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Abstract We consider a problem of optimizing multi-cell downlink throughput in multiple-
input single-output (MISO) beamforming with single user per sub-channel in the wireless
communication system. Previous work based on the generalization of uplink-downlink dual-
ity has already reformulated the maximum achievable downlink throughput into dual uplink
throughput maximization problem. Since the dual uplink problem is nonconvex, it is difficult
to find its optimal solution. The main contribution of this paper is a novel practical algorithm
based on heuristic to find the solution of beamforer design satisfying the necessary optimality
conditions of the dual uplink problem. Meanwhile the converged beamforming vectors can in
turn improve the system sum rate significantly. As the dual problem is a mixed optimization,
we also provide algorithms for its two sub-optimal problems. Simulation results validate the
convergence and the efficiency of proposed algorithms.

Keywords Multi-cell · Downlink beamforming · Throughput maximization ·
Power constraint · Numerical algorithm

1 Introduction

The cellular mobile communication systems nowadays are mostly based on orthogonal
frequency-division multiplexing (OFDM) technology so that intra-cell interference can be
neglected. In order to further improve the system throughput, to lower inter-cell interference,
which is inherent to the cellular systems, is one of the main issues for research. Traditional
approaches mostly mitigate interferences from neighboring sites by partitioning resources,
e.g. frequency resources, for different sites [1–3]. However, full spectral reuse can allow the
system to achieve higher capacity due to the high resource utilization efficiency. By provid-
ing each base station (BS) with the whole frequency resources, coordinated scheduling [4–6]
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and joint transmit beamforming (or joint processing) [7–9] are the new and hot topics for
inter-cell interference mitigation and strengthening received signal, which requires sharing
information between cooperative BSs. Compared with the joint processing, where both data
and channel information of all users need to be shared, coordinated scheduling requires only
the channel information, which may be practicable in some scenarios that do not have enough
bandwidth.

The objective of the problem is usually multi-cell downlink throughput maximization,
which is a constrained nonconvex optimization problem and it needs some skills to solve
this problem. Efficient sub-optimal algorithms for coordinated scheduling in the single-input
single-output (SISO) system are proposed in [4]. Its main idea is to solve the frequency
and power resources allocation separately, which includes the combinatorial optimization
problem of scheduling and the numerical optimization problem of power allocation. To be
specific, it fixes the frequency resource allocation while finding the optimal power allocation.
The lower bound of the power allocation turns to be a convex problem and it can use the
iteration method to increase the lower bound gradually until convergence. Then it fixes power
allocation to solve the optimal frequency resource allocation problem. Its strategy proved to
be nondecreasing and converge to the first order optimal conditions. Though the complexi-
ties of the algorithms are determined by the times of iteration which is uncertain, it offers a
better way to find the near-optimal solution than exhaustive search algorithm. Some greedy
schemes are proposed in [5,6] for coordinated scheduling and power allocation with single
antenna transmission. In addition, a general introduction to convex optimization for commu-
nications and signal processing is given in [10] including linear and nonlinear problems with
constraints.

So far, there have been plenty of works on the downlink beamforming for multi-antenna
wireless systems in the past. A main tool to solve these problems is uplink-downlink duality
which was also discussed in [10]. Authors in [11] used Lagrangian duality to prove that
for both the beamforming problem and the capacity region problem the duality of a multi-
antenna downlink channel with per-antenna power constraints is an uplink channel with an
uncertain and diagonally constrained noise. Under the signal to interference and noise ratio
(SINR) constraints, Ref. [12] provided an algorithm to find the global optimal downlink
beamforming vector to minimize transmit power.

One can see that there are not many works on coordinated multi-cell downlink beamform-
ing problem, which aims to maximize the throughput of the systems. Some greedy algorithms
were proposed in [13], which considered this problem under a graphic framework and solved
the problem by separating interference reduction and resource allocation intuitively. In [14],
the uplink-downlink beamforming duality with SINR constraints in the multi-cell environ-
ment was considered. In that work, it was shown that the optimal downlink beamforming
in MISO system with single user per sub-channel can be the minimum mean squared error
(MMSE) beamforming in the dual uplink. It also proved that the dual uplink problem and
the primal downlink problem achieve the same optimal throughput.

