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Abstract The fractional Fourier transform (FRFT), which is considered as a generalization
of the Fourier transform (FT), has emerged as a very efficient mathematical tool in signal
processing for signals which are having time-dependent frequency component. Many prop-
erties of this transform are already known, but the generalization of convolution theorem of
Fourier transform for FRFT is still not having a widely accepted closed form expression. In
the recent past, different authors have tried to formulate convolution theorem for FRFT, but
none have received acclamation because their definition do not generalize very appropriately
the classical result for the FT. A modified convolution theorem for FRFT is proposed in
this article which is compared with the existing ones and found to be a better and befitting
proposition.

Keywords FRFT · Time-frequency plane · Convolution

1 Introduction

The fractional Fourier transform (FRFT) was introduced way back in 1920s, but remained
largely unknown until the work of Namias in 1980 [1]. The fractional Fourier transform can
be viewed as the chirp-basis expansion directly from its definition, but essentially it can be
interpreted as a rotation in the time-frequency plane, i.e. the unified time-frequency trans-
form. With the order increasing from 0 to 1, the fractional Fourier transform can show the
characteristics of the signal changing from the time domain to the frequency domain i.e.,
FRFT is a generalization of Fourier transform (FT). The FRFT has an advantage over other
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Integral Transforms (IT), being used in the application areas like—signal processing and
optics [2–6].

Many properties of FRFT are derived, developed or established in the recent past
[2,3,7–10], which includes multiplication property, differentiation property, shifting prop-
erty, modulation property, and convolution theorem etc. Since the convolution theorem plays
an important role in digital signal processing so it is extensively investigated for the refinement
of a well accepted closed-form expression.

In mathematics, the convolution theorem states that under suitable conditions the Fou-
rier transform of a convolution of two signals is the point wise product of respective Fourier
transforms of both the signals. In other words, convolution in one domain (e.g., time domain)
equals point-wise multiplication in the other domain (e.g., frequency domain). The usefulness
of convolution theorem can be best explained by its application in filtering. Since filtering can
be performed both way i.e., time domain filtering and frequency domain filtering. Simulta-
neously, if the computational complexity is a basis parameter then it can be shown that under
different input conditions one type of filtering has advantage over other and vice-versa [4].

For non-stationary signals and noise, the time and frequency domain filtering both fails
because the signal and noise may have their respective Wigner distribution overlapping to
each other in time and frequency domains. In this case, fractional Fourier based filtering can
provide a better solution, where for a rotated domain in time-frequency plane corresponding
to an optimum value of angle parameter, the Wigner distribution of signal and noise may be
separated and filtering of the signal from the noise can be performed by designing a filter in
FRFT domain with this optimum angle parameter value [2].

For designing such a FRFT domain filter, the convolution theorem for the FRFT should
be known. In literature many definitions of convolution theorem for FRFT is being proposed
such as by Almeida [7], Zayed [8], Deng et al. [9] and Wei et al. [10].

In this article, modified expressions for the convolution and product theorems are pro-
posed which are different from those given in [7–10]. The modified definitions preserve all
the properties of classical convolution and product theorems. An attempt is also made to
establish a comparative study, in terms of variable dependability, FT conversion and com-
putational error. It has been established that the proposed convolution and product theorems
are the better proposition and can be considered as generalization of classical convolution
and product theorems.

2 FRFT and Convolution Theorem

The FRFT of a signal x(t) with angle parameter ‘α’, represented by Xα(u) is defined for
entire time-frequency plane as

Xα(u) =
⎛
⎜⎝

√
1− j cot α

2π

∫ ∞
−∞ x(t)e

j
2 {(t2+u2) cot α−2tu csc α}dt, if α �= kπ

x(u), if α = 2kπ

x(−u), if α = (2k + 1) π

(1)

Classically, the convolution theorem of the FT for the signals x(t) and y(t) with associated
Fourier transforms, X (ω) and Y (ω), respectively is given by

123



On Convolution and Product Theorems for FRFT 191

x(t) ⊗ y(t) =
∞∫

−∞
x(τ )y(t − τ)dτ ↔ √

2π X (ω)Y (ω) (2)

where ‘⊗’ denotes the linear convolution operation.
This theorem states that convolution of two signals in time domain results in simple multi-

plication of their Fourier transforms in frequency domain. This convolution theorem satisfies
all the property that a convolution theorem of an integral transform should satisfy—Commu-
tative property, Associative property, and Distributive property. The convolution and product
theorems for FRFT have been suggested by many researchers in the past. The chronological
development in this dimension is given in the following paragraph.

