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Abstract In this paper, the performance of multiuser CDMA systems with different space
time code schemes is investigated over Nakagami fading channel. Low-complexity multi-
user receiver schemes are developed for space-time coded CDMA systems with perfect and
imperfect channel state information (CSI). The schemes can make full use of the complex
orthogonality of space-time coding to obtain the linear decoding complexity, and thus sim-
plify the exponential decoding complexity of the existing scheme greatly. Moreover, it can
achieve almost the same performance as the existing scheme. Based on the bit error rate
(BER) analysis of the systems, the theoretical calculation expressions of average BER are
derived in detail for both perfect CSI and imperfect CSI, respectively. As a result, tight
closed-form BER expressions are obtained for space-time coded CDMA with orthogonal
spreading code, and approximate closed-form BER expressions are attained for space-time
coded CDMA with quasi-orthogonal spreading code. Computer simulation for BER shows
that the theoretical analysis and simulation are in good agreement. The results show that the
space-time coded CDMA systems have BER performance degradation for imperfect CSI.

Keywords Multiuser receiver · Code division multiple access (CDMA) ·
Space-time block code · Nakagami fading channel · Imperfect channel state information

1 Introduction

The ever increasing demand of information has stimulated much interest in MIMO
communication system for the development of reliable high data rate transmission over
fading channels [1,2]. Especially, space-time coding scheme in MIMO systems can provide
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effective diversity for combating fading effect [3–10], and has received much interest. But in
[4], it is proved that for space-time block code (STBC), a complex orthogonal design which
provides full diversity and full rate is not possible for more than two antennae. Considering
that full rate transmission is very important to implement high data rate service in wireless
environment, and also important for low signal to noise ratios [5], and that low-complexity
space-time block decoding algorithm is necessary due to the restriction of receiver size and
power, low-complexity and full-rate space-time coding (STC) schemes for three transmit
antenna (3Tx) and 4Tx are developed in our previous paper [6]. These full-rate schemes can
form efficient spatial interleaving. So concatenated with channel coding, their performance
will be improved greatly and outperform the full-diversity STC schemes. Moreover, their
complexity for encoding and decoding is also low.

However, the above space-time coding schemes are designed for single-user environment,
thus they will be not suitable for multiuser scenario in practice. Hence, it is necessary to extend
the above schemes into multiuser CDMA scenario for practical purposes. For superior space-
time coded CDMA (STC-CDMA) system, it not only possesses the performance of good
STC schemes, but also effectively suppresses the multiuser interference (MUI). Based on
different multiuser space-time coded system models, Refs. [11–13] give the corresponding
receiver schemes. In [12], the bit error rate (BER) analysis is provided for STC-CDMA
system with the conventional matched filter receiver, but the analysis method and system
model are applicable only to the BPSK modulation and downlink, and the BER analysis is
restricted to the integer m for Nakagami-m fading channel. In [13], a minimum variance linear
receiver scheme for multiuser MIMO system is proposed, but the system does not consider
the advantage offered by CDMA technique, and needs to design and optimize the weighted
matrix to suppress MUI. As a result, the computational complexity will be improved greatly.
The performance of space-time coded multicarrier CDMA system is analyzed in Nakagami
fading channel [14], but the analysis is limited in Alamouti’s space-time code and BPSK
modulation. Reference [11] gives the effective combination of CDMA system and different
STCs, and the developed decorrelative receiver scheme can decouple the detection of differ-
ent users, but the decoding complexity is exponential for each user, which will not benefit
practical application. Moreover, [11,13] do not provide the BER performance analysis, and
the schemes are limited in Rayleigh fading channel. Furthermore, the above references all
assumed that the perfect channel state information (CSI) can be available at the receiver. In
practice, however, the CSI will be imperfect due to the channel estimation errors. For this
reason, we will give the performance analysis of different multiuser STC-CDMA systems
in Nakgami fading channel with imperfect CSI. By utilizing the maximum ratio combin-
ing (MRC) method and complex orthogonality of STC, low-complexity multiuser receiver
schemes are developed for both perfect and imperfect CSI in Nakagami fading channel. With
the developed schemes, each user has linear rather than exponential decoding complexity
after decorrelating. Based on the orthogonal/quasi-orthogonal spreading codes and the math-
ematical calculation, the theoretical average BER expressions of the systems are derived in
detail for both perfect and imperfect CSI. With these expressions, the impact of imperfect CSI
on the BER performance can be effectively analyzed and assessed. Simulation results show
that the performance of the proposed scheme is very close to that of the existing scheme [11]
with low computation complexity. Moreover, the derived theoretical expressions can match
the simulated values well.

