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Abstract Multihop wireless mesh networks (WMNs) provide ubiquitous wireless access
in a large area with less dependence on wired networks. However, some emerging applications
with high bandwidth requirement and delay and loss constraints, such as video streaming,
suffer poor performance in WMNs, since high compression rates and/or high packet loss
rates deteriorate the video quality. In this paper, we propose a novel mechanism composed
of (1) a network route selection scheme which provides paths for multiple video streams
with the least interference, called Minimum Interference Route Selection (MIROSE) and (2)
an optimization algorithm that determines the compression rates depending on the network
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condition, called Network State Dependent Video Compression Rate (NSDVCR) algorithm.
Simulation results of the proposed mechanisms show the significant improvement of the video
quality measured with a popular metric, Peak-Signal-to-Noise Ratio (PSNR), compared with
standard routing and default compression rates.

Keywords Wireless mesh networks · Video streaming · Rate adaptation ·
Route selection · Simulation analysis

1 Introduction

Multihop wireless mesh networks can provide ubiquitous wireless access in a large area with
less support from wired networks. However, current multihop mesh networks pose a num-
ber of challenging design problems which limit end-to-end network performance, such as
throughput, delay, and congestion [1]. First, in a large mesh network, centralized MAC-layer
scheduling and synchronization of link transmissions of the entire system is not practical.
Most deployed mesh networks are based on Wi-Fi devices, which utilize the random access
mechanism of 802.11. Therefore, frequent interference among neighbor nodes or links sig-
nificantly deteriorates wireless transmissions in mesh networks. Second, a traffic flow over
a wireless path of multiple hops suffers “in-flow” interference, i.e., the interference with the
previous hop and/or the next hop [2]. So the transmission in a link experiences interference
from other transmissions of the same flow in other links in the path. Third, dynamic traffic
requests negatively influence the traffic balance among nodes in the mesh network, which
could result in local congestion in a certain area.

Even with scarce bandwidth, mesh networks are capable of supporting “light-weight”
applications that need low bandwidth and can tolerate high delay, such as emailing, instant
messaging or web surfing. However, other “heavy-weight” applications that need high capac-
ity and less delay, such as real-time video, often have poor performance. The “heavy-weight”
flow introduces “in-flow” interference and consumes significant network resources, which
could severely influence traffic distribution and may block other traffic in the same part of
the network. For example, in Fig. 1, two clients send requests for real-time video to remote
servers. Since two clients are located close to each other, the two video streams share almost
the same path from the gateway to the destinations and severely contend for the limited
resources. As a result neither flow may obtain the required bandwidth, and also interfere
with other traffic in the area. This scenario is also validated in [3]. The authors conducted
extensive testbed experiments of video streaming in multihop wireless mesh networks and
concluded that “both inter- and intra- flow interference have a great impact on video quality.
This is particularly true in wireless multihop scenarios.”

“Heavy-weight” and “light-weight” applications are similar to the classic definition of
“elephant” and “mouse” flows in network measurement. However, “heavy-weight” applica-
tions contain more constraints. In addition to the the large number of packets in “elephant”
flows, “heavy-weight” applications also have delay and loss constraints. For example, if some
packets of a real-time video do not arrive at the destination within a certain time, they are
useless and can be dropped. Like “mouse” flows in the Internet, the number of “light-weight”
flows in mesh networks is normally much larger than that of “heavy-weight” flows. However,
“heavy-weight” applications usually badly influence other existing flows, break the load bal-
ancing and deteriorate the whole network performance. Therefore, to efficiently allocate the
limited resource to different applications, we should concentrate more on “heavy-weight”
applications rather than controlling all end-to-end flows or all applications, which is not
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Fig. 1 Multiple video streams contend for limited resource in a WMN

practical and necessary. In our study, we consider “light-weight” applications as the back-
ground traffic, which are assumed to uniformly distribute in the whole network, and propose
a novel mechanism to efficiently support transmission of “heavy-weight” applications in
WMNs.

In this paper, we consider real-time video as the “heavy-weight” application. We develop
a method to improve the performance of real-time video delivery taking into consideration
all the negative attributes of a wireless mesh network.

The rest of the paper is organized as follows. We introduce the system model in Sect. 2.
The minimum interference route selection algorithm and network state dependent video
compression rate optimization algorithm [4] will be presented in Sect. 3 and 4, respectively.
In Sect. 5, we discuss simulation results of both route selection and rate optimization for
multiple video streams in wireless mesh networks. Finally, we present related work in Sect. 6
and present our conclusions in Sect. 7.

