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Abstract In a (t, n)-threshold multi-secret sharing scheme, several secrets are shared
among n participants in such a way that any t (or more) of them can reconstruct the secrets
while a group of (t − 1) can not obtain any information. Therefore, when such schemes are
used to distribute sensitive information over a network, fault tolerance property is achieved
since even if n − t of the nodes go out of function, the remaining t nodes suffice to recover the
information. In 2009, Wang et al. proposed a verifiable (t, n)-threshold multi-secret sharing
scheme (WTS) based on elliptic curves in which the secrets can change periodically [Wire-
less Pers. Commun., Springer-Verlage, doi:10.1007/s11277-009-9875-0]. In this paper, we
propose a verifiable (t, n)-threshold multi-secret sharing scheme based on bilinear maps.
Our scheme does not require a secure channel and participants can verify the shares pooled
in the reconstruction phase. Our proposed scheme is multi-use such that in order to change
the secrets, it is sufficient to renew some public information. Furthermore, the proposed
scheme is flexible to the threshold value. Therefore, our proposed scheme has all the merits
of (WTS), however, we achieve two major improvements. First when the secrets are to be
changed, we require to publish fewer public values. This reduction can be very important
in certain applications such as steganographic use of secret sharing schemes. The second is
that (WTS) is designed with the assumption that the number of secrets (m) is equal to the
threshold t so that the case m > t is handled by repeating the scheme

⌈m
t

⌉
times. However,

in designing the scheme we do not assume any restrictions on the number of secrets.
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1 Introduction

Secret sharing schemes are cryptographic procedures to share a secret K among a set of
participants P such that only authorized subsets of P can recover the secret. Such schemes
were independently introduced by Shamir [1] and Blakley [2] to safeguard cryptographic
keys from loss. In recent times, secret sharing schemes have found applications in diverse
areas such as access control systems, e-voting schemes and digital cash protocols, to name a
few.

A very important example of a secret sharing scheme is the (t, n)-threshold scheme which
allows a mutually trusted party (called the dealer) to distribute the shares among n participants
in such a way that any t of them can recover the original secret, but any group knowing only
t − 1 or fewer shares can not. Shamir’s scheme, which is based on polynomial interpolation,
and Blakley’s scheme, based on the intersection of affine hyperplanes, are examples of such
schemes. However, one can distinguish the following drawbacks in these schemes [3]:

1. Only one secret can be shared during one secret sharing process.
2. Once the secret has been reconstructed, it is required that the dealer redistributes a fresh

share over a secure channel to every participant.
3. A malicious participant may provide a fake share to other participants so that s/he which

may become the only one who gets to reconstruct the true secret.

In order to overcome the first problem, multi-secret sharing schemes (MSS) were proposed
by He and Dawson [4]. In these schemes, several secrets can be shared while holding one
share by each participant. Jackson et al. [5], classified multi-secret sharing scheme into“one-
time-use” and “multi-use” types, where in the latter type the second problem is resolved,
i.e., after reconstructing the secrets, the distributed shares must not be updated. Problem 3
is tackled by adding the concept of verifiability. In a verifiable secret sharing scheme the
validity of the shares can be verified, hence neither the dealer nor participants are able to
cheat. The first realization of a verifiable secret sharing scheme was proposed by Chor et al.
[6]. Verifiability plays an important role in protocols such as secure multi-party computations
[7,8]. Recently, elliptic curves and bilinear maps have been used in providing verifiability
[9,10]. In this paper, we propose a verifiable (t, n)-threshold multi-secret sharing scheme
based on elliptic curves and bilinear maps. Our proposal is of multi-use type and is flexible to
the threshold value. We compare our scheme to Wang et al.’s scheme [10] and show that our
scheme needs fewer number of public values. In Sect. 5, we describe why this is very impor-
tant for a secret sharing scheme. Moreover, contrary to Wang et al.’s scheme, the number of
secrets can be greater than the threshold.

The rest of this paper is organized as follows: in Sect. 2 elliptic curves and bilinear maps
are briefly introduced and a review of the scheme of Wang et al. is presented. The proposed
scheme is presented in Sect. 3 and its security analysis is given in Sect. 4. Section 5 provides
comparison with (WTS) and conclusions appear in Sect. 6.

2 Related Work

In this section, we first briefly introduce elliptic curves (2.1) and bilinear maps (2.2) and then
proceed to review the scheme of Wang et al. (2.3).
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2.1 Elliptic Curves

An elliptic curve defined over G F(q) is given by the equation: E : y2 = x3 + ax + b, where
a, b ∈ G F(q) and 4a3 + 27b2 �= 0. The points of E (plus an infinite point O) together with
a special operator “+”, form an finite abelian group.

