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Abstract Energy efficiency is an essential issue in the applications of wireless sensor net-
works (WSNs) all along. Clustering with data aggregation is a significant direction to improve
energy efficiency through software. The selection of cluster head (CH) is the key issue in the
clustering algorithm, which is also a multiple criteria decision making (MCDM) procedure.
In this paper, a novel fuzzy multiple criteria decision making approach, which is based on
trapezoidal fuzzy AHP and hierarchical fuzzy integral (FAHP), is introduced to optimize
the selection of cluster heads to develop a distributed energy-efficient clustering algorithm.
Energy status, QoS impact and location are taken into account simultaneously as the main
factors that can influence the selection of cluster heads while each factor contains some
sub-criteria. Fuzzy multiple attribute decision making is adopted to select optimal cluster
heads by taking all factors into account synthetically. According to these criteria, each node
computes a composite value by using fuzzy Integral. Then this composite value is mapped
onto the time axis, and a time-trigger mechanism makes the node broadcast cluster head
information. The rule that “first declaration wins” is adopted to form the cluster. Simulation
results denote that our proposed scheme has longer lifetime and more eximious expansibility
than other algorithms.
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1 Introduction

The recent advances in micro-sensor and wireless communication technology make a min-
ute node a viable gadget to deploy a low power, inexpensive sensor in large scale [1]. These
sensor nodes are usually battery-driven. In some scenario the sensor nodes may be deployed
in unattended regions, so that the nodes cannot replenish the energy depleted. The nodes that
lost energy may cause the disconnection of the entire network. Therefore, optimizing the
usage of the limited energy and extending the lifetime of wireless sensor networks has been
the focus of current research. This need to design novel energy-efficient solutions for routing
and self-organization, so as to prolong the network lifetime.

Clustering is one of the basic approaches for designing energy-efficient, robust and highly
scalable distributed sensor networks [2]. It consists in obtaining a hierarchical organiza-
tion of the network. This domain has been intensively studied because it is very useful
when you want to achieve an energy-efficient message transmission through the network.
The cost of sending a message is higher than computation and hence it is advantageous to
organize the sensors into clusters [3,4], where the data gathered by the sensors is commu-
nicated to the base station (BS) through a hierarchy of cluster heads (CHs). This means
that creation of clusters and assigning special tasks to CHs can greatly contribute to overall
system scalability, lifetime, and energy efficiency [5]. Therefore, many cluster-based algo-
rithms have been widely studied and used. Selection of CHs, which is a pivotal step in
cluster-based algorithm, can seriously influence the performance of the clustering algorithm.
Under normal circumstances, whether a node can be a CH or not depends not only on its
energy level, but also on other factors such as energy consumption, channel lost and neigh-
bor density, etc. In this sense, the selection of CH can be regarded as a multiple criteria
decision making issue. According to this perspective, we propose an energy-efficient CH
selection scheme based on multiple criteria decision making for wireless sensor networks,
to improve the performance of the entire network. A novel multiple attribute decision mak-
ing based on trapezoidal fuzzy AHP and hierarchical fuzzy integral (FAHP) is described
in detail about how to select CHs distributed in this paper. Through simulation contrasted
with previous works, we show that our approach can outperform in energy efficiency and
expansibility.

The rest of the paper is organized as follows. We review the related works in Section 2.
Section 3 introduces the related models. Our proposed scheme FAHP is described in detail in
Section 4. The simulation result and related analysis will be illustrated in Section 5. Finally,
in Section 6, we draw the conclusion.

2 Related Works

There has been very few directed research relating to decision making in sensor networks.
The existing clustering algorithms differ on the criteria for the selection of the CHs. Accord-
ing to the current research findings, the previous work about the selection method of the CHs
can be summarized as follows.

LEACH (Low-Energy Adaptive Clustering Hierarchy) [4] and DCHS (deterministic clus-
ter-head selection) [6] apply randomized rotation of the CHs to distribute the energy load
among the sensor nodes evenly in the entire network. The CHs selection of them uses a prob-
ability scheme that each node determines whether it is able to be the CH only based on the
random number it generated. Although the complexity of LEACH is low, the lack of energy
consideration and the irregular distribution of the CHs make the algorithm energy-inefficient.
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Unlike LEACH, DCHS introduces residual energy in the probability threshold, which is able
to improve the energy efficiency to a certain extent.

HEED (Hybrid Energy-Efficient Distributed clustering) [7] is a distributed clustering
scheme in which CH nodes are picked from the deployed sensors based on a certain probabil-
ity which is related to a hybrid of energy and communication cost. HEED does not select CHs
randomly. Only sensor nodes that remain high residual energy and lower intra-communication
costs can become CHs. Once selected, the CH is kept for a fixed number of iterations. All the
non-CH nodes select the corresponding CH in terms of the lowest intra-cluster communica-
tion cost. Clusters generated by HEED are more well-balanced than LEACH. CHs keep a
fixed number of iterations is also different from LEACH, which reduce the unnecessary huge
setup overhead associated with the CH selection process. Although HEED creates distributed
clusters without the size and the density of the sensor network being known, yet the cluster
topology fails to achieve minimum energy consumption in intra-cluster communication [8].
Because sensors that are not covered by any CH double their probability of becoming a CH
until all sensors are covered by at least one head, HEED cannot guarantee the optimal number
of elected CHs. Furthermore, only node’s residual energy is used as the primary parameter
during the process of CH election, whereas other factors that are able to influence energy
efficiency cannot be taken into consideration, especially network connectivity.