2 System Model

2.1 Introduction to Video Streaming

Uncompressed raw video contains spatial and temporal redundancy which make it ineffi-
cient when transmitting over networks or storing on media. Spatial redundancy refers to
redundancy in a single frame which can be reduced by intraframe compression, similar to
image compression. Temporal redundancy can be reduced by interframe compression includ-
ing motion compensation. With temporal compression, only changes between consecutive
frames are encoded so as to decrease bit rate of the compressed video. MPEG [5,6] and
H.261 [7] uses temporal compression.
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Raw video streams are compressed as a group of frames, called a group of pictures (GOP).
A GOP contains one Intra coded frame (I frame), several Predicted frames (P frames), and
maybe some Bi-directional predictive frames (B frames). An encoded video contains two
GOP parameters n and m, where n is the distance between two I frames, also called the GOP
length, and m is the distance between two anchor frames (I frame or P frame). For example,
(n, m) = (12, 3) indicates that the GOP consists of I B B P B B P B B P B B.

In a GOP, the first frame is the I frame which is encoded independent of other frames.
I frames do not rely on temporal compression, and need more bits to transmit. P frames are
based on previous I frames and P frames in the same GOP, which compensate I frames to
improve video quality and achieve a lower bit rate. B frames are based on past and future
I and P frames in the same GOP, but not other B frames.

After transmission, a frame can be successfully decoded at the client if all frames in the
GOP have been correctly received and decoded. However, some frames may be lost. Con-
cealment is used in decoding to compensate for lost frames. If the first frame of GOP, I frame,
is lost, the codec can use the most recent correctly displayed frame from the previous GOP
to compensate for the lost frame. Similarly, if P or B frames are lost, the lost frames and all
the following frames in a GOP are replaced by the decoded I frame in this GOP. Note that
losing different types of frames have different impact on the video quality. This is further
discussed in Sect. 4.

2.2 Factors Influencing Video Quality

Through our experiments, we found that the following are the main factors that impact the
video quality in wireless mesh networks:

– Network Condition: Depending on the number of hops and link quality of each hop, the
video quality of clients with different geographical locations can vary significantly. The
video quality may not be acceptable if the stream has to pass through a long and poor
quality path.

– Routing: In mesh networks, the quality of multiple video streams can decrease if they
contend for the same network resources as shown in Fig. 1. Furthermore, the network
conditions get accordingly degraded due to the severe congestion caused by the video
streams.

– Compression Rate: Since most video compression schemes, including MPEG-4, employ
lossy compression, some information will be inevitably dropped. Therefore, the com-
pression rate also influences the quality of the video at the receiver.

Among these factors, the network condition is dynamic but can be monitored and deter-
mined. Although it is not possible to predict the video requests generated by the clients and
the link qualities are not under our control, different routing choices can potentially help
avoid congestion in a certain parts of the network. For example, comparing different routing
in Figs. 1 and 2, it is obvious that selecting diverse paths for different video streams can
significantly improve their qualities and mitigate poor network conditions. In the network
layer, our mechanism re-route multiple video flows if they share similar paths. We present
our approach in Sect. 3.

In addition to route selection, it is also important to dynamically adjust the compression
rate according to network conditions and routing information. Video compression rate is
another factor that we can control. If a client is located far from the gateway or if a link
quality in the path between a client and the gateways is poor, or if two separate video streams
follow almost the same path from the gateway to the client, a high compression rate can
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help reduce high packet loss rate. Based on extensive testbed experiments, the study in [3]
also concluded that “In a multihop wireless mesh network, the tradeoff between streaming
rate and video quality needs to be considered carefully. High rates do not necessarily bring
high video quality.” Therefore, there exists an optimal video compression rate for a given
network conditions. We present our proposed dynamic video compression rate optimization
algorithm in Sect. 4.

2.3 Network Proxy and Optimal Video Compression Rate

In order to support our proposed approach, we need some infrastructure support. In particular,
we assume that there is a video agent deployed at the edge of the mesh network. Most current
mesh networks, both for public or private access, are normally deployed and managed by a
service provider which is responsible for the registration and authentication of the users. The
mesh networks and the proposed video agent is shown in Fig. 2. The video agent is a logical
entity and can be located in the base stations between the gateway and Internet. We assume
that the video agent has enough buffer and computing power to implement the the dynamic
compression algorithm proposed in this paper.

