for the uniform deployment of nodes. In [9], the sink node position
was chosen to maximize the combined weight of data flows so that the energy consumption
could be reduced. Pan et al. [10] proposed a generic two-tiered WSNs model and focused
on the topology of base-stations and application nodes. The network lifetime was evaluated
by the average bit-stream rate and the distance between all sensor nodes and the sink node.
However, the energy hole [11,12] in WSNs was not considered in the above-mentioned
papers. Luo et al. [13] used the PMP model to formulate the placement problem of multiple
sink nodes and implemented the solution with an iterative algorithm. However, the place-
ment of the sink nodes need to be predetermined for some selected points. The research in
[14] determined the sinks placement by calculating the number of sensor nodes whose data
were relayed by a neighboring node of the sink. The minimum of the objective function in
the strategy was then found to approximate the PMP model. However, this algorithm is not
steady in WSNs with dynamic routing protocol. Guney et al. [15] used mixed-integer linear
programming formulations to describe the integrated model of the sink location and routing
problem. The sensing field was divided into many grids and the nodes were arranged at the
grid points. The solution minimized the total energy consumption and balanced the data flow
in the networks, but it did not consider the residual energy of the sensor nodes and could not
work with dynamic routing.

In this paper, we propose some sink node placement strategies to prolong the network
lifetime in homogeneous WSNs. First, we introduce the energy-oriented and lifetime-ori-
ented placement strategies in single-hop WSNs. Second, we introduce the energy-oriented
and lifetime-oriented placement strategies in multi-hop WSNs. Finally, the performances
of different sink node placement strategies are evaluated combined with the routing-cost
based ant routing algorithm. The paper is organized as follows. Section 2 discusses the sink
node placement strategies in single-hop WSNs. Section 3 discusses the sink node placement
strategies in multi-hop WSNs. In Sect. 4, we simply analyze the routing-cost and use it to con-
struct the heuristic factor in the ant routing algorithm. In Sect. 5, we show the performances
of different sink node placement strategies. Finally a conclusion is drawn in Sect. 6.

2 Sink Node Placement Strategies in Single-Hop WSNs

In this section, we present a model of the networks, and provide two strategies to find an opti-
mal position for the sink node. The sink node placement problem is discussed in single-hop
WSNs, and then the objective function g (x, y) of energy-oriented strategy and lifetime-ori-
ented strategy are analyzed. Finally our goal is to minimize g (x, y).

2.1 Model and Definitions

Network Model

In this paper, we assume that there is only one static sink node in the networks, and the sensor
nodes with the same data generation rate are deployed randomly in a convex region S. We
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also assume that the distribution of sensor nodes meets both the coverage and the connectivity
requirements of the networks.

Energy Model

For the energy model, we only consider energy consumption for data transmitting and receiv-
ing. Let ET X (d) and ER X denote energy consumption of transmitting and receiving 1-bit
data, respectively. The first order radio model in [16] is adopted, and we have

ET X (d) = Eelec + εampd2 (1)

ER X = Eelec (2)

where d is the transmitting distance, Eelec is the energy consumed by the transmitter or the
receiver, and εamp is the amplification coefficient.

Network Lifetime

There are different definitions of the network lifetime proposed in [17,18]. Here we choose
the n-of-n lifetime metric adopted in [18], that is, the network lifetime ends as soon as the
first node fails.

2.2 Energy-Oriented Strategy

Let N denote the number of sensor nodes, and node i (i = 1, 2, . . . , N ) is deployed inde-
pendently at (Ui , Vi ) in the region S with a probability density function f (u, v). In some
small scale WSNs, each node sends message to the sink directly. We should choose an
optimal position (x, y) for the sink, so that the expected value of total transmitting energy
consumption in the networks reaches minimum. The objective function is given by

g (x, y) = E

[
N∑

i=1

ET X (Di )

]
(3)

where Di is a random variable, and it means the distance between (x, y) and (Ui , Vi ), that is

Di = d (x, y, Ui , Vi ) =
√

(x −Ui )
2 + (y − Vi )

2 (4)

Because (Ui , Vi ) (i = 1, 2, . . . , N ) is independent, applying (1), (3) and (4), we have

g (x, y) = E

[
N∑

i=1

ET X

(√
(x −Ui )

2 + (y − Vi )
2
)]