Our work is mainly based on the theoretical analysis of [14]. The dual uplink prob-
lem considered in this paper is a min-max mixed optimal problem. Since the dual
problem is a nonconvex optimization, it is not easy to compute the globally optimal solu-
tion. The main contribution of this paper is a novel efficient algorithm for improving
the sum rate of the system through finding the solution satisfying the necessary optimal-
ity conditions of dual problem. Numerical results show the convergence of the proposed
algorithm.
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Multi-cell Optimal Downlink Beamforming Algorithm 895

The remainder of this paper is organized as follows. Section 2 describes the problem under
consideration. I-MC-DB algorithm is presented in Sect. 3. In Sect. 4, numerical examples
are provided. Conclusions are shown in Sect. 5.

Notation C
i × j represents the complex space with i × j dimensions. (·)T and (·)H denote

transpose and the transpose conjugate and ‖·‖F to be the Frobenius norm.

2 Problem Formulation

We consider a multi-cell downlink cellular network with B base stations (BSs). Each BS is
equipped with M transmitting antennas and each mobile station (MS) with single receiving
antenna. As we mainly focus on designing the beamforming vectors, the scheduling proce-
dure and power allocation are assumed to be performed before. Therefore, for simplicity,
we also assume that only one MS is assigned to a sub-channel in each cell. Perfect channel
state information of all the channels in the system is available in every BS. For a specific
sub-channel, the downlink throughput maximization beamforming problem with constraints
can be formulated as
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where pb is the transmit power from the bth BS, where b ∈ {1, 2, . . . , B} and B is the
number of BSs, hb′,b ∈ C

M×1 is the channel response vector from the b′th BS to the bth
MS, ub ∈ C

M×1 is the transmit beamforming vector with unit norm at the bth BS, σ 2
n is

the power of additive white Gaussian noise (AWGN), p = [p1, p2, . . . , pB ] is the BS trans-
mit power vector, PT = [PT,1, PT,2, . . . , PT,B] is the BS target transmit power vector, and
U1 = {

x |‖x‖ = 1, x ∈ C
M×1

}
. The primal downlink problem of (1) proved to achieve the

same optimum value as a dual uplink problem in [14]:
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1T ḡ ≤ 1T PT , q̄T PT ≤ σ 2

n 1T PT ,

q̄b ≥ 0,∀b, ḡb ≥ 0,∀b,

(2)

where ḡ = [ḡ1, . . . , ḡB ] and q̄ = [q̄1, . . . , q̄B ] are the vectors of dual variables, and 1 is a
B × 1 vector where all elements are 1.

This dual problem can be seen as an uplink beamforming problem in which ḡ will be
regarded as the transmit power vector of the MSs and q̄ the thermal noise power vector. The
optimum point satisfies the following expression:

u∗
b = ζb

(
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)−1

hbb, (3)

where u∗
b, ḡ∗

b′ and q̄∗
b′ are the optimal values of ub, ḡb′ and q̄b′ , respectively and ζb is to

insure that
∣
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∣
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min
q̄b

max
ub∈U1,ḡb
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(4)

One of the most difficulties of these problems is the non-convexity of both the primal and
the dual problems. Therefore, it may be not feasible to find its global optimal solution. In
this work, we provide a greedy iterative algorithm to improve the objective value of the pri-
mal problem by obtaining the near-optimal solution of the dual problem, which satisfies the
necessary optimality conditions.

3 Numerical Algorithm

In this section, we propose a numerical algorithm to solve (4), which we call the iterative
multi-cell downlink beamforming (I-MC-DB) algorithm, which includes three sub-algo-
rithms of which two are also iterative algorithms. When the I-MC-DB converges, ḡ and q̄
must satisfy their necessary conditions respectively.