Since both the upstream and downstream traffic needs to travel through the base station,
the video agent can improve the delivery of real-time video measured in terms of the PSNR
as follows:

1. The video agent receives video requests from the clients, and chooses proper routes for
each video flow which minimizes the overall path contention from the multiple video
streams.

2. The video agent temporarily buffers the video content and adjusts the compression rates
according to the condition of the path from the gateway to the requesting client.

Selecting a route and choosing the compression rate are correlated and jointly influence the
performance objectives. However, it is intractable to search the optimal solutions for both
problems simultaneously. We decompose these two problems and solve them independently
in the next two sections. In the next section, we design a minimum interference route selec-
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Fig. 3 Potential paths to video clients

tion algorithm (MIROSE) to select a set of least interference paths. Based on the network
condition and video properties, we design a video compression rate optimization algorithm
referred as NSDVCR and described in Sect. 4.

3 Minimum Interference Route Selection Algorithm (MIROSE)

3.1 Algorithm

A few currently popular wireless routing algorithms, such as DSR [8], usually provide sev-
eral available paths from the video agent/gateway to the requesting client. Additionally, we
can modify some other famous algorithms, such as AODV [9], to maintain multiple paths in
addition to the chosen one. These potential paths, as shown in Fig. 3, provides the solution set
for the best paths of all clients while reducing the mutual interference and negative influence
on the whole network.

In order to quantify the interference relationship of different paths, we introduce the
correlation function C2(p1, p2) for two routing paths p1 and p2. Suppose there are n
hops/links along path p1 denoted by h1, h2, . . . , hn and m hops/links along path p2 denoted
by l1, l2, . . . , lm . With the interference index between two hops,

dk,l =
{

1 if hop k interferences with hop l
0 otherwise

(1)

the correlation function C2(p1, p2) is defined as

C2(p1, p2) =
n∑

k=1

m∑
l=1

dk,l . (2)

C2(p1, p2) is the metric of the correlation of two paths p1 and p2, measured as the sum
of the interference index values of any two hops from p1 and p2. Note that dk,l = dl,k , so
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Fig. 4 Correlation function of
two paths p1

p2

C2(p1, p2) = C2(p2, p1). Figure 4 gives a simple example of how to calculate C2(p1, p2).
In Fig. 4, Path p1 traverses from O, A and B; path p2 traverses from O, C, D and E. The first
and second hops of p1 interfere with the first and second hops of p2; therefore, C2(p1, p2) =
C2(p2, p1) = dp1

1 ,p1
2
+dp1

1 ,p2
2
+dp1

1 ,p3
2
+dp2

1 ,p1
2
+dp2

1 ,p2
2
+dp2

1 ,p3
2

= 1+1+0+1+1+0 =
4.Here p1

1 means the first hop of path p1. Others have the similar meaning.
For a set of paths, [p1, p2, . . . , pk ], we introduce the interference function G(p1, p2, . . . ,

pk) as

G(p1, p2, . . . , pk) =
k∑

i=1

k∑
j=1, j �=i

C2(pi , p j ). (3)

Note that G(p1, p2) = C2(p1, p2) ∗ 2 since both interference of p1 on p2 and p2 on p1 is
counted.

For multiple clients in the networks, D1 to DK , suppose there are multiple possible paths
{Di

1, . . . , Di
Ni

} for any client i . Then any choice [D1
p1

, . . . , DK
pK

] could be a possible set of

paths for clients D1 to DK , where Di
pi

is chosen from {Di
1, . . . , Di

Ni
}. The global optimal

set of paths [D1∗, D2∗, . . . , DK∗ ] should have minimum interference, which means

G(D1∗, . . . , DK∗ ) = minDi
pi

∈{Di
1,...,Di

Ni
}G(D1

p1
, . . . , DK

pK
) (4)

However, the optimal set of paths is not always unique. For example, in Fig. 5, the WMN
contains 1 gateway O and 14 mesh nodes denoted from A to N. Path p1 traverses from O to
A, B ,C and D; path p2 traverses from O to E, I ,J and H; path p−

2 traverses from O to E, F,
G and H; and path p3 traverses from O to K, L ,M and N. The dashed line indicates interfer-
ence between two nodes. We can see that C2(p1, p2) = 4; C2(p2, p3) = 9; C2(p1, p3) =
3; C2(p1, p−

2 ) = 7; C2(p−
2 , p3) = 6. Therefore, G(p1, p2, p3) = G(p1, p−

2 , p3) = 32.
Then the load balancing becomes the second metric to break the tie. In Fig. 5, the path
(p1, p−

2 , p3) is potentially better since the traffic distribution is more balanced.
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Fig. 5 Choosing among paths if two interference functions are the same

To quantify the load balancing, we introduce the Q function. In a set of paths,
p1, p2, . . . , pn , the interference from other paths to the given path pi is defined as

Q(pi ) =
n∑

j=1, j �=i

C2(pi , p j ). (5)

And the mean and variance of Q of this set of paths are defined as E[Q] = 1
n

∑n
i=1 Q(pi ),

and V ar [Q] = 1
n

∑n
i=1(Q(pi ) − E[Q])2.