T-ANT [9] confirms the optimal CH’s quantity firstly, then the BS releases the optimal
number of ants (agents) in the first round. These ants are not simultaneously released, after
the BS has released an ant to one of its neighbors at random and waited for a period of
stochastic time, the next ant could be released. T-ANT implements this operation repeatedly
until all ants are released. The node that has received the ant continues transmitting the ant to a
stochastic neighboring node, until TTL’s (time-to-live) value reaches zero. If TTL expires, the
node which is possessing an ant becomes the CH, and the corresponding CH advertisement is
broadcasted. The pheromone is not generated in the ant release’s process. The link between
the member node and the corresponding CH is lay a certain amount pheromone according
to the residual energy of the node and the CH’s number in the node’s radio range. A regular
node chooses the nearest CH to join by sending a JOIN message with its pheromone level.
At the beginning of next round, CH transmits ant to the new CH, which is the neighbor node
that has the highest pheromone level. Simulation results demonstrate that T-ANT achieves
even distribution of CHs and even distribution of members among the clusters, which results
in the better network lifetime compared to the competitor protocols. It is also found that
T-ANT is able to maintain substantially lesser state overhead in memory. However, T-ANT
depends on random propagation to select CHs in the first round, during which the residual
energy and the location of the CH cannot be guaranteed. This defect will impact on the CH
selection of the next several rounds. Moreover, the pheromone function is only based on the
residual energy and the number of CHs, in which the number of the member nodes and the
distance between each CH-member pair are not taken into account at all.

Many fuzzy logic control algorithms are widely used in the CH selection. The basic ele-
ments of fuzzy logic control are fuzzifier, inference engine, Fuzzy Rule Base (FRB) and
defuzzifier, as shown in Fig. 1.

Gupta [10] believes that the overhead of CH election may be highly reduced by using fuzzy
logic. Mamdani Method is used as the fuzzy inference technique, as well as the COG (Center
of Gravity) is adopted as defuzzifier approach. Three fuzzy variables—energy, concentration
and centrality are used to optimize CH selection in order to extend the network lifetime
efficiently. The operation of this fuzzy CH election scheme is divided into rounds each con-
sisting of a setup and steady state phase. During the setup phase, the BS collects the energy
and location information from all sensor nodes and elects the CHs using fuzzy if-then rule
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Fig. 1 Fuzzy logic controller structure

according to the collected fuzzy variables and then the cluster is organized. In the steady
state phase, the CHs collect the sensed data and perform data fusion functions to compress
the data into a single signal, then transmit the composite signal to the BS directly. Though
this clustering mechanism prolongs the network lifetime, some demerits caused by the cen-
tralized algorithm exist even so. The BS has to collect information from all sensor nodes,
which may be very complex and can generate more overhead. Furthermore, the centralized
algorithm is only suitable for small or medium sized network.

As the distributed version of the clustering algorithm mentioned above, CHEF [11] uses
two fuzzy variables—energy and local distance to compute a chance. Unlike its centralized
version, each node computes the chance of its own independently in CHEF, which enhance
the expansibility of the network. Mamdani Method and COG are both applied in calculating
chance. CHEF limits the number of the candidate CHs based on the equation Po pt = α× P ,
where P is the ratio of the preferred number of CHs similar to LEACH and α is a constant
value that defines the ratio of the candidate for CH. Once a node becomes a candidate, it
broadcasts its chance to the vicinity. After the node has received all chances, if the chance
of itself is bigger than that of the other nodes, the sensor node elected itself as the CH and
advertises a CH message. Each non-CH node receives the CH messages and selects the clos-
est CH as its CH and sends a Join message to the CH. CHEF makes the CHs distribute over
the network evenly, therefore the longevity of the network is achieved.

The clustering scheme proposed in [12,13] is similar to CHEF. Three variables—distance
of cluster centroid, remaining battery power of sensor and network traffic are selected to
be the inputs of the fuzzy logic controller. The output linguistic parameter is the probabil-
ity of CH selection. Likewise, Mamdani Method and COG are used too. Simulation results
demonstrate that this algorithm makes a good selection of the CHs.

FSCA [14] is, in fact, an improved version of ACE [15]. In FSCA, each node is embedded
with two fuzzy modules: the Initiation Fuzzy Module (IFM) and Migration Fuzzy Module
(MFM). The IFM has two inputs—the node lifetime since the protocol starts and the node’s
total number of Loyal Followers. Based on IFM, the node determines whether to be a CH or
not in the initialization phase. During the migration process, the cluster migrates around the
node which has the highest chance of being a CH. The chance of being a CH is determined
by the MFM. The MFM takes the node’s Loyal Followers and the reserved power as inputs.
The output is the chance of being the new CH. The other steps in FSCA are the same as ACE.
Simulations show that FSCA distributes clusters uniformly over the sensor network as well
as ACE and with an advantage over ACE that it extends the network lifetime.

EESH [16] (energy efficient strong head) is proposed to improve the performance for
prolonging the network lifetime. EESH distinguishes the strong or the weak nodes through
the BS firstly. Then each node calculates the cost of its own. The cost is determined by four
factors—the energy of the node, the residual energy of neighbors, the distances from the
neighbors and the amount of the nodes nearby. Simulation results show that EESH is able
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to prolong the lifetime of wireless sensor networks, as well as slower the trend of network
usage dropping especially at early stages before and after some nodes begin to die. EESH
announces that the energy of the node is the most important one among the four factors, but
this idea is not reflected in the Cost formula. From the Cost formula, the four factors are
equally important. In addition, the centralized mode is adopted in EESH, which cannot be
suitable for large-scale sensor networks.

MWBC [17] is a multi-weight based clustering algorithm for maximal-lifetime wireless
sensor network design, which takes into consideration many factors such as the ideal degree,
current energy, transmission power, link quality, and relatively position of nodes. First of
all, nodes obtain the parameters that can describe the situation of the local network through
exchanging information each other. Then these parameters are dynamically calculated to be
the weight, which the node holds to compete for CH, through the weighted average approach.
Simulation results show that MEBC algorithm can obtain more reasonable cluster distribu-
tion and better load balancing features. However, the weight of each parameter is determined
according to trial and error approach, which results in the lack of theoretical support and will
influence the performance of the whole algorithm. Moreover, linear weighted calculation
has its limitations, and it cannot truly reflect the relationship between the various network
parameters.

The clustering scheme proposed in [18] uses probability to select CHs. In every round,
each node decides whether it will be a CH in that round based on the threshold T . This thresh-
old is set in terms of the residual energy and the number of alive neighbor nodes by using the
weighted average method. If a randomly generated number between 0 and 1 is smaller than
T , the node elects itself as a CH. Simulation identifies that this approach extends the lifetime
of the sensor network for about 50% compared to the existing schemes randomly selecting
the CHs. Similar to MWBC, the weights of the two factors are determined according to
experience, which is in defect of theoretical basis.