In 1997, Almeida [7] gave a definition by considering two functions, x, y ∈ L1(R) ∩ W .
A convolution theorem for these two functions in FRFT domain is given by

z(t) = (x ⊗ y)(t) =
∞∫

−∞
x(τ )y(t − τ)dτ ↔

(3)

Zα(u) = |sec α|e− j
(

u2
2

)
tan α

∞∫

−∞
Xα(v)y[(u − v) sec α]e j

(
v2
2

)
tan α

dv

The FRFT of a convolution (i.e., (x ⊗ y)(t)) can be obtained by multiplying a chirp to
the FRFT of one of the signals and convolving it with a scaled version of the other signal,
subsequently multiplying again by another chirp and a scale factor, as evident from (3). And
product theorem is given by

z(t) = x(t)y(t) ↔ Zα(u) = |csc α|√
2π

e
j
(

u2
2

)
cot α

×
∞∫

−∞
Xα(v)Y [(u − v) csc α]e− j

(
v2
2

)
cot α

dv (4)

where Y (u) is Fourier transform of y(t).
After one year, Zayed [8] has documented a different method to calculate FRFT of the

convolution of two signals. In this method, the chirp and scale factor are multiplied to the con-
volution of chirp multiplied signals as given in (5). Subsequently, the FRFT of the obtained
convolution is derived which is entirely in the FRFT domain.

z(t) = (x∗y)(t) =
√

1 − j cot α

2π
e− j

2 t2 cot α

×
∞∫

−∞
x(τ )e

j
2 τ 2 cot α y(t − τ)e

j
2 (t−τ)2 cot α dτ

↔ Zα(u) = e− j
2 u2 cot α Xα(u)Yα(u) (5)
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And product theorem given by Zayed [8] was

z(t) = x(t)y(t)e− j
2 t2 cot α ↔ Zα(u) =

√
1 + j cot α

2π
e− j

2 u2 cot α

×
∞∫

−∞
Xα(v)e− j

2 v2 cot αYα(u − v)e− j
2 (u−v)2 cot αdv (6)

After Zayed [8], it took almost 8 years to propose a different definition of convolution
theorem in FRFT domain by Deng et al. [9] in 2006. Actually the definition was given for
linear canonical transform (LCT) and it can easily be shown that definition of convolution
theorem for FRFT is just a particular case of what is given for LCT. Here both convolution
and product theorems are shown for FRFT.

The convolution theorem given by Deng et al. [9] is

z(t) = (x ∗ y)(t) =
√

1 − j cot α

2π
e− j

2 t2 cot α

∞∫

−∞
x(τ )e

j
2 τ 2 cot α y(t − τ)e

j
2 (t−τ)2 cot αdτ

↔ Zα(u) = e− j
2 u2 cot α Xα(u)Yα(u) (7)

And product theorem is given by

z(t) = x(t)y(t) ↔ Zα(u) = |csc α|√
2π

e
j
(

u2
2

)
cot α

×
∞∫

−∞
Xα(v)Y [(u − v) csc α]e− j

(
v2
2

)
cot α

dv (8)

Later on in year 2009, a different definition of convolution theorem in LCT domain is
given by Wei et al. [10]. Prior to defining convolution theorem, author defines a τ -generalized
translation of signal y(t) denoted by y(tθτ) where

y(tθτ) =
∞∫

−∞
Yα(u)Kα(u, τ )K ∗(u, t)du (9)

where K and K ∗ represent FRFT and IFRFT kernel respectively. Based on this generalized
function convolution theorem is defined as

( f ◦ g)(t) =
∞∫

−∞
x(τ )y(tθτ)dτ ↔ Xα(u)Yα(u) (10)

In this way the convolution and product theorems were proposed and developed. During
the examination of these propositions the following observations are made

(a) The definition given by Almeida [7] has failed to convert into its Fourier transform
(FT) equivalent, when α = π/2.