Suppose there are L optimal sets of paths determined by Eq. 4, then the best set s satisfying
the load balancing metric is

minimizes∈(1,...,L){V ar [Qs]} (6)

In the network, “heavy-weight” applications could emerge and terminate any time. So it is
necessary to develop a real-time update algorithm for new demands. Without losing general-
ity, suppose there are N existing clients, with optimal paths D1, . . . , DN by Eq. 4 and Eq. 6,
and M new clients arriving. Algorithm 1 updates the optimal paths for all clients. Note that

Algorithm 1 Algorithm for New Clients.

1: With fixed [D1, . . . , DN ], find the optimal paths for the new client only, DN+1, . . . , DN+M by Eq. 4 and
Eq. 6. The interference function G(D1, . . . , DN+M ) = A

2: Recalculate paths for all N + M clients, and find the optimal path D1, . . . , DN+M with interference

function G(D1, . . . , DN+M ) = B
3: if B

A < θ then

4: Choose the set of path [D1, . . . , DN+M ]
5: else
6: Choose the set of path [D1, . . . , DN+M ]
7: end if

θ ∈ [0, 1], since B ≤ A. And θ controls the balance between efficiency and oscillation of the
algorithm. When θ = 0, the algorithm will always keep the paths for N existing clients and
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Fig. 6 Routes determined by MIROSE with two user requests in the network

choose paths for M new clients. On the other hand, when θ = 1, the algorithm will utilize
new paths for N + M clients, which is a global optimal solution but has more oscillations.

3.2 Simulation Results of MIROSE

In this section, we evaluate the MIROSE algorithm by comparing its performance with pop-
ular wireless routing algorithm, AODV. Note that MIROSE algorithm can be combined with
other routing algorithms to reduce interference with multiple paths, and thereby can improve
system throughput.

The topology of our simulation is shown in Fig. 6 captured from QualNet [10], which
consists of seven wireless mesh nodes with two gateways and one remote server. We use
constant bit rate (CBR) source in the application layer to evaluate the performance MIROSE.
There are two requests from users to the remote server in the network. We compare the
performance based on different metrics including throughput and packet loss rate.

From our simulation observation, we find out that AODV selects two paths that share a
number of common links which leads to severe interference between the two paths while
MIROSE chooses two paths with least interference and also achieves load balancing in the
wireless mesh network.

The simulation results of these scenarios have been presented in the following figures.
The system throughput (defined as the sum of the individual throughput of each request)
is shown in Fig. 7. Figure 7 shows that the throughput of MIROSE is better than AODV.
When CBR rate is small, both AODV and MIROSE achieve the same throughput since the
packet generation rate is much less than the network capacity. When rate of CBR sources is
increased, throughput increases until they reach the path capacity. In this region, MIROSE
performs better as it finds two paths with less interference and achieves load balancing.
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Fig. 7 Throughput comparison between AODV and MIROSE algorithms
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Fig. 8 Avg. packet loss rate comparison between AODV and MIROSE algorithms

The average packet loss rates of two paths is shown in Fig. 8. It is clear that AODV has
higher packet loss rate than MIROSE. Similar to throughput, when the overall CBR rate is
small compared to the network capacity, both AODV and MIROSE do not have any packet
loss. Due to less interference between the two paths, MIROSE can tolerate higher rate of
the CBR sources without significant packet losses. Moreover, MIROSE has less packet loss
rate than AODV at the same CBR rate. This is because MIROSE select two paths with less
interference to reduce congestion.
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Fig. 9 Dynamic compression rate selection

4 Network State Dependent Video Compression Rate (NSDVCR) Optimization

The generic model in Fig. 9 shows the basic idea. The video proxy receives the video frames,
denoted as S0, from a remote server. It decompresses the video frames to extract the raw
video denoted as S1. Then the proxy compresses the raw video again to S2 with an optimal
compression rate determined by our algorithm NSDVCR, which is introduced in the next
section. The video client eventually receives frames S3 with distortion due to packet loss in
the path from the proxy to the client.