= N
∫ ∫

(u,v)∈S
ET X

(√
(x − u)2 + (y − v)2

)
f (u, v) dudv

= N
∫ ∫

(u,v)∈S

{
Eelec + εamp

[
(x − u)2 + (y − v)2]} f (u, v) dudv (5)

Finally, the aim is to find minimization of g (x, y). Here we can use the particle swarm
optimization (PSO) algorithm [19] to find the optimal placement. Another way to solve the
problem is shown as follows. We can differentiate (5) with respect to x and y, and then set
the result to 0, that is

∂g/∂x = 0, ∂g/∂y = 0 (6)

123



306 F. Chen, R. Li

Fig. 1 S is a convex polygon in
lifetime-oriented strategy

We have∫ ∫
(u,v)∈S

2εamp (x−u) f (u, v) dudv= 0,

∫ ∫
(u,v)∈S

2εamp (y−v) f (u, v) dudv= 0

(7)

Therefore, the solution can be computed as follows.

x =
∫ ∫

(u,v)∈S
u f (u, v) dudv, y =

∫ ∫
(u,v)∈S

v f (u, v) dudv (8)

It means that the optimal placement of the sink is the center of gravity of region S.

2.3 Lifetime-Oriented Strategy

When the sink node is placed at the center of gravity, the total energy consumption is minimal.
However, the sensor nodes consume energy in different speeds. The node which is farthest
from the sink consumes energy fastest and has a shortest lifetime. Our goal of this strategy is
to find a proper position for the sink node, which minimizes the fastest energy consumption
in S. It can be formulated as

g (x, y) = max
(u,v)∈S

ET X

(√
(x − u)2 + (y − v)2

)
= max

(u,v)∈S

{
Eelec + εamp

[
(x − u)2 + (y − v)2]} (9)

Because the sensor nodes are deployed randomly, (9) means that we should first find the
farthest point from the sink in S.

When S is a convex region, it is obvious that the farthest point belongs to the boundary
of the region. In particular, when S is a convex polygon (see Fig. 1), we assume that X is the
coordinate of the sink; A and B are two adjacent vertices of S; U (U�=A and U�=B) is a point
on the boundary AB. In Fig. 1, we have φ ≥ 90◦ or ϕ ≥ 90◦, that is, XA or XB is longer than
XU. Therefore, when S is a polygon, the farthest point from the sink is one of the vertices.

Finally, we set g (x, y) to be the farthest distance between the sink and the boundary point
of S, and use the PSO algorithm to find the minimum of the object function.

3 Sink Node Placement Strategies in Multi-Hop WSNs

A multi-hop case is much more popular than a single-hop case in WSNs. However, the
solution is more complicated.
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In WSNs, there are two methods to estimate the total energy consumption of the networks
per unit of time.

The first method is carried out by adding the energy consumption of each node. The
amount of data transmitting and data receiving of each node per unit of time is estimated.
Then (1) and (2) are used to compute the energy consumption of each node, and finally the
total energy consumption per unit of time of all nodes can be estimated.

In the second method is carried out by adding the energy consumption of each route.
Firstly, the data generation rate of each node is estimated. Then the energy consumption per
unit of time on the route from each source node to the sink is computed. Finally, the total
energy consumption per unit of time is the sum of the energy consumption of each route.

Since the nodes are deployed randomly, it is difficult to compute energy consumption of
the sensor nodes. In this paper, the placement strategies are analyzed based on the second
method. We give approximate solutions for the energy-oriented strategy and the lifetime-
oriented strategy, which are different from solutions in the sing-hop WSNs.

3.1 Energy-Oriented Strategy

Vincze et al. [14] has made a simple analysis of the energy-oriented strategy in multi-hop
WSNs. In this section we only depict the same strategy in a stochastic distribution case.

Applying (1) and (2), we can compute the energy consumption of node when it forwards
1-bit data in an h hops route.

δm =
{

ET X (dm) = Eelec + εampd2
m, m = 0

ER X + ET X (dm) = 2Eelec + εampd2
m, m = 1, 2, . . . , h − 1

(10)

where dm is the transmitting distance of the mth hop, and δm is 1-bit energy consumption
of data forwarding. In (10), the source node (m = 0) transmits the data, while other relay
nodes (m = 1, 2, . . . , h − 1) receive and then transmit the data. The energy consumption of
the sink node is neglected.