The notations we use throughout this paper are as follows. Bold upper case and lower case
letters denote matrices and column vectors, respectively. The superscripts (·)H , (·)T and (·)∗
represent the Hermitian transposition, transposition, and complex conjugation, respectively.
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E{.} denotes the statistical expectation, ‖.‖F denotes the matrix Frobenius norm, and we
denote the M × M identity matrix as IM and all-zero matrix as 0M .

2 System Model

In this section, we consider a synchronous CDMA communication system with M transmit
antennae and K receive antennae and U active users that operates in a MIMO Nakagami
flat-fading environment. The multiuser CDMA system adopts the space-time coding scheme
(such as full-diversity G2, G3, H3, G4, H4 code [3], full-rate X code [6]) to transmit the data.
For each user u, the complex element hu,ki = αu,ki exp( jθu,ki ) denotes the channel gain from
the i-th transmit antenna to the k-th receive antenna, which is assumed to be constant over a
frame but varied from one frame to another. It has unit power. For Nakagami fading channel,
the probability density function (pdf) of αu,ik is given by [15,16]

f (α) = 2

�(m)

(m

�

)m
α2m−1 exp(−mα2/�) (1)

where �(.) is the Gamma function [17], � = E(α2
u,ki ) = 1 is the average fading power

and m ≥ 1/2 [15]. The phase θu,ki is uniformly distributed over [0, 2π]. The Rayleigh
distribution, which corresponds to m = 1, is a special case of Nakagami-m distribu-
tion.

A complex orthogonal space-time coding, which is represented by an M × T trans-
mission matrix D, is used to encode L input symbols into an M-dimensional vector
sequence of T time slots. The matrix D is a linear combination of L symbols satisfy-
ing the complex orthogonality: DDH = ε(|d1|2 + · · · + |dL |2)IM , where {dl}l=1,...,L are
the L input symbols from the constellation ϒ , and ε is a constant which depends on
space-time coding matrix [10]. For example, ε = 1 if G2, H3 and H4 are employed; and
ε = 2 if G3 and G4 are used. Accordingly, the rate of the STBC is R = L/T . Con-
sidering that H4 and H3 code have high rate (3/4), but their code matrices have lots of
complex multiplication and complex addition. So in this paper, simple 3/4-rate STBC
schemes [7,8], denoted by H′

4 for 4Tx and H′
3 for 3Tx, are employed for space-time coded

CDMA system and corresponding performance analysis. The code matrices for H′
4 and H′

3
are

H′
4 =

⎡
⎢⎢⎣

s1 0 s2 −s3

0 s1 s∗
3 s∗

2−s∗
2 −s3 s∗

1 0
s∗

3 −s2 0 s∗
1

⎤
⎥⎥⎦ and H′

3 =
⎡
⎣

s1 0 s2 −s3

0 s1 s∗
3 s∗

2−s∗
2 −s3 s∗

1 0

⎤
⎦ (2)

respectively. For a fair comparison, the system throughput is defined as Throughput =
R × Rc × η [18], where Rc is code rate of the channel coding, η denotes the bandwidth
efficiency of modulation scheme.

3 Multiuser Receiver for STC-CDMA Systems with Perfect and Imperfect CSI

In this section, we will give multiuser receiver design for space-time coded CDMA
system for both perfect and imperfect CSI, and low-complexity decoding schemes are
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developed. For space-time coded CDMA system, the block length of space-time code is
set equal to P chip periods. Then, according to [11], the transmitted signal matrix of user u
at pth (p = 1, 2, . . . , P) chip period is written as

Gu(p) = DuSu(p) (3)

where Du is M × T space-time block coding matrix of user k, Su(p) is T × 1 spreading
code, and Su = [Su(1), . . ., Su(P)] corresponds to T normalized spreading codes of length
P used to spread Du for user u(u = 1, 2, . . ., U ), here conventional orthogonal Walsh–
Hadamard (W–H) code and quasi-orthogonal Gold code in CDMA system are considered.
We will employ these different spreading codes for different users as well. Based on the
analytical method in [11], at the receiver, we can obtain the baseband received signal at pth
(p = 1, 2, . . ., P) chip period as follows

R(p) =
U∑

u=1

√
ρuHuGu(p) + Z(p), p = 1, . . ., P (4)

where Hu = [hu]k,i is K × M channel matrix of user u. Z(p), p = 1, 2, . . ., P is K ×1 noise
vector, whose elements {zk(p), k = 1, . . ., K , p = 1, . . ., P} are independent, identically
distributed (i. i. d) complex Gaussian random variables with zero-mean and unit-variance.
Mρu denotes the average signal-to-noise ratio (SNR) per receive antenna for user u at the
receiver during the transmission of space-time coding matrix Du (which corresponds to P
chip periods), this SNR adopts the definition similar to [11] for comparison consistency.