As shown in the Fig. 9, the streaming rate after the compression in the video proxy, Dc, is
the key parameter in the whole system. Two different aspects determines the optimal value
of Dc. First, the ratio Dc

D , where D is the raw data transmission rate, is the video compression
ratio. The smaller the ratio, the more information loss due to the compression in the proxy. If
this ratio is too low, the received video quality at the client is inevitably poor even if there are
no losses in the network. Second, since the transmission inside the wireless network cannot
be error free, the current network condition, such as any congestion in the path or poor link
quality, will influence Dc. Under poor network condition, a smaller value of Dc is preferred.
On the other hand, when the network condition is good, the video can be streamed at a higher
rate. Therefore, there is a tradeoff in selecting the value of Dc. In this section, we design a
video compression rate optimization algorithm referred to as NSDVCR based on the video
properties and the network condition.

In a GOP of (n,m), suppose the frame size ratio of three kinds of frames is I : P : B =
a : b : 1 (typically the ratio is between 3 : 2 : 1 and 5 : 3 : 1). The video is compressed as r
frames per second (fps). Note that in our algorithm, the values of n, m and r in frame S2 are
kept the same as in frame S0 shown in Fig. 9. Inside the network, the packet size is z bits.
Therefore, the number of packets contained in an I frame is

nI = � Dc ∗ n/r

1 + b
a ( n

m − 1) + 1
a (n − n

m )
/z� (7)

And we can derive the number of packets contained in an B/P frame is nB = 1
a nI and

n P = b
a nI , respectively.

Most Wi-Fi devices utilize adaptive rate fallback based on link quality (ARF in [11]) to
improve the system capacity. Note that the link quality is measured in terms of the packet loss
rate. The devices keep track of the packet loss rate. If the current packet loss rate exceeds a
pre-defined threshold , it means the network condition is worse than expected and the sender
needs to decrease the transmission rate. Otherwise, the sender increases the transmission
rate until it reaches some pre-defined max limit, say 54 Mbits/s. In our system, we obtain the
packet loss rate information from network layer, denoted as L p . Consequently, we can get the
loss rates of I/P/B frame which are given by L I = 1 − (1 − L p)

nI , L P = 1 − (1 − L p)
n P ,

and L B = 1 − (1 − L p)
nB , respectively.
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We could calculate all 2n combination of frame loss pattern to determine the cost1 of
packet loss inside a GOP. However, it is too expensive to calculate all the cost of each loss
pattern. Therefore, we simplify the optimization algorithm to balance both efficiency and
accuracy shown belows.

The average cost of a frame distortion consists of two parts: (1) the cost due to compres-
sion and (2) the cost due to transmission loss as shown in Fig. 9. The compression cost of a
frame is a function of video compression rate and is defined as Cc = g( Dc

D ). This function
is related to video contents and can be obtained through experiments as described later. The
other cost is introduced by packet loss. Assuming that the frames are independent, we obtain
an approximate estimate of the packet loss cost inside a GOP. The total cost inside a GOP is
given by

Ctotal = L I CI + (1 − L I )Cc +
n
m −1∑
i=1

( n
m − 1

i

)
Li

P (1 − L P )
n
m −1−i [iCP + (

n

m
− 1 − i)Cc]

+
n− n

m∑
j=1

(
n − n

m
j

)
L j

B(1 − L B)n− n
m − j [jCB + (n − n

m
− j)Cc]

(8)

where, CI , CP , and CB are average loss cost of I/P/B frames in a GOP, respectively. The
first and second terms of Eq. 8 indicates the cost of I frame in case it is lost and in case it is
not lost, respectively. The third and fourth terms are the cost of P and B frame, respectively.
Note that the distortion of I frame loss will propagate until the next GOP, and CI includes
this effect. Since there are several P frames in a GOP, CP is the average cost of P frame loss
in a GOP.