(b) The definitions given by Zayed [8] and Deng et al. [9] have required three chirp mul-
tiplication to evaluate the defined convolution integral.

(c) In the definition given by Wei et al. [10], the generalized convolution operation defined
in time domain is not only dependent on time variable but it also depends on transform
domain variable ‘u’ in which it has to be transformed.
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This necessitates that a new convolution theorem should be developed in a manner

• which is capable to convert the convolution identity into its FT equivalent, at α = π/2,
• in which the convolution integral should be dependent on time variable only and its

transform will depend on transform domain variable, and
• where the computation of convolution identity requires less number of chirp multiplica-

tion.

3 Modified Identities for FRFT

The unavailability of a well defined convolution and product theorems, as explained in the
previous section, has motivated to propose another method to define these identities for FRFT
which is a modified version of the identities proposed by Zayed [8]. These modified identities
not only satisfy variable dependability and FT conversion (for α = π/2) but also satisfy all
the properties that these classical identities in FT domain satisfies.

3.1 Convolution Theorem

The circular convolution has been defined separately for Discrete Fourier Transform (DFT)
in place of linear convolution, whereas the circular and linear convolutions are related and
one can be determined if other is known. Similarly, a weighted convolution is proposed for
FRFT, which can be made linear with α = π/2.

Definition 1 For any two functions x(t) and y(t), the weighted convolution operation is
defined as (here � symbol is used to represent proposed modified convolution operation).

z(t) = (x�y)(t) =
∞∫

−∞
x(τ )y(t − τ)e jτ(τ−t) cot αdτ (11)

Theorem 1 Let z(t)is modified convolution of two functions x(t) and y(t), and
Xα(u), Yα(u) and Zα(u) are defined as FRFT of x(t), y(t) and z(t) respectively. Then

z(t) =
∞∫

−∞
x(τ )y(t − τ)e jτ(τ−t) cot αdτ

↔ Zα(u) =
√

2π

1 − j cot α
e− j

2 u2 cot α Xα(u)Yα(u) (12)

(a) Proof From the definition of FRFT

Zα(u) =
√

1 − j cot α

2π

∞∫

−∞
z(t)e

j
2 {(t2+u2) cot α−2tu csc α}dt

=
(√

1 − j cot α

2π

) ∞∫

−∞

∞∫

−∞
x (τ ) y (t − τ)

× e
j
2 {(t2+u2) cot α−2tu csc α+2τ(τ−t) cot α}dτdt (13)
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By putting the change of variable, t − τ = m,

Zα(u) =
(√

1 − j cot α

2π

) ∞∫

−∞

⎧⎨
⎩

∞∫

−∞
x (τ ) e

j
2 {(τ 2+u2) cot α−2τu csc α}dτ

⎫⎬
⎭

×y (m) e
j
2 {m2 cot α−2mu csc α}dm (14)

Multiply and divide by
√

1− j cot α
2π

e
j
2 u2 cot α ,

Zα(u) =
√

2π

1 − j cot α
e− j

2 u2 cot α

{√
1 − j cot α

2π

}2

×

⎧⎪⎨
⎪⎩

∞∫
−∞

{ ∞∫
−∞

x (τ ) e
j
2 {(τ 2+u2) cot α−2τu csc α}dτ

}

y (m) e
j
2 {(m2+u2) cot α−2mu csc α}dm

⎫⎪⎬
⎪⎭

=
√

2π

1 − j cot α
e− j

2 u2 cot α Xα(u)Yα(u) (15)

Finally, convolution theorem transform pair is given as

∞∫

−∞
x (τ ) y (t − τ) e jτ(τ−t) cot αdτ

↔
√

2π

1 − j cot α
e− j

2 u2 cot α Xα(u)Yα(u) (16)

(b) Special Case: By putting α = π/2 in the transform pair, the linear convolution for
Fourier transform can be obtained as

∞∫

−∞
x(τ )yt − τ)dτ ↔ √

2π Xπ/2(u)Yπ/2(u) (17)

where Xπ/2(u) and Yπ/2(u) are Fourier transform of x(t) and y(t) respectively.
(c) Properties satisfied by convolution theorem:

(i) Commutative:

(x�y)(t) ↔
√

2π

1 − j cot α
e− j

2 u2 cot α Xα(u)Yα(u)