The elliptic curve discrete logarithm problem (ECDLP): Given two points P and Q on
E(G F(q)), find the integer k such that k P = Q if such a k exists. There is no polynomial
time algorithm (on lgq) for solving ECDLP [11].

2.2 Bilinear Maps

Let G be a cyclic additive group generated by P whose order is a prime q . We define the
following problems for all a, b, c ∈ Z∗

q :

1. Computational Diffie-Hellman Problem (CDHP): Given (P, a P, bP), compute abP .
2. Decision Diffie-Hellman Problem (DDHP): Given (P, a P, bP, cP), decide whether

c = ab in Z∗
q .

We call G a Gap Diffie-Hellman (GDH) group, if DDHP can be solved in polynomial
time, but no probabilistic algorithm can solve CDHP with non-negligible advantage within
polynomial time [12].

No candidate for GDH group is known except some supersingular elliptic curve or hyper-
elliptic curve over finite field, which are equipped with a bilinear map such as the Weil pairing
[13], the Tate pairing [14] or the self bilinear pairing in [15]. Let G1 be a cyclic additive
group generated by P whose order is a prime α, and let G2 be a cyclic multiplicative group
of the same order α. We assume that the DDHP problems in G1 is easy, the DDHP problem
in G2 is hard, and both the CDHP problem in G1 and the discrete logarithm problem (DLP)
in G2 are hard. A bilinear map is a map e : G1 × G1 → G2 with the following properties.

1. Bilinear: e(a P, bQ) = e(P, Q)ab for all P, Q ∈ G1 and a, b ∈ Z∗
α .

2. Non-degenerate: There exists P, Q ∈ G1 , such that e(P, Q) �= 1G2 .
3. Computable: There is an efficient algorithm to compute e(P, Q) ∈ G2 , for all P,

Q ∈ G1.

2.3 Review Of Wang et al.’s Scheme

There are four phases: (1) system setup phase, (2) secrets distribution phase, (3) secrets
reconstruction phase and finally (4) secrets update phase.

2.3.1 System Setup Phase

a. Let E(Fq) be a supersingular elliptic curve (q is a prime number). For some prime num-
ber α, there is an additive subgroup G1 with order α and an extended field, including a
multiplicative group G2 of non-zero elements of order α such that the assumptions of
Sect. 2.2 holds. Let e : G1×G1 → G2 be the bilinear mapping. The dealer chooses a gen-
erator P of G1, chooses a function h : G1 → Z∗

α , and publishes < α, G1, G2, e, P, h >

on the bulletin.
b. Each participant Ui , (i = 1, . . . , n) downloads the public information < α, G1, G2,

e, P, h >, randomly selects a private number si ∈ Z∗
α , computes Pi = si P and then

sends Pi to the dealer.
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c. The dealer ensures that Pi �= Pj where i �= j in order to keep different participants
from using the same secret key and publishes Pi (i = 1, . . . , n) on the bulletin.

2.3.2 Secrets Distribution Phase

It is assumed that there are as many secrets as the threshold value t , i.e., K1, . . . , Kt are the
secrets. The dealer performs the following steps:

a. Randomly selects s ∈ Z∗
α , compute s P and publish it. Then s/he uses Pi (i=0, . . . , n−1)

and the hash function h to compute the matrix Mn×t of rank t :

M =

⎡

⎢
⎢
⎢
⎣

h(ss0 P) h2(ss0 P) . . . ht (ss0 P)

h(ss1 P) h2(ss1 P) . . . ht (ss1 P)
...

...
. . .

...

h(ssn−1 P) h2(ssn−1 P) . . . ht (ssn−1 P)

⎤

⎥
⎥
⎥
⎦

(1)

b. Puts all t secrets which he wants shared in a t×1 column vector X = (K1, K2, . . . , Kt )
T ,

where T represents the transpose of a matrix, and computes an (n ×1) column vector V :

V = M × X =

⎡

⎢⎢⎢
⎣

h(ss0 P) . . . ht (ss0 P)

h(ss1 P) . . . ht (ss1 P)
...

. . .
...

h(ssn−1 P) . . . ht (ssn−1 P)

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

K1

K2
...

Kt

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

I0

I1
...

In−1

⎤

⎥⎥⎥
⎦

(2)

c. Publishes Ii (i = 0, . . . , n − 1) on the bulletin.

2.3.3 Secrets Reconstruction Phase

Let t participants Ui (i = 0, . . . , t − 1) pool their shares ssi P(i = 0, . . . , t − 1). Each
Ui generates the i-th row of the matrix M and sends it to the combiner who is one of the
participants. Now, the combiner solves t equations to recover the t unknown secrets.

2.3.4 Secrets Update Phase

The dealer chooses a new threshold t ′, new secrets K ′
1, . . . , K ′

t , and the new seed s′ and
proceeds as secret distribution phase and finally publishes I ′

i (i = 0, . . . , n − 1) and s′ P .