3.1 Transmit power optimization

We fix ub and q̄b, then (4) can be expressed as

max
ḡ≥0
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s.t. 1T ḡ ≤ 1T PT .

(5)

By this, the dual problem is transformed into optimization of power allocation for single
antenna scenario. Similar with the spectrum balancing problem in multi-user digital sub-
scriber lines (DSL) networks [15] or coordinated scheduling and power allocation problem
in downlink OFDMA networks [4], we provide an algorithm to solve this.

Problem (5) is nonconvex due to the difference of concave functions in ḡ. We introduce
the following lower bound derived in [15]

α log2 z + β ≤ log2(1 + z)

{
α = z0

1+z0
,

β = log2(1 + z0) − z0
1+z0

log2 z0,
(6)

which is tight at z = z0. With (6) the objective function in (5) can be relaxed as
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)

, (7)
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where αb and βb are calculated according to (6). In order to reformulate (7) into a concave
optimization problem, a transformation g̃b = ln g̃b,∀b is applied, therefore we have
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Note that log-sum-exp function is convex [16], so each term in (8) is concave, and the
constraint is convex since it is a sum of convex exponentials. Therefore, (8) is a standard
concave maximization problem.

The Lagrangian function of (8) is

L(g̃, λg) = ỹ (g̃) − λg
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)

, (9)

where λg is the Lagrangian multiplier. So the dual problem is min
λg
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dual maximization can be solved by finding the stationary point with respect to g̃:
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Transform the partial derivative with g̃ = ln ḡ and we can get
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ln 2λg +∑
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which is a fixed-point equation.

Proposition 1 The right hand side of equation (10) is a standard interference function.

Proof Let
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According to the definition in [17], if (11) is a standard interference function, then when
ḡ ≥ 0, we should have

1) Positivity (Ib (ḡ) > 0):
Positivity is obvious.

2) Monotonicity (if ḡ ≥ ḡ′, then Ib (ḡ) ≥ Ib
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ḡ′)):
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Table 1 The sub-algorithm 1 1: Initializest the maximum iteration number smax and set s= 0

2: Initialize ḡ0 and g̃0

3: Calculate the initial α0 and β0 using (6)

4: Repeat:

4.1 update g̃s+1 using (10) and ḡs+1

4.2 d = ∣
∣ḡs+1 − ḡs

∣
∣

4.3 update αs+1 and βs+1 using (6)

4.4 s = s+ 1

5: Until convergence (d ≤ �1) or s = smax

So

Ib (ḡ) ≥ Ib
(
ḡ′) .

3) Scalability (γ Ib (ḡ) ≥ Ib (γ ḡ) ,∀γ > 1):
γ Ib (ḡ) = αb

ln 2
λg
γ

+∑b′ �=b
αb′ h̄b′b∑

j �=b′ γ ḡ j h̄b′ j + γ q̄b′
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ln 2λg+∑b′ �=b
αb′ h̄b′b∑

j �=b′ γ ḡ j h̄b′ j + q̄b′
= Ib (γ ḡ) .

According to the property of standard interference function, ḡb can be iteratively updated
by this fixed-point equation and it can have a global convergence.

We use a gradient descent to update λg for fixed ḡ

λ(s+1)
g =

[

λ(s)
g + ε1

(
∑

b

ḡb −
∑

b
PT,b

)]+
, (12)

where s is the iteration number with ε1 a scalar step size which is small enough and [·]+
is defined as [·]+ = max (0, ·). When the power constraint is violated, λg would go up and
vice-versa. An equilibrium value would be reached and solves the problem where both λg

and ḡ are converged.
After the searching procedure for ḡb and λg , α and β should be updated according to (6)

to tighten the relaxation, and thereafter a new iteration starts.
To sum up, the procedure for finding the optimal ḡb is show in Table 1.

Proposition 2 The iterative procedure above improves the value of objective function at each
iteration and converges to the solution satisfying the Karush-Kuhn-Tucker (KKT) conditions
[16].