AHP (Analytical Hierarchy Process) [19] is a centralized CH selection scheme, which
uses MCDM approach to select appropriate CHs. Residual energy, mobility and the distance
to the involved cluster centroid are regarded as three criteria contributing to the network
lifetime. The BS collects all nodes’ correlative information and makes the decision based on
the AHP MCDM approach. The trigger conditions of CH re-selection are adaptive based on
the mobility and the remaining energy of the nodes. The simulation results demonstrate that
AHP approach can improve the network lifetime remarkably, especially for differentiated
initial energy of nodes. Nevertheless, the centralized approach limits the size of the network.

Decision Trees (DTs) [20], which is used in Decision Support Systems, are introduced
into the CH selection process. This scheme is based on four factors such as the distance of
a node from the cluster centroid, the remaining battery power, the degree of mobility, and
the vulnerability index. In each round, the BS runs the DTs algorithm and selects the nodes
suitable for being CHs after collecting the information from all nodes in the network. The
experiments results not only illustrate that DTs algorithm could result in long lifetime clus-
ters than others with any density of sensor networks, but also show that the well-distributed
clusters are achieved. Similar to AHP scheme, DTs only suits small-size network with no
expansibility requirement.

A fundamental observation is that any CH election mechanism that is based on a concrete
metric, e.g. the residual energy level, the number of neighbors, the cost, can be manipulated in
principle. Though in most solutions the CHs are determine based on a synthetic value, yet dif-
ferent composite operators are introduced in MCDM process. However, it is assumed that the
criteria (attributes or objectives) are independent and uncorrelated in the solutions mentioned
above. In the real world, most criteria have inter-dependent or interactive characteristics,
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so that they cannot be evaluated by conventional additive measures. Thus the optimal resource
cannot be configured, which also makes the performance of the entire network affected.

In order to improve the network performance as much as possible, especially in energy
efficiency, we propose a new MCDM CH selection scheme based on trapezoidal fuzzy AHP
and hierarchical fuzzy integral in this paper. Three aspects and six attributes, which are likely
to directly influence the network lifetime, are taken into account. The three aspects are energy
status, QoS impact and node location. Each aspect includes two attributes, which are {resid-
ual energy, communication cost between a node and its neighbors}, {link quality, restart
number} and {number of neighbors, node marginality}, respectively. Every node performs
the proposed selection approach in a distributed fashion. The simulation results exhibit the
MCDM CH selection scheme based on trapezoidal fuzzy AHP and hierarchical fuzzy integral
can effectively prolong the network lifetime.

3 System Model

3.1 Network Model

We consider a model which is well suited for these sensor networks. It is based on the similar
models used in [4,21].

(1) All sensor nodes cannot move after being deployed, and each node has a unique ID.
(2) There is only one BS which lies outside the network.
(3) All sensor nodes are homogeneous. All nodes are synchronized in time.
(4) Each node has the ability to aggregate data; as a result several data packets can be

compressed as one packet.
(5) All the nodes are energy constrained with a uniform initial energy allocation. Each node

has a fixed number of transmission power levels and power control capability to vary
their transmission power.

(6) The BS has a constant power supply and so, has no energy constraints.
(7) Nodes are location-aware, i.e. equipped with GPS-capable antennae. Sensor nodes are

aware of base station location.
(8) The bidirectional channel is defined throughout the entire network.

3.2 Wireless Channel Model

The same wireless channel model is put to use in LEACH [3] and this paper, which is com-
posed of the free space model and the multipath fading model. The following equations
present the calculation of transmission and receiving energy consumption for a k-bit packet
over distance d .

Et (k, d) =
{

k Eelec + kε f sd2 d < d0

k Eelec + kεmpd4 d � d0
(1)

Er (k) = k Eelec (2)

In the equations, Eelec represents the energy consumption in the transmitter or receiver
circuitry. ε f s and εmp indicate the energy dissipation of the transmitter amplifier in the free
space model and the multipath fading model, respectively. If a node spends energy E f usion

to aggregate one bit, then the energy used in aggregating m data packets to a single packet is:

E f (m, k) = mk E f usion (3)
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3.3 The Hierarchical Fuzzy Integral Model

On account of some inherent interdependence or interactivity among the criteria, the non-
interactive or independent assumption is not realistic in WSNs. Since the fuzzy integral
model does not need to assume independency of one criterion from another, it can be used
in non-linear situations [22]. Therefore, the hierarchical fuzzy integral is introduced here to
analyze and solve the interactive and interdependent criteria issue.

3.3.1 λ-Fuzzy Measure

Let X = {x1, x2, . . . , xn} be the finite set of criteria, and let P(X) denote the power set of X
or set of all subsets of X .

Definition 1 A fuzzy measure on the set X of criteria is a set function g : P(X) ∈ [0, 1]
satisfying the following axioms.

(1) g(φ) = 0, g(X) = 1. (boundary conditions)
(2) If A, B ⊂ P(X) and A ⊂ B, then g(A) � g(B). (monotonicity)

(4)

Let gλ be a λ-fuzzy measure, and a special kind of fuzzy measure defined on P(X) of
a finite set X and satisfying the finite λ-rule. Sugeno [23] introduced the so-called λ fuzzy
measure satisfying the following additional property:

∀A, B ∈ P(X), A ∩ B = φ,

gλ(A ∪ B) = gλ(A)+ gλ(B)+ λgλ(A)gλ(B), λ ∈ (−1,∞) (5)

According to the definition of gλ, the finite set {x1, x2, . . . , xn} mapping to function gλ

can be written using fuzzy density gi = gλ({xi }) as:

gλ({x1, x2, . . . , xn}) =
n∑

i=1

gi + λ

n−1∑
i1=1

n∑
i2=i1+1

gi 1gi 2 + · · · + λn−1g1g2 · · · gn

= 1

λ

∣∣∣∣∣
n∏

i=1

(1+ λgi )− 1

∣∣∣∣∣ , where λ ∈ (−1,∞) (6)

From boundary condition gλ(X) = 1, the λ value of λ-fuzzy measure gλ can be calculated
by solving

1+ λ =
n∏

i=1

(1+ λgi ) (7)

3.3.2 Fuzzy Integral

Definition 2 (Fuzzy integral) Let g be a fuzzy measure on X and h be a measurable function
from X to [0,1]. Assuming that h(x1) � h(x2) � · · · � h(xn), we can construct Sugeno
fuzzy integral as follows:

e(h) =
∫
X

hdg = n
max
i=1

min(h(xi ), gλ(Hi )), (8)

where H1 = {x1}, H2 = {x1, x2}, . . . , Hn = {x1, x2, . . . , xn}.
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Fig. 2 The hierarchical fuzzy integral model structure

In practice, h can be regarded as the performance of a particular attribute for the alterna-
tives while g stands for the grade of subjective importance (weight) of each attribute. A fuzzy
integral of h with respect to g gives the overall evaluation for each alternative [22,24,25].