3 The Proposed Scheme

In this section, we propose a new verifiable dynamic (t, n)-threshold multi-secret sharing
scheme using elliptic curves and bilinear pairing. The scheme consists of four phases: (1)
initialization phase, (2) secrets distribution phase, (3) secrets reconstruction and verification
phase, and (4) secrets redistribution phase. Throughout this section, we denote the dealer by
D, the participants by U0, . . . , Un−1 and the secrets by K1, . . . , Km . Note that unlike the
scheme of Wang et al., we do not restrict the number of secrets by t .
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3.1 Initialization Phase

This phase is the same as Sect. 2.3.1, i.e., D publishes < α, G1, G2, e, P, h > and Pi , i =
0, . . . , n − 1 where Pi = si P with Ui ’s secret shadow si . D further publishes a generator
g ∈ Z∗

α .

3.2 Secrets Distribution Phase

In this phase D performs the following steps.

a. Randomly selects s ∈ Z∗
α and publishes s P .

b. Constructs the matrix M(n+m−t)×(n+m):

M =

⎡

⎢
⎢
⎢
⎣

1 1 . . . 1
1 g . . . gn+m−1

...
...

. . .
...

1 gn+m−t−1 . . . g(n+m−t−1)(n+m−1)

⎤

⎥
⎥
⎥
⎦

(3)

c. Computes ssi P together with h(ssi P) for i = 0, . . . , n − 1 and constructs the column
vector
A = [h(ss0 P), h(ss1 P), . . . , h(ssn−1 P), K1, . . . , Km)]T .

d. Publishes < s P, C0, . . . , Cn+m−t−1 > where

M × A =

⎡

⎢⎢⎢
⎣

1 1 . . . 1
1 g . . . gn+m−1

...
...

. . .
...

1 gn+m−t−1 . . . g(n+m−t−1)(n+m−1)

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

h(ss0 P)
...

h(ssn−1 P)

K1
...

Km

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

C0

C1
...

Cn+m−t−1

⎤

⎥⎥⎥
⎦

(4)

3.3 Secrets Reconstruction and Verification Phase

Note that (4) is a system of (n + m − t) linear equations in (n + m) unknowns over G2. Let t
participants Ui (i = 0, . . . , t−1) pool their shares. When the combiner (who can be one of the
participants) receives si s P(i = 0, . . . , t − 1), s/he first checks if e(ssi P, P) = e(s P, si P).
By the property of bilinear mapping, this ensures verifiability of the shares.

Next, s/he computes h(ssi P) for i = 0, . . . , t −1. Therefore, t of the unknowns of (4) are
determined and the combiner can now solve the system of n +m − t equations and n +m − t
unknowns to recover the (m) secrets.

3.4 Secrets Redistribution Phase

The dealer chooses a new threshold t ′, new secrets K ′
1, . . . , K ′

m′ , and the new seed s′. The
dealer then proceeds as secrets distribution phase and finally publishes < s′ P, C ′

0, . . . ,

C ′
n+m′−t ′−1 >. Unlike the scheme of Wang et al., we do not need to reconstruct the coeffi-

cient matrix (4) and only add or remove some of its rows and columns.
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4 Security Analysis

We conduct security analysis of the proposed scheme by proving the following theorems.

Theorem 1 Any t or more participants can reconstruct m secrets K1, K2, . . . , Km.

Proof Without loss of generality, suppose that Ui (i = 0, . . . , t − 1) provide their secret
shadows si s P(i = 0, . . . , t − 1). Then, (4) is reduced to a system of n + m − t equations
and n + m − t unknowns with coefficient matrix:

M ′ =

⎡

⎢
⎢
⎢
⎣

1 . . . 1
gt . . . gn+m−1

...
. . .

...

g(t)(n+m−t−1) . . . g(n+m−1)(n+m−t−1)

⎤

⎥
⎥
⎥
⎦

(5)

M ′ is a Vandermonde matrix on distinct elements
(
gt , . . . , gn+m−t−1

)
. Therefore,

det
(
M ′) �= 0 and its inverse can be computed to obtain the secrets. ��

Theorem 2 Any group of (t − 1) (or fewer) participants can’t compute any secrets.

Proof This is clear since in this case, (4) is reduced to a system of m + n − t equations and
more than n + m − t unknowns. ��

Theorem 3 The proposed scheme does not require a secure channel, i.e., the participants’
shadows si can not be obtained from Pi (= si P).

Proof If an attacker wants to compute si from si P , s/he must solve an instance of the elliptic
curve discrete logarithm problem in G1 which is hard by our assumption on the choice of
G1. The same is true if the attacker chooses to use bilinear map e(si P, P) = e(P, P)si and
reduce ECDLP in G1 to an instance of DLP in G2. ��

Theorem 4 The dealer’s secret information s can not be obtained from public
information s P.