Proof We can see that the objective function value would be improved due to the fact that

· · · ≤ fαs ,βs (ḡs) = fαs ,βs (g̃s)

≤ fαs ,βs (ḡs+1) = fαs+1,βs+1 (ḡs+1) ≤ · · ·
where s is the iteration number.

The finite transmit power and channel gain lead to an upper bound to the sum rate, so the
procedure must converge. And the transmit powers must satisfy the KKT conditions when
convergent [4].
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3.2 Optimal thermal noise power

In this case we fix ub and ḡb to derive the following:

min
q̄
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)

,
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n 1T PT
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(13)

Proposition 3 (13) is a convex optimization problem and its solution must be global optimal.

Proof One can obtain the Hesse matrix of the objective function of (13), which is a diagonal
matrix. The diagonal elements can be expressed as follow:

aii =
(

2
(∑

j �=i g j hi j + qi

)
+ gi hii

)
gi hii

ln 2

((∑
j �=i g j hi j + qi

)2 + gi hii
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)2 ≥ 0, i ∈ {1, 2, . . . , B},

where aii represents the element in the i-th row and the i-th column of the Hesse matrix. With
q̄ > 0 and all other elements nonnegative, the Hesse matrix is semi-positive definite, which
indicate the convexity of the objective function. With linear constraints, (13) is a convex
optimization problem. Thus its KKT point is global optimal.

The Lagrangian dual problem of (13) can be denoted as: max
λq

min
q̄≥0

L(q̄, λq), λq ≥ 0, where

L(q̄, λq) =
∑
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with λq the Lagrangian multiplier.
Using KKT condition and considering the constraint of q̄ ≥ 0, we can update q̄ as follow:

q̄b = max

{
−ḡbh̄bb + t

2
−
∑

b′ �=b
ḡb′ h̄bb′ , 0

}

,

t =
√
(
ḡbh̄bb

)2 + ḡbh̄bb

ln 2
(
λqPT,b

) . (15)

And λq is updated by

λ(s+1)
q =

[

λ(s)
q + ε2

(
∑

b

q̄b PT,b − σ 2
n

∑

b

PT,b

)]+
. (16)

The procedure of its solution is very similar to part A (Transmit power optimization)
which is denoted in Table 2.

Convergence follows from convexity. It should be noted that the changes between adjoin-
ing two iterations may be very little as discussed in the next section since the updating step
needs to be small enough. One can easily show that the convergence must occur on the
boundary where the constraint is satisfied with equality since increasing the value of arbi-
trary q̄b can lower the value of the objective function as long as q̄T PT < σ 2

n 1T PT . So in
practice, to speedup convergence, we can add another convergence condition to increase the
updating step appropriately, which is that the constraint of the weighed sum of q̄ is satisfied
with equality, while still avoid advance convergence.
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Table 2 The sub-algorithm 2 1: Initialize λq,0 and Smax , set s = 0

2: Repeat

2.1 update q̄b,s+1 by (14), dq = ∣
∣q̄b,s+1 − q̄b,s

∣
∣

2.2 update λq,s+1 by (15), dλ = ∣
∣λq,s+1 − λq,s

∣
∣

2.3 s = s + 1

3: Until convergence (dq ≤ �2anddλ ≤ �3) or s = smax

3.3 Optimal Beamforming Vector

Assume that
∣
∣u∗

b

∣
∣ = 1. Here we use the optimal MMSE receive criterion to update the uplink

beamforming:

ub = ζb

(
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)−1

hbb. (17)

Proof The received signal is
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,

where xb′ indicates the signal from the b′th user, and
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)
=
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.

According to the MMSE criterion:

ub = arg min
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E
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)
,
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E
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Let ∇
ub

E
(|xb − yb|2

) = 0, we have

−√ḡbhbb +
∑

b′
ḡb′hbb′ (hbb′)H ub + q̄bIub = 0.