3.3.3 The Hierarchical Fuzzy Integral Model

The hierarchical fuzzy integral model is constructed based on AHP structure, as shown in
Fig. 2. If each circle represents an attribute, then the upper-levels objects’ evaluation values
can be computed through the evaluation values and the grades of importance on the lower-
level objects calculated on integrals Eq. (8). From Fig. 2, h11

1 , h11
2 , . . . , h11

s1 are the evaluation
values of the bottom-levels objects while g11

1 , g11
2 , . . . , g11

s1 are the grades of importance.
The result h1

1 is attained by using integrals Eq. (8) to compute the subtotal evaluation val-
ues of the first attribute on Level 4. The other subtotal evaluation values can be calculated
in the same way. Then all results are (h1

1, h1
2, . . . , h1

k1), . . . , (h
n
1, hn

2, . . . , hn
kn) respectively.

Likewise, there are n attributes on Level 3. Here h1
1, h1

2, . . . , h1
k1 are the evaluation values,

g1
1, g1

2, . . . , g1
k1 are the grades of importance, and the result is h1. The other subtotal evalua-

tion values are h2, . . . , hn . Finally, there is only one attribute on Level 2. Here h1, h2, . . . , hn

are the evaluation values and g1, g2, . . . , gn are the grades of importance. By using Eq. (8)
to compute the overall evaluation value, we get the final result on Level 1 [22,24].

4 CH Selection Scheme Based on Multiple Criteria Decision Making

Like the classical clustering algorithms, FAHP is also divided into rounds. Each round is com-
posed of a setup phase and a data transmission phase. Setup phase comprises two components,
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namely CHs selection and cluster formation, each of which contains two sub-processes, as
shown in Fig. 3.

In order to achieve energy efficiency and give consideration to QoS requirements, we take
the energy level, Qos status and node’s position as the main criteria. The sub-criteria are com-
posed of residual energy, communication cost between a node and its neighbors, link quality,
restart number, number of neighbors and node marginality. On the basis of the comprehensive
analysis and the evaluation indices of the CH selection, the hierarchy structure is constructed
as in Fig. 4. Under this hierarchy structure, the traditional weighted average method cannot
be applied on account of the interdependence or interactivity among the criteria on layer C.
In this case, we propose to use the MCDM approach based on trapezoidal fuzzy AHP and
hierarchical fuzzy integral as the CH selection scheme.

4.1 Initialization

In a distributed network, the node elects itself to be a CH only based on local information.
Therefore, it is necessary to collect the information of the neighborhood nodes within the
radio coverage region of a certain transmission power level above all. Here the radio coverage
region is assumed to be a circular disk, the radius of which should be optimal. We can achieve
this optimal radius based on the approach mentioned in [26]. For a commercial node, the
power adjustment function is indispensable. Just like the derailleur of an automobile, the
transmission power of a node is also divided into several levels, and each level can cover

Fig. 3 Time structure diagram of FAHP scheme

Fig. 4 Cluster head selection hierarchy structure
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a roughly fixed range. Therefore, there is one to one correspondence relationship between
transmission power level and coverage range. Hence, the corresponding optimal transmission
power level can be obtained by looking up table or testing.

Each node broadcasts a message to its vicinal nodes in initialization (node broadcast-
ing) phase. This message contains some information such as residual energy, coordinate,
re-transmission number and restart number. If broadcasting the message spends δ seconds,
on account of the assumption that all nodes are synchronized in time, each node can send
the message at I D × δ seconds in order to avoid interference and collision. Thereby the
total time of initialization phase is n× δ seconds, where n represents the total number of the
nodes. The node, which receives the messages from neighbors, stores the information into
memory. When initialization phase is over, each node will calculate out the maximum and
minimum energy of the neighbors, the ideal and the actual communication cost between the
node and the neighbors, the number of neighbors, and so on. In this way, the node can obtain
all parameters it wants.

Then each node starts to compute the values of these criteria (attributes).

• Residual Energy (E)

In self-organization schemes, CHs are nodes that consume more energy than cluster mem-
bers when they involve in aggregating, processing and routing data [27]. The energy is
the most important and scarce resource that should be considered first in sensor networks.
Generally, sensor nodes are limited in power and irreplaceable since these nodes have lim-
ited capacity and are unattended [28]. The evaluation value of residual energy is defined as
follows:

E = Er − Emin

Emax − Emin
, (9)

where the Emax and Emin are the maximum and minimum residual energy in the neighbor-
hood, respectively; and Er is the residual energy of a regular node. The higher the E value
is, the lesser energy-criticality the node has.

• The communication cost between a node and its neighbors (C)

From the Sect. 3.2, the free space model is used in the short-range wireless communica-
tion. As a result the energy that is consumed in transmitting a message is proportional to the
square of the distance between the candidate nodes and the source node. If a node wants to
be the CH, the energy used in transmitting messages will be the main communication cost.
Therefore, the evaluation value of communication cost is defined as follows:

C = d2
avg

d2
0

. (10)

Here d0 is the broadcasting radius of the node, which will be set the same in the broad-
casting phase of each node. The davg denotes the average distance between the node and the
neighbors. The smaller the C value is, the lower the cost of energy dissipation is.