(y�x)(t) ↔
√

2π

1 − j cot α
e− j

2 u2 cot α Xα(u)Yα(u) (18)

(x�y)(t) = (y�x)(t)
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(ii) Associative:

((x�y)� f )(t) ↔
(

2π

1 − j cot α

)
e− ju2 cot α Xα(u)Yα(u)Fα(u)

(x�(y� f ))(t) ↔
(

2π

1 − j cot α

)
e− ju2 cot α Xα(u)Yα(u)Fα(u) (19)

((x�y)� f )(t) = (x�(y� f ))(t)

(iii) Distributive:

(x�(y + f ))(t) ↔
√

2π

1 − j cot α
e− j

2 u2 cot α Xα(u)(Yα(u) + Fα(u))

(x�y + x� f )(t)↔
√

2π

1 − j cot α
e− j

2 u2 cot α(Xα(u)Yα(u) + Xα(u)Fα(u)) (20)

(x�(y + f ))(t) = (x�y + x� f )(t)

3.2 Product Theorem

Definition 2 For any two functions x(t) and y(t), the modified product operation is defined
as

z(t) = x(t)y(t)e
j
2 t2 cot α (21)

Theorem 2 Let z(t) is weighted product of two functions x(t) and y(t), and Xα(u), Yα(u)

and Zα(u) are defined as FRFT of x(t), y(t) and z(t) respectively. Then

z(t) = x(t)y(t)e
j
2 t2 cot α ↔ Zα(u) =

√
1 + j cot α

2π

×
∞∫

−∞
Xα(v)Yα(u − v)e

j
2 v(u−v) cot αdv (22)

(a) Proof This is same as of proposed convolution theorem, therefore it is omitted.
(b) Properties satisfied by product theorem: Same as that of convolution theorem.

4 Comparative Analysis of Convolution Theorems

A comparative analysis of available definitions of convolution function on the following
parameters is presented in this section.

4.1 Variable Dependability

The convolution defined in one domain and its transformed counterpart in transformed
domain should have mathematical expressions in terms of respective domain variables
only. For example, when the time domain convolution of rectangular window function
{(r ⊗ r)(t)} is Fourier transformed, it is having a closed form expression in frequency domain,
sinc2(π f/2), dependent upon frequency as variable only. This parameter is assumed in order
to assure that a quantity defined in one domain when transformed will result in an equiva-
lent quantity in transformed domain. In the Table 1, Yes is included for the method, which
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Table 1 Computational complexity for all the methods for convolution theorem

Parameter Wei et al. [10] Deng et al. [9] Zayed [8] Almeida [7] Proposed

Variable dependability No Yes Yes Yes Yes

FT conversion at α = π/2 Yes Yes Yes No Yes

Hardware complexity LHS RHS LHS RHS LHS RHS LHS RHS LHS RHS
No. of chirp functions 7 6 3 7 3 7 – 5 2 7

LHS represents the defined convolution process by different methods and RHS represents their transforms

transform a convolution function defined in one domain variable into equivalent function of
transform domain variable and No is for the method in which either convolution function is
dependent on both variable or transformed equivalent quantity is function of both variable.

4.2 Equivalent FT Conversion

The proposed convolution theorem should be converted into classical convolution theorem
for Fourier transform with angle parameter, α = π/2, it is due to the basic property of
FRFT as expression of FRFT converts into expression of FT at angle parameter, α = π/2.
In the Table 1, Yes is entered for the method where the relation is converted into classical
convolution theorem of Fourier transform at α = π/2 and No is mentioned otherwise. This
parameter has given a prime importance because FRFT is assumed as the generalization of
Fourier Transform (FT). Therefore, any property defined for FRFT should be converted to
the analogous property for FT. In the existing definitions, the identity given by Almeida [7] is
not satisfying this parameter; hence the simulation has not been performed for this method.

4.3 Simulation Results

The mathematical relation describing the convolution operation in fractional domain by
Zayed [8] and Wei et al. [10] is compared with the proposed identity for convolution by simu-
lating both the expressions on the platform of Wolfram Mathematica� software (version-7.0)
on a system having configuration Pentium-4, Intel(R) CPU-1.8 GHz processor having 1 GB
RAM.