Applying (10), we can compute the total energy consumption �i in the networks when
the source node i transmits 1-bit data to the sink.

�i = (2Hi − 1) Eelec + εamp

Hi−1∑
m=0

D2
im (11)

where Dim and Hi are random variables of transmitting distance and hops, respectively.
However, it is difficult to compute (11) precisely in WSNs with random distribution, so

two approximations are given as follows.

(1) The hops of the route are proportion to the distance between the source node and the
sink, that is

Hi = cDi (12)

where Di is the distance between the source node i and the sink, and c(c > 0) is a
constant.

(2) The expected value of D2
im is a constant, and it is independent of Hi , that is

E D2
im = σ (13)

where σ(σ > 0) is a constant.
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According to the network model, each sensor node has the same probability density func-
tion f (u, v). Therefore, in the energy-oriented strategy, g (x, y) can be depicted as

g (x, y) = E

[
N∑

i=1

�i

]
= E

⎧⎨
⎩

N∑
i=1

⎡
⎣(2Hi − 1) Eelec + εamp

Hi−1∑
m=0

D2
im

⎤
⎦
⎫⎬
⎭

=
N∑

i=1

(
2Eelec E Hi + εamp E D2

im E Hi − Eelec
)

= (
2Eelec + εampσ

)
NcE Di − N Eelec (14)

We notice that
(
2Eelec + εampσ

)
Nc > 0, so g (x, y) can be simplified as

g (x, y) = E Di =
∫ ∫

(u,v)∈S

√
(x − u)2 + (y − v)2 f (u, v) dudv (15)

The PSO algorithm can be used to find the optimal place of the sink. The iterative method
can also solve the problem [20]. (15) is differentiated with respect to x and y, and the result
is set to be 0, that is⎧⎨

⎩
N
∫ ∫

(u,v)∈S
2(x−u)√

(x−u)2+(y−v)2
f (u, v) dudv = 0

N
∫ ∫

(u,v)∈S
2(y−v)√

(x−u)2+(y−v)2
f (u, v) dudv = 0

(16)

Finally, the iterative formulae are⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x ←
∫ ∫

(u,v)∈S
u f (u,v)√

(x−u)2+(y−v)2
dudv∫ ∫

(u,v)∈S
f (u,v)√

(x−u)2+(y−v)2
dudv

y ←
∫ ∫

(u,v)∈S
v f (u,v)√

(x−u)2+(y−v)2
dudv∫ ∫

(u,v)∈S
f (u,v)√

(x−u)2+(y−v)2
dudv

(17)

3.2 Lifetime-Oriented Strategy

The above solution finds the placement which makes the energy consumption minimal. How-
ever, it is usually not the optimal solution for the lifetime in WSNs. For example, when the
coordinate of the solution is in an area where the sensor density is very low, it means that
there will not be enough sensor nodes near the sink to relay the data and thus the network
lifetime will be shorter. We prefer to choose a placement in an area where the sensor density
is higher even if the energy consumption in the networks is not minimal.

Let Rc denote the communication range of the node, and region Si is the communication
region of the sink node, that is

Si =
{

(u, v)| (u, v) ∈ S,

√
(u − x)2 + (v − y)2 ≤ Rc

}
(18)

Region So is defined as So = S − Si .
Considering the solution of energy hole problem in [1], the number of sensor nodes in Si

must be more than that in So in order to achieve the subbalanced energy depletion. However,
in most of the time, the deployment of sensor nodes cannot follow a geometric distribution,
so the sensor nodes in Si usually fail faster. The objective function should take into account
both the total energy consumption and the sensor density near the sink. According to the
energy-oriented strategy, we should make the total distance between all sensor nodes and the
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sink as short as possible to reduce the energy consumption. On the other hand, the networks
should have enough sensor nodes in Si to prolong the network lifetime. Therefore, g (x, y)

in the lifetime-oriented strategy can be described as follows.

g (x, y) = E

[∑N
i=1 Di

M (x, y)