• Link Quality (Q)

Wireless fading channel is usually random and time-variant, so that re-transmission will
take place once the receiver has not parsed signal correctly. Re-transmission needs extra
energy dissipation of the transmitter. Therefore, the link quality must be evaluated to achieve
energy efficiency. The evaluation value of link quality is calculated through:

Q = Qi − Qmin

Qmax − Qmin
, (11)
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where Qi represents the total re-transmission number between the neighbors and the node,
and the Qmax and Qmin are the maximum and minimum re-transmission number from the
neighborhood, respectively.

• Restart number (S)

The sensor node is in fact an embedded computer system. Sometimes, the main program is
likely to enter the endless loop state on account of hardware or software malfunction. In this
case, the watchdog circuit would restart the computer system in order to ensure the node to
continue working. However, frequent restart can consume additional energy. Thus, the more
the restart number is, the more the energy consumption must be. Therefore, the evaluation
value of restart number is defined as follows:

S = 1− S0 − Smin

Smax − Smin
, (12)

where S0 denotes the total restart number after the sensor network has been deployed;
Smax and Smin are the maximum and minimum restart number received from neighbors,
respectively.

• Number of Neighbors (D)

There is a direct relationship between the number of neighbors and CH. Theoretically,
the rule is that the closer the neighbors approach the optimal number, the greater probability
a node becomes a CH with. Therefore, the evaluation value of the number of neighbors is
described as:

D = |Di − D0|
D0

. (13)

In the equation, Di represents the number of neighbors of the node, and D0 is the optimal
number of neighbors. When the number of neighbors is equal to the optimal number, the
evaluation value of the number of neighbors should reach 1.

• Node Marginality (M)

If a node locates at the edge of the monitoring area, then part of its coverage region would
have no sensor nodes. In this case, the node only covers a limited region so that the total
number of CHs in the network will increase. The increment of CHs will result in redundant
energy dissipation. The node marginality is defined as follows:

M = q

4
, (14)

where q indicates the quadrant number that the neighbors occupied if the node sets itself as
the origin.

4.2 Determining the Grade of Criteria Importance (Weight)

The grade of criteria importance is determined from the questionnaire investigation and the
mapping membership function of the five scales of linguistic variables. The judgment matrix
based on trapezoidal fuzzy AHP is shown as follows:
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)
(1111)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

B2 − C =

⎛
⎜⎜⎜⎝

(1111) (1335) (2446)( 1
5

1
3

1
3 1

)
(1111) (1334)( 1

6
1
4

1
4

1
2

) ( 1
4

1
3

1
3 1

)
(1111)

⎞
⎟⎟⎟⎠ (17)

B3 − C =
⎛
⎝ (1111) (1446)( 1

6
1
4

1
4 1

)
(1111)

⎞
⎠ (18)

When AHP approach is used, it is indispensable to perform the consistency test on the
trapezoidal fuzzy judgment matrix in order to ensure the veracity of ranking. Therefore, the
consistency test must be performed before calculating the weight. From Eq. (15), we can
deduce the following matrix.

B =
⎛
⎜⎝

1 4 6
1
4 1 4
1
6

1
4 1

⎞
⎟⎠ (19)

As B is the judgment matrix with consistency, according to criterion, it’s obvious that
the trapezoidal fuzzy judgment matrix A− B is the fuzzy judgment matrix with consistency
[24,29]. So are the trapezoidal fuzzy judgment matrixes B1 − C, B2 − C and B3 − C.

The element of the judgment matrix can be obtained from the results of pairwise compar-
ison between criteria on the same layer. If the element of the judgment matrix is described

as a trapezoidal fuzzy number (l, m, n, s), then αi = (
∏m

j=1 li j )
1
m and α =∑m

i=1 αi can be
calculated. In the above two equations, m represents the matrix order; i and j denote the cri-
teria in pairwise comparison. Analogously, βi , β, γi , γ, δi and δ can also be obtained. Thus,

the weight of criteria on upper layer is
(

αi
δ

βi
γ

γi
β

δi
α

)
. In this way, each criterion on upper layer

assigns the weight to the corresponding criteria on lower layer. For example, the trapezoidal
fuzzy judgment matrix B1 − C is calculated as follows:
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First of all, αi , βi , γi , δi need to be computed.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = 5√
1× 2× 3× 3× 4 = 2.352

β1 = γ1 = 5√
1× 5× 7× 7× 8 = 4.555

δ1 = 5√
1× 7× 8× 9× 9 = 5.261

α2 = 5
√

1
7 × 1× 2× 2× 4 = 1.179

β2 = γ2 = 5
√

1
5 × 1× 4× 5× 8 = 2.074

δ2 = 5
√

1
2 × 1× 6× 8× 9 = 2.930

α3 = 5
√

1
8 × 1

6 × 1× 1× 3 = 0.574

β3 = γ3 = 5
√

1
7 × 1

4 × 1× 3× 5 = 0.883

δ3 = 5
√

1
3 × 1

2 × 1× 5× 7 = 1.423

α4 = 5
√

1
9 × 1

8 × 1
5 × 1× 1 = 0.308

β4 = γ4 = 5
√

1
7 × 1

6 × 1
3 × 1× 4 = 0.502

δ4 = 5
√

1
3 × 1

2 × 1× 1× 6 = 1.000

α5 = 5
√

1
9 × 1

9 × 1
7 × 1

7 × 1 = 0.197

β5 = γ5 = 5
√

1
8 × 1

8 × 1
5 × 1

4 × 1 = 0.239

δ5 = 5
√

1
4 × 1

4 × 1
3 × 1× 1 = 0.461

(20)

Based on the values above, α, β, γ, δ are obtained.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α = α1 + α2 + α3 + α4 + α5 = 2.352+ 1.179+ 0.574+ 0.308+ 0.197 = 4.610

β = β1 + β2 + β3 + β4 + β5 = 4.555+ 2.074+ 0.883+ 0.502+ 0.239 = 8.253

γ = γ1 + γ2 + γ3 + γ4 + γ5 = 4.555+ 2.074+ 0.883+ 0.502+ 0.239 = 8.253

δ = δ1 + δ2 + δ3 + δ4 + δ5 = 5.261+ 2.930+ 1.423+ 1.000+ 0.461 = 11.075

(21)