Since q>
b 0 in actual system,

∑
b′ gb′hbb′ (hbb′)H + qbI is positive definite matrix and it

can be inversed. After some manipulation, the proposition can be proved.
ζb is calculated by

ζb = 1
∣
∣
∣
(∑

b′ ḡ∗
b′hbb′ (hbb′)H + q̄∗

b′I
)−1

hbb

∣
∣
∣
,∀b. (18)
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Table 3 The I-MC-DB
algorithm

1: Initialize the max iteration number smax and set s = 0

2: Initialize ḡ0 and q̄0

3: Repeat

3.1 update beamforming matrix Us+1 according to (17),

du = ∥
∥Us+1 − Us

∥
∥

F
3.2 solve the sub-problem (5) and update ḡs+1

3.3 solve (12) to obtain q̄s+1

3.4 s = s + 1

4: Until convergence (du ≤ �4) or s = smax

3.4 I- MC-DB Algorithm

Since the update of u∗
b in part C may be different from the previous one, it needs to imple-

ment the algorithms in part A and part B again to update the corresponding values of optimal
transmission power and thermal noise power. Motivated by the idea of solving the prob-
lems in Sects. 3.1 and 3.2, which are mixed optimizations, we solve the inner maximization
and the outer minimization in (4) separately. This yields the I-MC-DB algorithm which is
described in Table 3. We apply the converged beamforming vectors to the primal problem.
The convergence of this iteration algorithm has not been proved in this work. However, sim-
ulations in the next section show that the algorithm can always converge and the converged
beamforming vectors can always improve the system sum rate. It is worth noting that the
iteration algorithm (10) works for asynchronous situation, To be specific, the updates of some
ḡb can use the outdated information of ḡb′ where b′ �= b. In other words, it allows updates of
some ḡbbe faster than others but still achieve the unique convergence [17]. In addition when
parts of the channel information are outdated due to some kinds of delay, performance of the
proposed algorithm will be affected.

In fact, the sequence of the three sub-optimal processes can be exchanged and, as a result,
different starting points may lead to different converged points. Here we discuss three staring
points:

Starting point case 1: each BS calculates the beamforming vector to the corresponding
MS independently aiming at maximize SNR in the MS side and can be expressed as

ub = (hbb)
H

|hbb| (19)

The algorithm starts with these beamforming vectors. The sequence of the three sub-opti-
mal processes is first solving (5) and then solving (12), which is followed by the update of
beamforming matrix.

Starting point case 2: it starts with the initialized ḡ and q̄ instead of beamforming vectors
and is the same as that depicted in Table 3.

Starting point case 3: the starting beamforming vectors are set randomly. The sequence
of the sub-optimal processes is the same as Starting point case 1.
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4 Simulation

Our simulation considers 7 cells and 4 antennas in each BS. Note that scenario considered in
this work can include multiple MSs with each sub-channel of each cell assigned just one MS.
Thus, to evaluate the performance of the proposed algorithm, it is equivalent to assume that
only a single MS is allocated to each cell. We evaluate the performance of the cell instead
of the performance of a specific sub-channel. To simplify the model, we also assume each
BS has the same transmit power value. The main parameters of simulation are expressed as
follows:

• Transmission power of BS: 46 dBm
• System frequency bandwidth: 10 MHz
• Power spectral density of AWGN: −174 dBm/Hz
• Antenna configuration: 4 * 1, Omni antenna
• Path loss: L = 128.1 + 37.6 log10(R), R in kilometers
• Penetration Loss: 20 dB
• Shannon capacity log2 (1 + SI N R) is used to calculate the rate of each MS.

In addition, �1,�2,�3,�4 are set as 0.01, 0.01, 0.01 * 10−8 and 0.01 respectively. It should
also be note that the update step and the tolerable error for sub-problem (8) need to be small
enough to avoid premature convergence.