]
(19)

where the random variable M (x, y) is the amount of sensor nodes in Si .
If the connectivity of the networks is fulfilled, there must be at least one sensor deployed

in Si , that is, M (x, y) ≥ 1. The probability that a sensor is deployed in Si can be written as

p =
∫ ∫

(u,v)∈Si

f (u, v) dudv (20)

where q = 1− p is the probability that the sensor is deployed in So.
The conditional probability density function of the node which is deployed in Si can be

given as

fi (u, v) = f (u, v| (u, v) ∈ Si ) =
{

f (u,v)∫ ∫
(u,v)∈Si

f (u,v)dudv
= f (u,v)

p , (u, v) ∈ Si

0, others
(21)

The conditional probability density function of the node which is deployed in So can be
given as

fo (u, v) = f (u, v| (u, v) ∈ So) =
{

f (u,v)∫ ∫
(u,v)∈So

f (u,v)dudv
= f (u,v)

q , (u, v) ∈ So

0, others
(22)

Because M (x, y) ≥ 1, without loss of generality, we assume that node 1 must be deployed
in Si and is subject to fi (u, v). Therefore, the probability that there are (i + 1) (i =
0, 1, . . . , N − 1) sensor nodes deployed in Si is

pi = P (M (x, y) = i + 1) = Ci
N−1 pi q N−1−i (23)

Let A (x, y) and B (x, y) denote the expected value of Di (i = 1, 2, . . . , N ) in Si and So,
respectively, that is

A (x, y) = E [ Di | (Ui , Vi ) ∈ Si ]

=
∫ ∫

(u,v)∈Si

√
(x − u)2 + (y − v)2 fi (u, v) dudv

= 1

p

∫ ∫
(u,v)∈Si

√
(x − u)2 + (y − v)2 f (u, v) dudv (24)
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B (x, y) = E [ Di | (Ui , Vi ) ∈ So]

=
∫ ∫

(u,v)∈So

√
(x − u)2 + (y − v)2 fo (u, v) dudv

= 1

q

∫ ∫
(u,v)∈So

√
(x − u)2 + (y − v)2 f (u, v) dudv (25)

When M (x, y) = m(m ≥ 1), the conditional expectation in (19) is given by

E

[ ∑N
i=1 Di

M

∣∣∣∣∣ M = m

]
= E

[ ∑
(Ui ,Vi )∈Si

Di +∑
(Ui ,Vi )∈So

Di

M

∣∣∣∣∣ M = m

]

= m E [ Di | (Ui , Vi ) ∈ Si ]+ (N − m) E [ Di | (Ui , Vi ) ∈ So]

m

= A + N − m

m
B (26)

where M, A and B are the abbreviation of M (x, y) , A (x, y) and B (x, y), respectively.
Applying (26), the objective function (19) can be computed as follows.

g (x, y) = p0 E

[ ∑N
i=1 Di

1

∣∣∣∣∣ M = 1

]
+ p1 E

[ ∑N
i=1 Di

2

∣∣∣∣∣ M = 2

]
+ · · ·

+pN−1 E

[ ∑N
i=1 Di

N

∣∣∣∣∣ M = N

]

=
N−1∑
i=0

pi E

[ ∑N
i=1 Di

M

∣∣∣∣∣ M = i + 1

]
=

N−1∑
i=0

pi

[
A + N − (i + 1)

i + 1
B

]
(27)

Substitute (23) into (27), and we notice that p + q = 1. Then

g (x, y) = A
N−1∑
i=0

Ci
N−1 pi q N−1−i + B

N−1∑
i=0

N − i − 1

i + 1
Ci

N−1 pi q N−1−i

= A + q B

p

N−1∑
i=1

Ci
N−1 pi q N−1−i

= Ap + Bq

p
− B

q N

p
(28)

Substitute (24) and (25) into (28), and we have

g (x, y) = p−1
[∫ ∫

(u,v)∈Si

√
(x − u)2 + (y − v)2 f (u, v) dudv

+
∫ ∫

(u,v)∈So

√
(x − u)2 + (y − v)2 f (u, v) dudv

]

−p−1q N−1
∫ ∫

(u,v)∈So

√
(x − u)2 + (y − v)2 f (u, v) dudv

= p−1
∫ ∫

(u,v)∈S

√
(x − u)2 + (y − v)2 f (u, v) dudv

−p−1q N−1
∫ ∫

(u,v)∈So

√
(x − u)2 + (y − v)2 f (u, v) dudv
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= p−1 E Di − p−1q N E [ Di | (Ui , Vi ) ∈ So] (29)

Finally, g (x, y) can be computed by (20), (25) and (29). Then the PSO algorithm is used
to find the optimal solution.