A rectangular window function ‘r(t)’ of unity amplitude and unit duration (0 ≤ t ≤ 1.0)

is convolved linearly with itself {(r ⊗ r)(t)}, gives a triangular (or Bartlett) window function

-1 1 2 3

0.2

0.4

0.6

0.8

1.0

-1 1 2 3

0.2

0.4

0.6

0.8

1.0

tt

Θ(r   r)(t)r(t)(a) (b)

Fig. 1 a Rectangular function, ‘r(t)’, and b Convolved signal ‘{(r ⊗ r)(t)}’ i.e., Bartlet window
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Zayed's Deng's

Deyun's

Proposed

Bartlet

Zayed's Deng's

Deyun's

Proposed

Bartlet

Zayed's Deng's

Deyun's

Proposed

Bartlet

(a)

(c)

(b)

Fig. 2 FRFT of (r�r)(t)for α = π/4 by Zayed, Deyun and Proposed method along with FRFT of Bartlett
window a Real value of, b Imaginary component of, and c Absolute component of FRFT

Zayed's Deng's

Deyun's

Proposed

Bartlet

Zayed's Deng's

Deyun's

Proposed

Bartlet

Zayed's Deng's

Deyun's

Proposed

Bartlet

(a)

(c)

(b)

Fig. 3 FRFT of (r�r)(t) for α = π/3 by Zayed, Deyun and Proposed method along with FRFT of Bartlett
window a Real value of, b Imaginary component of, and c Absolute component of FRFT

of duration double to it, in the time domain as shown in Fig. 1. As, the methods given by
Zayed [8] and Deng et al. [9] are having similar closed form expressions, therefore, the
definition given by Zayed is only simulated for the analysis purpose. The source codes for
the convolution theorem given by Zayed [8], Wei et al. [10] and of the proposed one are
tested by choosing the two functions as ‘r(t)‘ in respective convolution integral. The results
of the FRFT determined, at an angle α = π/4, by the Zayed’s method, Deyun’s method and
also by the proposed convolution identity are shown in the Fig. 2 and for angle α = π/3
are shown in Fig. 3. Simultaneously, the FRFT of the triangular window function is also
evaluated for the same angle to make a comparison. It has been shown, that the FRFT for
α = π/4 and α = π/3 of the triangular window function resembles maximally, i.e. the real
(Re), imaginary (Im) and absolute (Abs) components to the FRFT of the convolved output
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RHS of (25) in [10]                      (ii) LHS of (25) in [10]

RHS of (20) in [9]                  (ii) LHS of (20) in [9] 

(i) 

(6) of [8]                      (ii) Convolution process of [8]

y(t)

2t⊗

∫ dt

∫ dt
1−ℑ

 x(t)

2t⊗

2u⊗

2u⊗ tu2−⊗

z(t)

2u−⊗

tu2−⊗

F1(α) 

F1(α) 

F1(α) 

 z(t)

∫ τdx(τ)

y(τ)

2τ⊗

De(t) 
& In

2τ⊗

2t−⊗

y(t)

2t⊗

∫ dt

∫ dt
1−ℑ

 x(t)

2t⊗

2u⊗

2u⊗ tu2−⊗

z(t)

2u−⊗

tu2−⊗

F1(α) 

F1(α) 

F1(α) 

 z(t)

∫ τdx(τ)

y(τ)

2τ⊗

De(t) 
& In

2τ⊗

2t−⊗

y(t)

2τ⊗ 2u⊗ uτ2−⊗

∫ dt

F1(α) 2t⊗

2τ−⊗

ut2⊗uτ2⊗

∫ du∫ τd

 z(t) F2(α) F1(α) 

F1(α) 

tu2−⊗

∫ dt x(t)

2t⊗ 2u⊗

2t⊗ 2u⊗ tu2−⊗

y(t) ∫ dt

F1(α) 

1−ℑ z(t)

(i) 

(i)

(a)

(b)

(c)

Fig. 4 a Block diagram representation of Wei et al. [10] method. b Block diagram representation of Deng
et al. [9] method. c Block diagram representation of Zayed [8] method. d Block diagram representation of
Almeida [7] method. e Block diagram representation of proposed method. f Blocks used in the block diagram
representation

with the proposed theorem. It is also visible from the Fig. 2a, b in case of angle α = π/4
and in the Fig. 3a, b in case of angle α = π/3 that the Real and Imaginary components are
more oscillatory in the case of Deyun’s method than the similar components determined by
the proposed method.
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4.4 Computational Error