In this way, we can achieve the fuzzy weights—ω1, ω2, ω3, ω4, ω5, which are the weights
of guide line layer criteria C1, C2, C3, C4 and C5 to the general evaluating target B1, respec-
tively.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1 =
(

α1
δ

β1
γ

γ1
β

δ1
α

)
=

(
2.352
11.075

4.555
8.235

4.555
8.235

5.261
4.610

)
= (0.212 0.552 0.552 1.141)

ω2 =
(

α2
δ

β2
γ

γ2
β

δ2
α

)
= ( 1.179

11.075
2.074
8.235

2.074
8.235

2.930
4.610

) = (0.106 0.251 0.251 0.636)

ω3 =
(

α3
δ

β3
γ

γ3
β

δ3
α

)
=

(
0.574
11.075

0.883
8.235

0.883
8.235

1.423
4.610

)
= (0.052 0.107 0.107 0.309)

ω4 =
(

α4
δ

β4
γ

γ4
β

δ4
α

)
=

(
0.308
11.075

0.502
8.235

0.502
8.235

1.000
4.610

)
= (0.028 0.061 0.061 0.217)

ω5 =
(

α5
δ

β5
γ

γ5
β

δ5
α

)
= ( 0.197

11.075
0.239
8.235

0.239
8.235

0.461
4.610

) = (0.018 0.029 0.029 0.100)

(22)
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Table 1 The grade of criteria
importance based on trapezoidal
fuzzy AHP

Attribute B1 B2 B3 The grade of
criteria importance

0.6315 0.3263 0.0422

C1 0.5666 0.5564 0 0.5394

C2 0.3314 0 0 0.2093

C3 0.1014 0.3273 0 0.1708

C4 0.0006 0.1163 0 0.0383

C5 0 0 0.7081 0.0299

C6 0 0 0.2919 0.0123

If M = (r1 r2 r3 r4) and N = (s1 s2 s3 s4) are two trapezoidal fuzzy numbers, then
the possibility of M � N is:

V (ωM � ωN ) =
⎧⎨
⎩

1 r3 � s2
r4−s1

(r4−r3)+(s2−s1)
r3 � s2, r4 � s1

0 r4 � s1

(23)

According to the equation above, we can obtain follows.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (ω1 � ω2) = 1, V (ω2 � ω1) = 0.585

V (ω1 � ω3) = 1, V (ω3 � ω1) = 0.179

V (ω1 � ω4) = 1, V (ω4 � ω1) = 0.01

V (ω1 � ω5) = 1, V (ω5 � ω1) = 0

V (ω2 � ω3) = 1, V (ω3 � ω2) = 0.585

V (ω2 � ω4) = 1, V (ω4 � ω2) = 0.369

V (ω2 � ω5) = 1, V (ω5 � ω2) = 0

V (ω3 � ω4) = 1, V (ω4 � ω3) = 0.782

V (ω3 � ω5) = 1, V (ω5 � ω3) = 0.381

V (ω4 � ω5) = 1, V (ω5 � ω4) = 0.692

(24)

The single sequencing of each factor on layer k to Ak−1
h is calculated as follows:

Pk
h (Ak

i ) = min
j

V (ωk
ih � ωk

jh), (25)

where h represents the total factors related to the target Ak−1
h . After the unification processing

that is based on the two equations mentioned above, we get the crisp weight

Wi =
(

Pk
h

(
Ak

1

)
, Pk

h

(
Ak

2

)
, . . . , Pk

h

(
Ak

nk

))
=

nk∑
i=1

Pk
h

(
Ak

i

)
. (26)

In terms of this equation, the crisp weight which represents the criteria C1, C2, C3, C4

and C5 to the general evaluating target B1 is

W1 = (0.5666, 0.3314, 0.1014, 0.0006, 0). (27)

The other weights can be obtained in the same way, and the results are shown in Table 1.
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4.3 Fuzzy Integral for Evaluating the Nodes

After constructing a hierarchical multi-attributes evaluation system, fuzzy integral is applied
to gain a composite value based on Eq. (8). In Fig. 4, since the evaluation system of
the CHs constructs a tree hierarchy, the evaluation values are investigated from the bot-
tom of the tree. Based on the values of the criteria in Sect. 4.1 and the grades of
importance in Table 1, the overall evaluation of the node is obtained by determining the
grades of importance, assessment scores and hierarchical structure of the fuzzy integral in
Sect. 3.3.3.

4.4 Cluster Head Selection

Each node has obtained the composite value f in Sect. 4.3, then the next task is how to
relate this composite value to the CH election. For the reason that the probability that the
grade of criteria importance and the evaluation value are exactly same is little, it is almost
impossible that the composite value f takes the same value. The node whose composite
value f is bigger has higher probability of being the CH than the smaller one, because the
former has a great advantage over the latter in the energy efficiency. Then the composite
value f is mapped onto the time axis before the CH broadcasts by means of the timer trig-
gering, from which the node whose composite value is bigger broadcasts CH information
earlier.

A time Ti , whose time span is determined by the composite value f , is set for each node.
For the reason that the node whose composite value is bigger broadcasts CH information at
the earlier time, the equation below is available:

Ti = (1− f )× T ′, (28)

where T ′ is the total time in which all CHs broadcast information. However, data packets’
collisions are inevitable in case the nodes that hold the same composite value in the network
implement the simultaneous CH broadcasting. To avoid this, a random number between 0 and
1 is introduced to generate disturbance. A constant λ is set to be 0.9, by which the relationship
between Ti and the composite value f would not be affected. Thus the improved equation is
described here.

Ti = {1− [λ× f + (1− λ)× rand(0, 1)]} × T ′ (29)

The Eq. (29) makes the composite value mapped onto the time axis. Timer overtime, a
CH advertisement packet is broadcasted at the optimal radius by the CH node. The nodes
that can receive and parse this packet correctly will lose the chance of being the CHs if the
sender is lying in the neighbor list that stored in memory, which is called “first declaration
wins” [30]. That is, the sender utilizes radio signal to control the receiver’s action, so the node
that broadcasts the radio signal earliest in the vicinity can dictate the receiver to cancel the
sending behavior of this time. Thus, the node that can broadcast CH advertisement earliest
becomes the CH, while the other nodes in the vicinity only act on member nodes. This rule
makes the CHs distribute evenly in the entire network because the distance between any two
CHs exceeds the optimal radius.