We first show the results of the sub-algorithms of Sects. 3.1 and 3.2. Convergence of the
sub-algorithm 1 and sub-algorithm 2 in Sect. 3 are described in Figs. 1 and 2 respectively.
In Fig. 1, where x-axis denotes the times of updating the lower bound of the objective func-

Fig. 1 Convergence of transmit
power optimization
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Fig. 3 Convergence of I-MC-DB algorithm

tion, it can be confirmed that the value of objective function of sub-maximization problem
is monotonically increased at each operation and the sub-algorithm 1 turns to be efficient.
Interestingly, we found that when the I-MC-DB converges, the values of transmit power usu-
ally lie near the boundary, which is coincident with the conclusion in [18] about the optimal
power values. It is observed from Fig. 2 that it may need several hundred times of updating
q̄ to find the optimal solution of sub-minimization. This is due to the fact that the step for
updating Lagrangian dual variable λq needs to be small enough since it is in the denominator
of (14) and a small change of λq may make a large difference of certain qb, especially when
λq is near zero. There are two different convergent traces for sub-algorithm 2 which can be
found in Fig. 2. Fig. 2a describes the initial values of q̄ by (14) are out of feasible domain
and Fig. 2b shows the situation of those initial values are in the feasible domain. This can
be explained by the convexity of the problem since the objective function of (12) is mono-
tonically decreasing when q̄ ≥ 0. And if the weighted sum of initial values of q̄ exceeds the
sum power constraint, the value of the objective function computed by q̄ will be less than
the optimal value of (12) and the convergent trace will be monotonically increasing, which
applies to Fig. 2a, else the convergent trace goes as Fig. 2b. So it is a global convergence
for all starting points. In the simulation, values of q̄ are much less than ḡb′ h̄bb′ , thus, the
optimization of q̄ will have very little affection on the dual sum rate in each iteration.

In Fig. 3, the norm residue (Euclidean norm distance between the optimal beamforming
matrix and the beamforming matrix at the sth iteration) is illustrated against the number of
iterations, which is defined as [4]

Rs = ∥
∥us − u∗∥∥

F ,

where us is the beamforming matrix at the sth iteration and u∗ indicates the optimal beam-
forming matrix. In Fig. 3, the x-axis presents the iteration times of computing (3), (5) and
(12) together. Convergences of I-MC-DB algorithm are always found during plenty times of
simulations and efficient since the numbers of iteration are always less than 30 times. This
is an encouraging result for further study of the convergence of this algorithm. It should
be noted that the value of norm residue of beamforming matrix over iteration may not be
monotonic since every time updating beamforming matrix by MMSE will change the value
of ḡ and q̄ and they would in turn affect the

optimal beamformers through MMSE method (3). However, when it is near the con-
vergent beamforming matrix, it turns to be monotonic. It is observed that the convergence
performance of our algorithms showed in the figures is in accordance with the theoretical
derivation.
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Fig. 4 CDF curves of the relative
improvement on sum rate
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Compared with the traditional way of beamforming, where each BS schedules indepen-
dently and computes the beamforming vectors based on (19), the relative improvements on
sum rate of the proposed algorithm is depicted in Fig. 4. Even though the optimum solution
of the dual problem may not be reached, the converged beamforming vectors can always
contribute significantly to the improvement of system sum rate, with the average gain being
about 100%, as shown in the figure. It also shows that starting point case 2 performs com-
paratively better than the other two cases. Therefore, the proposed algorithm shows to be
efficient.

5 Conclusion

In this work, we have investigated the strategy for multi-cell optimal downlink beamform-
ing problem in MISO system with per-base station power constraints and single user per
cell. This paper deals with beamformer design for multi-cell transmission, which is still a
largely unresolved problem. An iterative algorithm to obtain sub-optimal solutions satisfy-
ing the necessary optimality conditions of the dual uplink problem is provided. Moreover,
the converged beamforming vectors of the proposed algorithm can be employed to improve
system sum rate. Numerical results validate the convergence and efficiency of the provided
I-MC-DB algorithm. However, numbers of open problems still remain. Indeed, convergence
of I-MC-DB algorithm is not rigorously proven. Also, solutions of the optimum value of the
dual uplink problem and the starting points of transmit power and noise power of I-MC-BD
need to be further studied.
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