4 Ant Routing Algorithm

In Sect. 3, it is mentioned that the sensor nodes are deployed in the region with a probability
density function f (u, v) in the multi-hop WSNs. It means that the node densities may be
heterogeneous in different directions of the sink. For example, when the left node density of
the sink is larger than the right side, the problem is that whether the energy is consume faster
in the right side so that the network lifetime becomes shorter, even the amount of sensor
nodes in Si is large enough. Therefore, it is important that the route can avoid the nodes with
less residual energy, and the networks can achieve energy balance in different directions and
make full use of all the energy in Si .

There are many classical routing algorithms in WSNs, such as Directed Diffusion algo-
rithm in [21], LEACH algorithm in [16], and so on. According to the above sections, we
prefer a flat routing algorithm which chooses a route according to the energy distribution
in the networks. The ant routing algorithm constructed by the residual energy of the sensor
nodes or hops information is adopted in this paper [22,23]. First of all, we improve the ant
routing algorithm in WSNs, so that it can reflect the route characteristics more objectively.

4.1 Basic Ant Colony Algorithm

The basic ant colony algorithm can be simply described by two rules, that is, the node tran-
sition rule and the updating rule [24].

The node transition rule defines the probability pk
i j to select node j as the next hop when

the forward ant k locates in node i .

pk
i j =

⎧⎨
⎩

[τi j ]α[ηi j ]β∑
l∈Nk

i
[τil ]α [ηil ]β

, j ∈ N k
i

0, others
(30)

where N k
i is the set of neighboring nodes which have not been visited. τil (l ∈ N k

i ) is a phero-
mone value on the link (i, l), and ηil is a heuristic factor. α and β are parameters that control
the relative importance of τil and ηil .

When node i receives a backward ant from its neighboring node j , it uses pheromone
updating rule to update the pheromone information. In this paper we adopt the updating rule
in AntNet [25]. As the pheromone of node j increases, the pheromone of other neighboring
node evaporates in the following manner:

τi j ←
{

τil + ρ (1− τil) , l = j
τil − ρτil , l ∈ N k

i , l �= j
(31)

where ρ is an evaporation coefficient.

4.2 Routing-Cost Based Ant Routing Algorithm

We assume that the energy consumption of the sink node can be neglected. The networks
select a route of h hops to transmit data from source to destination, and each node in this
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route consumes energy to forward message. Therefore, the cost of forwarding the message
should be determined by the energy information of h nodes on the route.

Here we provide some definitions to compute the routing-cost.
Value of node Vm :

Vm = 1

Em
(32)

where Em is the residual energy of the node of the mth hop. In WSNs, the node with less
energy has more value. In other words, as time passes by, the value of the node increases.

Node cost of data forwarding ωm :

ωm = 1

Em − δm
− 1

Em
= δm

Em (Em − δm)
(33)

where δm is 1-bit energy consumption of data forwarding, which is defined in (10). Node cost
is defined as the difference between the node value after data forwarding and the node value
before data forwarding. The node with less energy will cost more value to forward data.

Routing-cost of data forwarding γ :

γ =
h−1∑
m=0

ωm =
h−1∑
m=0

δm

Em (Em − δm)
≈

h−1∑
m=0

δm

E2
m

(34)

Routing-cost is the sum of all the node cost on the route. Because energy consumption of
data forwarding is often far less than the residual energy, that is δm << Em , the equation
can be simplified as (34).

From (34) we can notice that the nodes with less energy on the route have much more
impact on the routing-cost. The cost of data forwarding increases as a route of less energy or
a route of more hops is chosen. In accordance with routing-cost, the networks can choose a
route of fewer hops, and make a detour to avoid the low energy area.

Finally, the heuristic factor ηi j can be constructed by γ−1.

ηi j =
γ−1

j∑
l∈N k

i
γ−1

l

=

⎡
⎢⎣∑h j−1

m=0
δ

Rl
m(

E
R j
m

)2

⎤
⎥⎦
−1

∑
l∈N k

i

[∑hl−1
m=0

δ
Rl
m(

E
Rl
m

)2

]−1 (35)

where Rl is the optimal route from neighboring node l to the sink, and γl is the routing-cost

of Rl . δ
Rl
m and E

R j
m are the 1-bit energy consumption and residual energy on the mth hop

of Rl , respectively. Therefore, the route with less routing-cost can be selected with a larger
probability.