Proof If an attacker wants to compute s from s P , s/he must solve an instance of the elliptic
curve discrete logarithm problem in G1 which is hard by our assumption on the choice of
G1. The same is true if the attacker chooses to use bilinear map e(s P, P) = e(P, P)s and
reduce ECDLP in G1 to an instance of DLP in G2. ��

Theorem 5 The shares provided by participants during the reconstruction phase can be
verified so that cheaters are identified.

Proof Suppose that Ui provides si s P . As mentioned above, given si P and s P , it is compu-
tationally infeasible to compute si s P in G1. Therefore, only the dealer or Ui could compute
this value. Hence, upon receiving si s P , we can use the property of bilinear mapping and
check if e(ssi P, P) = e(s P, si P) holds to identify cheaters. ��
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5 Comparison

In this section, we compare our method with the scheme of Wang et al. [10] in two aspects:
(1) the number of values published publicly and (2) the restrictions on m. we show that our
scheme outperforms (WTS) in both of them.

We would like to mention that having few public values can be considered as an important
factor in a secret sharing scheme. As an example, consider the steganographic sharing of a
secret image considered in [16–19]. In this application, there is a secret image which should
be shared secretely among n participants over open channels such as the internet. Therefore,
data transmission should be done in such a way that invokes no suspicion and further any t of
shareholders can reconstruct the image with verification. One possible solution is to select n
innocent-looking images (called cover images) corresponding to participants and then embed
the data of the secret image into these cover images using a secret sharing scheme. Now,
since we have steganographic considerations, we can not publicly announce any values and
must embed all information in cover images. Clearly, as the amount of data to be embedded
increase, the visual quality of the resulting cover images will deteriorate and this in turn
invokes suspicion. Therefore, if a secret sharing scheme has many public values (or very
large ones), it can not be considered suitable for such applications.

We now consider the number of public values in our proposed scheme, denoted here by
N PVOurs, and the same number in (WTS), denoted by N PVWTS. We have the following
lemma.

Lemma N PVOurs ≤ N PVWTS.

Proof We first compute N PVOurs. During initialization, n values (si P, i = 0, . . . , n − 1)

are published. However, since these values are published only once (and the same happens in
(WTS)), we do not consider them. During secret distribution, < s P, C0, . . . , Cn+m−t−1 >

i.e. n + m − t + 1 public values are announced. Therefore, N PVOurs = n + m − t + 1. Note
that this number is the same whether m ≤ t or m > t .

In (WTS), again n values are once published for setup. However, in distribution phase,
we have:

N PV WTS =
{

n + 1, if m ≤ t,⌈m
t

⌉
n + 1, otherwise.

Moreover, to handle the case (m > t), (WTS) is applied
⌈m

t

⌉
times. Now, It is not difficult

to show that N PVOurs ≤ N PVWTS. To see this

I f m ≤ t : n + 1 ≥ n + m − t + 1

I f m > t : n ≥ t ⇒ n

t
(m − t) ≥ m − t ⇒

(m

t
− 1

)
n ≥ m − t

⇒
⌈m

t

⌉
n + 1 ≥ n + m − t + 1

��
Another advantage for the proposed scheme is that the same matrix M (3) is used even

if t or more the secrets are changed and there is no need to reconstruct it. However, if these
changes occur in (WTS), the dealer should choose a new s and therefore the coefficient matrix
M (1) should be reconstructed. Furthermore, in order to construct M in (WTS), the combiner
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Table 1 Comparison between
the two schemes

Proposed scheme Wang et al.

Precomputation of M Yes No

Restrictions on m No Yes

Verification Yes Yes

Updating Yes Yes

Multi-use Yes Yes

Ecc-based Yes Yes

No. of public values if m ≤ t n + m − t + 1 n + 1

in Dist. phase

if m > t n + m − t + 1
⌈ m

t
⌉

n + 1

No. of public values t t (t − 1)

in Recon. phase

should wait till all the shares are provided, while our matrix M is constant and can be com-
puted in advance. Finally, as seen from the proof of the above Lemma, our scheme does not
restrict the number of secrets m as (WTS) do. Note also that all the other merits of (WTA)
such as verification ability, updating of the secrets, having multi-use property as well as being
ECC-based are preserved by our proposal. The results of comparison are summarized in the
following table.

6 Conclusion

In this paper, we propose a new dynamic threshold multi-secret sharing scheme. Our scheme
is multi-use so that participants can use their private shadows even if the secrets change. The
scheme can further identify cheaters using bilinear mapping. Compared to existing methods
in the literature, our scheme achieves better performance regarding public values (Table 1).
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