There are multiple metrics to describe the cost, or video quality degradation. In this paper,
we adopt the Peak Signal-to-Noise Ratio (PSNR) [12]. Some experiments of loss cost of
I/P/B frames are shown in Fig. 10 using an enhanced framework for video transmission
and quality evaluation (EvalVid) [13–16]. In Fig. 10, we test the video Foreman (QCIF, 400
frames, 25 fps, GOP(12,3)) [17]. X-axis is the frame number in a GOP when n = 12, m = 3
with sequence IBBPBBPBBPBB, respectively, and y-axis is PSNR value. The PSNR value of
video with 600 and 300 kbps compression rate are 40.44461 and 36.37099 dB, respectively.
The circle-sign and square-sign lines show the PSNR value with one individual type of frame
loss in a GOP in different position. The triangle-sign and diamond-sign lines explicitly show
the gap of PSNR values before and after the particular frame loss with compression rate 600
and 300 kbps, respectively. As can be seen from Fig. 10, different frames in different position
affect the video quality differently. First, I frame affects the GOP PSNR most since the loss
influence of I frame will propagate until the next GOP. Second, the effect of P frame loss
decreases as the position of the P frame in the GOP increases. This is because the loss of P
frame just affects frames after it until the next GOP. Third, a loss of B frame affect PSNR the
least since the loss of B frame will not propagate in the GOP. Finally, different compression
rates have different loss cost of I/P/B frames, but the loss cost has the same trend and similar
values. In our algorithm, CI , CP , and CB are average loss cost of I/P/B frames in a GOP.

Therefore, the average cost of a frame is given by C(Dc) = Ctotal/n. Note that here C is
function of Dc. The optimization function then becomes

min{Dc}C(Dc) (9)

1 The cost here refers to the degradation in the video quality.

123



Enhancing the Performance of Video Streaming in Wireless Mesh Networks 547

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

45

Frame Number in GOP(12,3), IBBPBBPBBPBB

P
S

N
R

(d
B

)

600kbps:PSNR with one frame loss.

300kbps:PSNR with one frame loss.

600kbps:PSNR difference before and after frame loss.

300kbps:PSNR difference before and after frame loss.

Fig. 10 Impact on PSNR for different types of frame loss in a GOP

where Dc is the decision variable. Note that our optimization framework is general in that
we can use different metrics as the objective to improve video quality over wireless access
networks. If Mean Squared Error (MSE) is used as a metric, let C(Dc) = MSE(Dc). MSE
is defined as MSE = 1

mn

∑m−1
i=0

∑n−1
j=0 ‖I (i, j) − K (i, j)‖2, where I and K are two frames

with size of m ∗ n pixels, where one of the frames is considered a noisy approximation of
the other.

Another popular objective metric to evaluate video quality is PSNR. PSNR can also be
used in our optimization algorithm. In this paper, we use PSNR as a example to evaluate our
mechanism. PSNR is defined as follows.

PSNR = 10 × log10(
M AX2

I

MSE
) (10)

where M AX I is the maximum pixel value of the image. Note that PSNR was originally
proposed as the metric to compare a single frame. In this study we utilize the average value
of PSNR of multiple frames in a video as our major objective to improve.

To use PSNR as our metric, we let C = −PSNR since we would like to maximize PSNR.
Consequently, higher PSNR value correspond to better quality. We performed some experi-
ments to determine how the PSNR changes depending on different video compression rates.
The results for the standard videos CoastGuard, Foreman, and News [17] are shown in Fig. 11.
From our experiments, we find that when compression ratio is higher than some threshold,
PSNR does not improve. This is because every compression algorithm has its limit. This
means that we cannot get more benefits when the video stream rate is higher than a certain
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Fig. 11 A curve fitted model of PSNR for different QCIF videos CoastGaurd, foreman, and news

value, and it is a waste of network bandwidth if we compress the video with compression
ratio higher than the threshold. We also find that PSNR depends on the video content. Video
with less motion (like News) has higher PSNR with the same compression rate, and meets
the compression threshold earlier and vice-verse.

Based on the above experiments and curve fitting method, Cc can be fitted using the
following function

Cc = −(x ∗ ln
Dc

D
+ y), x, y ∈ R, Dc ≤ D ∗ H (11)

where H is the threshold of compression ratio mentioned in the previous paragraph. In
Fig. 11, the data points are experimental values fitted with the logarithmic function in Eq. 11.
The parameters, D, x and y, depend on the content of the video and the coding algorithm,
whose reference values can be obtained by non-linear regression techniques. In the imple-
mentation, those parameters could be either adjusted by the network administrator or by a
machine-learning mechanism. If the network administrator has a clear prediction of the video
on transmission, they can pre-set those values, and adjust them later if necessary. With the
equally divided time periods, the machine-learning mechanism can also provide the estimated
values for those parameters in one time period based on the measurements in the previous
ones.
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Fig. 12 Random topology simulation

5 Results and Discussions

In this section, we evaluate the performance of the video compression rate optimization
scheme using QualNet [10] and a revised EvalVid framework [13–16]. We evaluated our
schemes using both a grid topology and a random topology in a WMN. These two topologies
are designed to have similar average hops to gateways and the video requests are two hops
from the gateways. The grid topology contains 16 mesh nodes, including two gateways. One
mesh node two hops away from the gateway has a video request from the remote video server
and all other mesh nodes have CBR background traffic with different traffic intensity, which
is the traffic generation rate from the remote server. In the random topology shown in Fig. 12,
node 1 is a remote sever. The mesh network contains 15 nodes. Three of the nodes, nodes
5, 3 and 11 are gateways. Node 5 serves video streaming requests and all other nodes have
CBR background traffic from the remote server.