Finally (30) and (35) are used to construct the ant routing algorithm in WSNs.

5 Performance Evaluation

In this section, we evaluate the sink node placement strategies in the sing-hop WSNs and
multi-hop WSNs, respectively. The routing-cost based ant colony routing algorithm is adopted
in the multi-hop case. Here we set α = 1 and β = 3 in (30) to adapt to the dynamic energy
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distribution. Evaporation coefficient ρ is set to be a moderate value of 0.5. In the following
simulations, we assume that the initial energy of each sensor node is 1 J. Eelec and εamp in
the energy model (1) and (2) are set to be 50 nJ and 100 pJ/m2, respectively.

In the objective functions (5), (9), (15) and (29), it is usually not easy to compute the
integration, even if f (u, v) is very simple and S is a regular figure. An approximate solution
should be found for g (x, y).

We divide the sensing region S into grids, and there are Ng crossover points. The weight
of each point (uk, vk) (k = 1, 2, . . . , Ng) is f (uk, vk). Here we take the objective function
(29) for example. The discrete function can be expressed as

g (x, y) = p−1
Ng∑

i=1

[
(x − ui )

2 + (y − vi )
2] f (ui , vi )

−p−1q N−1
∑

(ui ,vi )∈So

[
(x − ui )

2 + (y − vi )
2] f (ui , vi ) (36)

where p and q can be computed as follows.

p =
∑

(u,v)∈Si

f (ui , vi ) (37)

q =
∑

(u,v)∈So

f (ui , vi ) (38)

Simulation 1

100 sensor nodes are deployed randomly in a square of 400×400m2. The probability density
function shown by (39) complies with triangular distribution in u direction, and it is a uniform
function in v direction. Each sensor connects to the sink directly, that is, the networks work
on single-hop mode.

f (u, v) =
{

3.125× 10−8 × u, 0 < u, v ≤ 400
0, others

(39)

We compute the minimum of (5) and (9). The optimal sink node placements are at
(267,200) for the energy-oriented strategy, and at (200,200) for the lifetime-oriented strategy.
Each strategy runs 5 times with different random seeds for the distribution. Here we choose
the average energy consumption and the network lifetime as performance metrics. Figure 2
shows the simulation results in the single-hop case. The average residual energy of the net-
works at different simulation time in Run 1 is presented by Fig. 2a, and the network lifetime
of each run is shown in Fig. 2b. From these figures, we make the following observations.
As we predicted, the energy consumption of energy-oriented strategy is lower than that of
lifetime-oriented strategy in Fig. 2a. In Fig. 2b, the simulation data are different in each run
because of the random distribution, while the networks with the lifetime-oriented strategy
always have a longer lifetime. Moreover, in most cases, the lifetime-oriented strategy achieves
more than 30% improvement in lifetime when compared with the energy-oriented strategy.
Therefore, the simulation shows the better performance of the lifetime-oriented strategy in
terms of the network lifetime in the single-hop WSNs.
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Fig. 2 Performances of two sink
node placement strategies in
single-hop case Eq. (39).
(a) Average of residual energy,
(b) network lifetime

(a)

(b)

Simulation 2

370 sensor nodes are deployed randomly in a square of 600×600m2. The probability density
function is shown by (40). The source nodes transmit data to the sink node in a multi-hop
way.

f (u, v) =

⎧⎪⎪⎨
⎪⎪⎩

1
33 × 10−4, 0 ≤ u ≤ 250 and 0 ≤ v ≤ 600
1
66 × 10−4, 250 < u ≤ 350 and 0 ≤ v ≤ 600
1
33 × 10−4, 350 < u ≤ 600 and 0 ≤ v ≤ 600
0, others

(40)

We find the minimum of (15) and (29). The optimal placements are at (300,300) for the
energy-oriented strategy, and at (421,300) for the lifetime-oriented strategy. (40) shows that
the node density near (300,300) is lower than that near (421,300). Moreover, the node den-
sities are heterogeneous in different directions of the sink, therefore, the routing-cost ant
routing algorithm is chosen here to make full use of all the energy in Si . Figure 3 shows
the energy and lifetime performances of different placement strategies in the multi-hop case.
Figure 3a shows that in the simulation time [0,100], the networks with lifetime-oriented strat-
egy consume energy slightly faster than the networks with energy-oriented strategy, while
the difference between the two curves increases after 100 s. The nodes of energy-oriented
strategy in Si fail faster after 100 s, and the networks have to drop more packets; on the
contrary, the nodes of lifetime-oriented strategy in Si fail slower, and the networks will con-
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Fig. 3 Performances of two sink
node placement strategies in
multi-hop case Eq. (40).
(a) Average of residual energy,
(b) network lifetime