A simple block diagram implementation of the mathematical relations given by various
authors for establishing the convolution theorem is also used for the comparison purpose.
The relationships (both the LHS and RHS) given by Wei et al. [10], Deng et al. [9], Zayed [8],
Almeida [7] and proposed one are shown with the help of their block diagram realizations in
Fig. 4a–e, respectively. The nomenclature of various building blocks is given in Fig. 4f.

(i) (7) in [7]                 (ii) Convolution process of [7] 

(i) RHS of proposed method (12)                          (ii) LHS of proposed method (12)

        Chirp Function (
)()

2
(

2

αCot
t

j
e )                               

π
α

2

)(1 jCot−

 Integrator (with respect to‘t’)        
π

α
2

)(1 jCot+

 Delay (with respect to‘t’) & Inversion           
π
α

2

)(Csc

 Variable Conversion (‘t’ to ‘v Sec α’)                          IFRFT 

)(1

2

α
π

jCot−

        Chirp Function ( )(2 αCsctuje− )                         )(αSec

y(t)

2t⊗

 x(t)

2t⊗

2u⊗

2u⊗

∫ dt

∫ dt

tu2−⊗

tu2−⊗

F1(α) 

F1(α) 

1−ℑ

z(t)

2u−⊗
F5(α) 

x(τ) De(t) 
& In

y(τ)

τt2−⊗ 2τ⊗

z(t)

∫ τd

y(t)

1−ℑ

2u−⊗

 z(t) F4(α) 

      VC
 t _ v Sec α

 De(u) 
 & In ∫ dv

2t⊗ 2v⊗ tv2−⊗ 2v⊗F1(α) 

∫ dt x(t)

y(τ) De(t) 
& In

x(τ)

 z(t)∫ τd

∫ dt

De(t)  
& In 

     VC 
 t_v Sec α

1−ℑ

2t⊗
F1(α) 

F2(α) 

F3(α) 

F4(α) tu2−⊗

F5(α) 

(d)

(e)

(f)

Fig. 4 continued
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5 Conclusion

A modified expression for the convolution integral for FRFT has been introduced. This can
be treated as convolution theorem for FRFT and enhances the support for FRFT for its con-
sideration as an integral transform. The proposed definition satisfies all the properties of
classical convolution theorem for Fourier transform, i.e. the commutative property, associa-
tive property and distributive property. As shown in the Table 1, the definition given by Wei
et al. [10] has failed to satisfy the variable dependability condition, while all other obeys
this aspect of classical convolution theorem. Similarly, the definition given by Almeida [7]
is not converted to the classical convolution theorem with α = π/2, while others satisfy this
parameter. So analyzing all the five method of defining the convolution theorem on the first
and second parameters, it can be clearly noticed that the definition given by Zayed [8] and
proposed one are only methods (since, the method given by Deng et al. [9] is same as given
by Zayed [8]) having satisfied both the parameters, variable dependability and equivalent
Fourier transform conversion.

As can be seen from the simulation results of Figs. 2 and 3, the proposed weighted convo-
lution theorem is giving results better than the convolution theorem given by Zayed [8] and
Wei et al. [10]. The results determined by the proposed theorem are closer in shape and of
matching values to the FRFT of a triangular window function. The results determined by the
convolution expression of Wei et al. [10] have more oscillations in both the Real and Imagi-
nary components, as it is visible from the Figs. 2 and 3 for different value of angle α. These
oscillations are significant and present due to the chirp signal included in the calculation
of convolution integral by Wei et al. [10], which also contains variable of the transformed
domain. In the context of computational complexity, the comparison has been established in
terms of the number of chirp multiplications performed in realizing the different convolution
theorems. Finally, comparing the definition given by Zayed [8] and proposed one on the basis
of computational complexity, it is found that number of chirp multiplications is lesser in the
case of proposed method. Therefore, proposed modified definition is found to be a better
proposition to other four definitions given by Almeida [7], Zayed [8], Deng et al. [9] and
Wei et al. [10].
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