We used the Foreman [17] video which is in the Quarter Common Intermediate Format
(QCIF) with 176 × 144 Y pixels/frame and 88 × 72 Cb/Cr pixels/frame. Foreman is a video
with normal motion. We use QualNet 4.0 [10] for simulations. At the physical layer, we use
802.11b with data rate 2 Mbps. The MAC protocol is 802.11. We use MIROSE as routing
protocol and UDP is used at the transport layer. We have two applications, CBR and video
streaming.

In the simulation analysis, different transmission rates of the CBR traffic has been
employed to evaluate the performance of our algorithm for different network conditions.
Every node has the same CBR rate during one simulation. From these simulations, we find
out that our proposed NSDVCR is able to adaptively choose the optimal streaming rate
depending on the underlying topology and the interference pattern. Results can be referred
to [4]. We do not show the results here due to space limitation.

In order to evaluate the performance of our algorithm, we compare PSNR of optimal
video compression rate with the PSNR of some typical video compression rates found in
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Fig. 13 PSNR vs. different background traffic intensity (grid topology)

video sharing websites. In particular, we considered the following compression rates: 765,
480, 449 and 150 kbps. Simulation results are shown in Fig. 13 for the grid topology and in
Fig. 14 for the random topology. Note that “CBR Rate” of X-axis is the packet generation
rate of one node.

From the two figures, we can see that the “Optimal” line and all other compression rate
lines have almost the same trend and relationship. Here we use Fig. 14 as an example for
analysis; the analysis also works for Fig. 13. In Fig. 14, the solid line is the optimal PSNR
obtained from our video rate optimization algorithm. We can see that using our scheme,
the video quality is the best since it determines the optimal video compression rate to fit
the current network condition. Using any of the typical video transmission rates yields lower
performance than our proposed algorithm. The “Optimal” line can be considered as the upper
bound of video quality since our algorithm is designed to obtain the optimal video compres-
sion rate so as to attain best video quality. When the background traffic is light, higher video
transmission rate results in higher PSNR since most network resource is given to the video
flow and there are very few packet losses in the network. When the background traffic is
high, if the video transmission rate is higher than the path capacity, packet losses will be high
which will result in lower PSNR. As can be seen from Fig. 14, some video compression rates
(e.g., 449 and 480 kbps) have better performance than that of 150 kbps video compression
rate when background traffic is below 24 kbps (CBR rate of one node). On the contrary,
150 kbps streaming rate results in a better PSNR value when background traffic is high.
However, for all scenarios, the PSNR of the compressed video obtained from our algorithm
is the best. As mentioned before, our optimization algorithm is designed to find the optimal
video compression rate. If there is no video compression optimization algorithm, the default
compression rate cannot be guaranteed to provide the best performance. Another observation
that can be made from Fig. 14 is that the video PSNR remains constant before it exceeds
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Fig. 14 PSNR vs. different background traffic intensity (random topology)

Table 1 Optimal Compression Rate (CR) for different background traffic intensities with three video requests
in a random topology

CBR rate (kbps) Avg. PSNR (dB) CR 1 PSNR 1 (dB) CR 2 PSNR 2 (dB) CR 3 PSNR 3 (dB)

0 40.53 742 40.53 742 40.53 742 40.53

10 40.53 710 40.52 742 40.53 742 40.53

20 40.51 690 40.49 742 40.53 721 40.52

40 40.50 673 40.48 691 40.49 715 40.52

60 39.59 530 39.25 510 39.01 705 40.52

80 38.37 421 38.03 432 38.17 470 38.91

100 37.04 335 36.42 348 36.46 440 38.25

120 32.60 150 33.28 102 31.24 150 33.28

the network bandwidth. This corresponds to the flat portion of the curves. Beyond that, the
PSNR value decreases quickly because of packet loss.