(a)

(b)

sume more energy to finish the communication. Figure 3b shows the network lifetime of the
two placement strategies. Compared with the energy-oriented strategy, the lifetime-oriented
strategy prolong the lifetime by more than 20% in each run. The improvement of lifetime
performance is attributed to the high node density in Si .

Simulation 3

300 sensor nodes are deployed randomly in a square of 600× 600m2. The probability den-
sity function is shown in (41). The node density increases as u increases. The source nodes
transmit data to the sink node in a multi-hop way.

f (u, v) =
{ u

324 × 10−6 + 1
54 × 10−4, 0 < u, v ≤ 600

0, others
(41)

In Simulation 3 we compare the performances of different sink node placements. This
simulation shows the trade-off between total energy consumption and sensor density near
the sink node in the multi-hop case. Figure 4 illustrates energy consumption and the network
lifetime of three sink node placements, that is, the center of the sensing region, the place-
ment computed by energy-oriented strategy and the placement computed by lifetime-oriented
strategy. The corresponding coordinates of these three positions are (300,300), (343,300) and
(417,300). In Fig. 4a, the difference of energy consumption between the three strategies is
slight, and is similar to the result of Simulation 2. The energy-oriented strategy has the best

123



316 F. Chen, R. Li

Fig. 4 Performances of three
sink node placement strategies in
multi-hop case Eq. (41).
(a) Average of residual energy,
(b) network lifetime

(a)

(b)

Fig. 5 The network lifetime of
different positions in multi-hop
case (y = 300 m) Eq. (41)

energy performance. In the first 120 s, the networks with lifetime-oriented strategy consume
energy slightly faster than the networks with energy-oriented strategy; while after 120 s,
the difference between these two curves increases because the networks with lifetime-ori-
ented strategy drop fewer packets and consume more energy to finish the communication.
In Fig. 4b, it is clear that the lifetime-oriented strategy has the best lifetime performance,
and in most cases, it shows more than 30% improvement compared with the center strategy.
The energy-oriented strategy just has a slightly better lifetime performance than the center
strategy.

Figure 5 shows the network lifetime when the sink node is placed at different positions
in Simulation 3. Here we change the x-coordinate of the sink node from 0 to 600 m, and
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simulate the networks every 50 m. The y-coordinate is set to be 300 m constantly. According
to the x-coordinates decided by the two placement strategies, that is, (343,300) and (417,300),
the curve in Fig. 5 can be divided into three parts. First, we notice that from 0 to 343 m of
the x-coordinate, the total energy consumption decreases and the sensor density increases,
therefore the network lifetime increases. Second, when the sink moves from 343 to 417 m
of the x-coordinate, both the total energy consumption and the sensor density increase. Due
to the high sensor density, the network lifetime increases too. Third, when the sink moves
from 417 to 600 m of the x-coordinate, the lifetime decreases even if the sensor density
increases in this range. This is because the energy consumption of the networks increases as
the x-coordinate of the sink node keeps far away from 343 m. We can notice that the optimal
placement in Fig. 5 is consistent with the solution of the lifetime-oriented strategy.

6 Conclusions

In this paper we have explored the sink node placement problem and proposed strategies to
find the optimal position from a perspective of the network lifetime in the single-hop WSNs
and multi-hop WSNs, respectively. We adopt a routing-cost based ant routing algorithm to
simulate the networks. The simulations show that the lifetime-oriented strategy generally
outperforms the energy-oriented strategy in terms of network lifetime. In addition, simula-
tion results suggest that the sink node placement strategy in the multi-hop WSNs should
seeks a trade-off between the total energy consumption and the sensor density in Si , so that
the network lifetime can reach maximum.

The lifetime-oriented strategy shows significant advantage of prolonging the network
lifetime in single-sink WSNs. However, the research on multi-sink WSNs is more compli-
cated and needs further investigation.
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