The CH broadcasting is finished while T ′ is over.
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Algorithm 1 Clustering
1: if broadcastingTime then
2: send(I D, Er , RSn , RTn , X, Y ) // RSn represents restart number

while RTn indicates re-transmission number.
// X , Y is the coordinate of the node.

3: else
4: receive(I D, Er , RSn , RTn , X, Y )
5: end if
6: trapezoidal fuzzy judgement matrix construction based on questionnaire investigation
7: the consistency test
8: calculate the composite value f of the evaluating criteria
9: Ti ← (1− (0.9× f + 0.1× rand(0, 1)))× T ′
10: if no C H advertisement was received && Ti time out then
11: broadcast (C H )
12: head Flag← 1
13: end if
14: if total advertisementTime time out then
15: myC H ← select Best (C H)

16: join(myC H )
17: end if
18: if head Flag == 1 then
19: createTDMA()
20: broadcast(T DM A)
21: else
22: receive(T DM A)
23: end if

4.5 Cluster Formation

On receiving the advertisement of CHs, the member nodes select the nearest CH and reply
to a Join packet back to the corresponding CH using the CSMA MAC protocol. The distance
between the member node and the corresponding CH is evaluated as well.

At the sensor node level, the sensors can be scheduled to sense the environment at dif-
ferent samples or time intervals and sleep as much as possible in order to conserve battery
power. Although some information might be lost, this is an effective way to optimize energy
consumption [31].

If the distance between the member node and the CH is more than its distance to the BS,
the member node will communicate with the BS directly at a fixed time slice regardless of
corresponding CH while go to dormancy at the rest time to save energy.

The CH assigns a time slot for each member after receiving all join information, by which
a TDMA schedule is schemed to indicate when each member in the cluster can transmit.
Then the schedule is broadcasted back to the members in the cluster.

As only the CH selection scheme is investigated in this paper, the inter-cluster route is not
mentioned here.

To reduce inter-cluster interference, the usage of a DSSS PHY will be adopted in FAHP.
Each cluster in FAHP communicates using DSSS(direct-sequence spread spectrum). Each
cluster uses a unique spreading code, so that all the nodes in the cluster transmit their
data to the CH using this spreading code and the CH filters all received signals using
this spreading code. With enough spreading, neighboring clusters’ radio signals will be
filtered out as noise during de-correlation and not corrupt the transmission from nodes in the
cluster.
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Table 2 Parameters in
simulation

Parameters Value

Simulation area (m) 100 × 100

BS location (50,175)

Initial energy (J) 2

Data packet size (bytes) 500

Threshold distance (m) 86

Packet header size (bytes) 25

Eelec ( nJ/bit ) 50

E f usion ( nJ/bit/signal ) 5

ε f s ( pJ/bit/m2 ) 10

εmp ( pJ/bit/m4 ) 0.0013

Round(second) 20

4.6 Data Transmission

At data transmission phase, the member nodes collect data and send information to the CH
in the scheduled transmission time, and then turn off the radio. Based on the received signal
strength of the CH advertisement and the assumption of the symmetrical radio channel, the
transmission can use a minimum amount of energy. The CH must keep a working state to
receive the information come from its members. When a frame of data from all the members
is received, the CH applies data fusion to aggregate the received data into a single packet.
Then the CH sends the aggregated data to the BS directly.

5 Simulations and Analysis

5.1 The Selection of Simulation Platform

NS2 is adopted as the simulation platform in this paper. NS2 is a discrete event simulator,
in which the object oriented design technique is introduced as well as plenty of function
models are furnished. It can simulate and analyze various networks’ protocols, and can draw
scientific conclusions about the performance analysis of the system.

LEACH, DCHS, and CHEF are simulated and compared with FAHP in the same scenario,
as the parameters are set in Table 2.

We executed 20 runs of the simulation for each of the four clustering algorithms that
need to be compared. The readings from these 20 trials were then averaged and plotted. The
simulation results are described in Figs. 5, 6, 7 and 8.

5.2 Performance Analysis

Figure 5 shows the number of nodes alive over runtime, from which it is obvious that the
whole lifetime of FAHP increases twice approximately more than that of LEACH on the total
runtime of the entire network, as well as 50% and 30% more than that of DCHS and CHEF,
respectively. The time of the first dead node is at 390th second in FAHP while the 210th,
270th and 310th second are available in LEACH, DCHS and CHEF algorithms, which is a
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Fig. 5 Alive nodes comparison diagram for 200 nodes

Fig. 6 Energy analysis chart for 200 nodes

great improvement. LEACH algorithm selects CHs assuming that each time a node becomes
a CH it dissipates the same amount of energy. This leads to inefficient selection of heads
towards the end of simulation thereby depleting the network fast. DCHS and CHEF improve
the performance by introducing some attributes into the algorithms. DCHS takes energy as
metric while CHEF takes energy and local distance into account, hence the lifetime of them
is longer than that of LEACH. However, FAHP not only takes more attributes into account,
but also handles the non-linear relationship properly, thereby the longevity is achieved. In
addition, the optimal broadcasting radius is adopted to reduce the energy consumption of the
entire network, which makes the energy of each node be saved and be used efficiently, so
that a substantial increase in the network lifetime is expected.