We also evaluated our proposed NSDVCR algorithm with three video requests in the
random topology, shown in Fig. 12. Nodes 5, 16 and 9 receive video streams and nodes 4,
6, 8, 10, and 13 receive CBR traffic from the remote server node 1. All parameters keep
the same except that the physical model is IEEE 802.11a, physical data rate is 6 Mbps. The
optimal compression rates and average PSNR values of node 5, 16, and 9 under different
background traffic are shown in Table 1. Since node 9 has the least number of hops and
lowest interference, it has the highest optimal compression rate compared to nodes 5 and 16
under the same background traffic intensity. We also compare our results with typical video
compression rates for all three video requests shown in Fig. 15. The PSNR values in the
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Fig. 15 Average PSNR of three video streams in the random topology

figure are the average PSNR of the three video streams. We can see that the PSNR curves
have the same trend as the single video request results discussed earlier.

6 Related Work

In this section, we give a brief overview of recent research in this field. A number of studies
[18–22] have proposed methods to improve the performance of video streaming in WMNs
and wireless ad hoc networks. From both experimental studies [3] and theoretical models
[20,18,19,21] it is shown video quality in WMNs is severely affected by routing algorithm
and video compression rate. In [18], the authors just concentrated on the video rate allocation.
In [19], the authors proposed an optimal routing scheme to minimize congestion in ad hoc
networks. However, note that both routing and video compression rate have impacts to the
video quality for users in wireless networks. Concentrating on one aspect and neglecting the
other aspect is not enough.

The work in [20] designed an algorithm for routing and rate allocation simultaneously for
video streams in ad-hoc networks with the aim to minimizing video distortion and network
congestions. It seems that our work is similar to their work since we are making efforts in the
same directions. However, our work is different from theirs. First, their algorithm is based
on a generic network model suitable for both wired and wireless networks. The network
model does not capture the distinct characteristic of wireless networks. The performance of
the optimization is based on the preciseness of the model. Our algorithm is designed directly
based on wireless channel interference information in and between paths. Second, the video
distortion model in [20] just describes the video distortion with different rate. It cannot model
the important information that different types of loss frame have different effects to the video
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quality while our optimization algorithm more precisely model the characteristics of I/P/B
frames.

In [21], the authors present a joint capacity, flow and rate allocation algorithm for video
over ad-hoc networks. Our work is different from theirs in that we concentrate on find a
set of minimal interference routes to support multiple video over WMNs while [21] is more
concentrate on capacity and flow assignments. From testbed results in [3], we know that both
inter- and intra- flow interference have a great impact on video quality. Our work directly
designed to solve this problem.

Unlike ours, the work in [22] assumes an overlay network infrastructure to convey infor-
mation of each link so as to optimize different control parameters across the protocol layers,
thus to optimize video quality. This paper demonstrate the need for cross-layer optimization
in order to provide an efficient solution for video streams in WMNs, so as [23–25]. Our
framework is a cross-layer design of network layer (packet loss rate, route selection) and
application layer (video compression rate optimization).

Other related papers are [26–29]. In [26], the authors proposed an algorithm for video
rate adaptation, which is evaluated by a subjective quality model in [27]. In [28], the authors
concentrate on an optimization algorithm for rate allocation for multiple video streaming
sessions sharing multiple access networks. In [29], the authors have proposed a framework
for rate-distortion optimized streaming. However, these papers are all based on a single-
hop wireless network environment. Our optimization algorithm NSDVCR is more versatile,
which can be used for both single-hop and multihop wireless networks. Finally, our proposed
scheme is more generic in that different kinds of metrics can be used to improve video quality.
The proposed method is not restricted to only one or two specified metrics.

7 Conclusions

Heavy weight applications which have high bandwidth and low latency requirements such
as VoD and IPTV, impose challenges when implemented over multi-hop wireless mesh net-
works. In this paper, we analysis the reasons that cause video distortion in wireless mesh
networks. We introduce a proxy at the edge of the wireless mesh network to enhance the
delivery of video traffic to clients. We proposed a route selection algorithm MIROSE that
can choose the minimal interference routes to make better use of network resources. We also
proposed an optimization algorithm NSDVCR that determines the optimal video streaming
rate and adapts to the network condition. The algorithms are implemented in the proxy that
determines the routes for video streaming and determines the optimal video compression rate.
The simulation results show significant improvement in the received video quality when the
proxy adopts the optimal streaming rate compared to any of the popular pre-defined rates.
Note that the general model in NSDVCR is easy to extend to support other compression
mechanism or metrics. For example, replacing the cost by other metrics than PSNR provides
the comparison of video qualities in many other ways.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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