Figure 6 demonstrates the energy consumed by all nodes during the simulation runs. As
expected, FAHP adopts the rule “first declaration wins” resulting in evenly distributed clus-
ters. As a consequence, energy dissipation in FAHP occurs at a lower rate than the other
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Fig. 7 Traffic comparison diagram for 200 nodes

Fig. 8 Overhead within each round among the four algorithms for 200 nodes

algorithms. The simulations show that FAHP scheme have consumed similar energy at each
round during the network operation while the different energy dissipation at each round in
the other algorithms, which demonstrates that our proposed scheme is able to keep a stable
trend in energy dissipation as the round increasing while there are sudden increments dur-
ing implementing the other algorithms. From the energy consumption in one round of the
four algorithms, FAHP achieves an improvement of 20% more than DCHS, 35% more than
LEACH and CHEF, as described in Fig. 6. In 0–50 or even 100 s, the energy consumption
in FAHP is basically consistent with the classic algorithms. It should be said that the unex-
pected is reasonable, because from the appearance FAHP requires multiple communications
during neighbor information collection, which should consume more energy than the clas-
sical algorithms. However, FAHP uses lower optimal transmission power level instead of
maximum transmission power in the other algorithms, which can reduce part of the energy
consumption. In addition, the control message in the neighbor information collection process
is much shorter than the data packet, so that compared to the energy consumption of data
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packet, the energy dissipation of the control message can almost be ignored. Therefore, in
the beginning, FAHP achieves similar energy consumption as the other algorithms.

The traffic to the BS plotted against simulation time is illustrated in Fig. 7, from which it
is indicated that the total number of packets delivered to the BS is cumulative and steadily
increases as we increase the simulation time. The gradual decrease of the slope of the curve
towards the end of simulation is because the nodes are failing as the simulation progresses
in time. Our results also indicate that the traffic of FAHP is somewhat less than that of the
other algorithms. This is mainly due to the fact that FAHP requires multiple control mes-
sage interactions in order to collect attributes, which occupies some data communication
time so that the total traffic decrease. Our results show that the total number of packets
reaches nearly 35,000 in FAHP while this value cannot reach 35,000 in the other algorithms.
Moreover, the cluster heads are chosen randomly in LEACH, while FAHP makes cluster
heads evenly distributed. This reduces the energy loss due to transmission for the nodes
expected to transmit frequently, thereby delivering the same amount of data with less energy
dissipation.

LEACH, DCHS, CHEF and FAHP belong to active clustering algorithms. The common
feature of this kind of algorithm is that control messages are required to exchange information
among neighboring nodes to select CHs, as a result considerable overhead will be generated.
From Fig. 8 we can observe that FAHP generates similar overhead to the other algorithms in
each round. This is a very interesting phenomenon because FAHP uses more control messages
than the other algorithms, especially in all nodes’ broadcasting attributes information. The
reason for the phenomenon above is that FAHP sends messages only at the optimal transmis-
sion power, while the maximum transmission power is used in the other algorithms, which
result in excessive energy is consumed. For example, if n sensor nodes are evenly distributed
in the whole network, then FAHP will send n control messages more than the other algorithms.
At the same time, if the optimal number of cluster heads is k, each node will receive about
n/k−1 control messages. Thus FAHP will receive n×(n/k − 1) control messages more than
the other algorithms. Assumed that the largest communication distance is 135 m, and the opti-
mal one is 25 m, which also used in simulation, then according to the wireless channel model
defined in Sect. 3.2 and the parameters in Table 2, the energy consumption of the maximum
transmission power level is 50+ 0.0013× 1354 × 10−3 = 481.7958 nJ/bit while the energy
consumption of the optimal transmission power level is 50+10×252×10−3 = 56.25 nJ/bit.
In LEACH algorithm, maximum transmission power level is used in the process of the CH
advertisement and member nodes joining cluster, so the energy used in these two periods is
k × 8× 481.7958+ (n − k)× 8× 481.7958 = 3854.3664 nnJ, in which the decimal digit
“8” represents the bits that each information occupied. Similarly, the energy consumed in the
process of the node broadcasting, CH advertisement and member nodes joining cluster of
FAHP is 6× 8× n× 56.25+ k × 8× 56.25+ (n − k)× 8× 56.25 = 3150 nnJ. Therefore,
although the control message of our proposed scheme is more, there is still no major increase
in the overhead of our proposed scheme.

5.3 Complexity Analysis

Time complexity is a significant indicator to any algorithm. In the scheme described in Sect. 4,
the sensors elect themselves as CHs and join a cluster independent of each other. Hence, the
algorithm can utilize opportunities for concurrency in communication. The run-time of the
algorithm is the time to transmit a message from a member node to the CH of its cluster.
Since the members in a cluster are at most one hop away from the corresponding CH, the
time complexity of the proposed scheme to generate a clustering hierarchy is O(1) in a
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contention-free environment. In an environment where there is contention for media access,
the complexity of FAHP will depend on the underlying MAC protocol. For any reasonable
MAC protocol, the complexity will be much lower than O(n), where n is the number of
nodes in the network [32]. This makes our proposed scheme more suitable for large-scale
networks.

As a resource-limited system, message complexity is also important in wireless sen-
sor networks. It is assumed that there are nodes in the network, and the nodes broadcast
n〈I D, Er , RSn, RTn, X, Y 〉 messages during the CHs selection, followed by k CHs broad-
casting if k CHs are selected all over the network. Then n− k join messages are broadcasted
by all member nodes. Furthermore, k CHs will broadcast at most k TDMA schedule subse-
quently. Thus, the total message spending in the phase of a cluster forming is n+k+n−k+k =
2n + k in the whole network, which denotes that the message complexity of FAHP in the
setup phase is O(n).

6 Conclusions

Cluster head selection scheme is an important research issue, which will also influence the
operational efficiency of network. On the basis of analysis and comparison of some classical
algorithms, a novel MCDM CH selection scheme is proposed. The trapezoidal fuzzy AHP
and hierarchical fuzzy integral is introduced into the scheme in order to make the most cri-
teria that can influence energy efficiency become a single one to determine the selection of
the CHs, which is the main innovation and improvement of the classical algorithms. More-
over, the new scheme supports data fusion at CHs, which can eliminate the redundant data
effectively so as to reduce the traffic and save the energy. The simulation results demonstrate
that the lifetime and energy efficiency of FAHP is better than the classical algorithms. In
addition, the rule that “first declaration wins” is introduced into the CH advertisement in
order to achieve a better cluster head distribution all over the network.

Although improvements are made in some performance, there are some limits, e.g. time
synchrony and fault tolerant, in using this algorithm yet. FAHP belongs to the active clus-
tering algorithm so that this scheme is most appropriate when constant monitoring by the
sensor network is needed.

In further work, the spare CH scheme should be introduced to promote the robustness.
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