Substituting (3) into (4) yields

R(p) =
U∑

u=1

√
ρu HuDuSu(p) + Z(p), p = 1, . . ., P (5)

In order to express (5) more compactly, we define the following matrices

Yu = √
ρuHuDu , corresponds to K × T matrix; Y = [Y1, Y2, . . ., YU ], corresponds to

K × U T matrix;
Su = [Su(1), . . ., Su(P)], corresponds to T × P matrix; S = [ST

1 , . . ., ST
U ]T , corresponds

to U T × P matrix;
R = [R(1), . . ., R(P)], corresponds to K ×P matrix; Z = [Z(1), . . ., Z(P)], corresponds
to K × P matrix.

Thus (5) is changed into

R =
U∑

u=1

YuSu + Z = YS + Z (6)

Then according to Ref. [19], the maximum likelihood (ML) estimate of Y conditioned on
{Hu, u = 1, . . ., U } and {Du, u = 1, . . ., U } is obtained by

Ŷ = RSH (SSH )−1 = Y + ZSH (SSH )−1 (7)

Here, the Moore–Penrose inverse matrix SH (SSH )−1 can be expressed as a multiuser
decorrelator [11,19], and thus the ML estimate Ŷ is effective output of the decorrelator with
the input being the received data R. By this decorrelator, the multiuser interference is can-
celled, and the detection of different users is decoupled. Based on the block structure of Y,
the ML estimate Ŷu of Yu can be easily achieved. While for user u, all data information on
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the transmitted code matrix Du is contained in Yu . Hence, we can evaluate the code matrix
and corresponding information symbols in terms of the achieved Ŷu .

According to the definition of Yu , we can assume that Ŷu = [ŷT
u,1, ŷT

u,2, . . . , ŷT
u,K ]T ,

where ŷu,k is a 1 × T row vector. Thus when G4 code scheme is employed, we have: T = 8
and

Ŷu =
⎡
⎣

ŷu,1
· · ·
ŷu,K

⎤
⎦ =

⎡
⎣

ŷu,11 ŷu,12 ŷu,13 ŷu,14 ŷu,15 ŷu,16 ŷu,17 ŷu,18

· · · · · · · · · · · · · · · · · · · · · · · ·
ŷu,K 1 ŷu,K 2 ŷu,K 3 ŷu,K 4 ŷu,K 5 ŷu,K 6 ŷu,K 7 ŷu,K 8

⎤
⎦ (8)

Since the transmitted information symbols constitute the code matrix Du , and Du is con-
tained in matrix Yu , the symbol decision values can be achieved by calculating Ŷu . Moreover,
we find that Yu has the same receiver signal form as conventional space-time codes in single
user scenario [6,10]. Considering that the receiver only knows the estimation Ĥu of channel
Hu . Thus, we may utilize the MRC method and complex orthogonality of space-time coding,
and obtain simple decoding scheme for the space-time coded CDMA system with G4 code
and imperfect CSI after performing multiuser decorrelation, i.e.,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d̂u,1 = arg min
du,1∈ϒ

∥∥∥∥
K∑

k=1

(
ŷu,k1ĥ∗

u,k1 + ŷu,k2ĥ∗
u,k2 + ŷu,k3ĥ∗

u,k3 + ŷu,k4ĥ∗
u,k4 + ŷ∗

u,k5ĥu,k1

+ŷ∗
u,k6ĥu,k2 + ŷ∗

u,k7ĥu,k3 + ŷ∗
u,k8ĥu,k4

)
− 2

√
ρu

K∑
k=1

4∑
i=1

(|ĥu,ki |2)du,1

∥∥∥∥
2

d̂u,2 = arg min
du,2∈ϒ

∥∥∥∥
K∑

k=1

(
ŷu,k1ĥ∗

u,k2 − ŷu,k2ĥ∗
u,k1 − ŷu,k3ĥ∗

u,k4 + ŷu,k4ĥ∗
u,k3 + ŷ∗

u,k5ĥu,k2

−ŷ∗
u,k6ĥu,k1 − ŷ∗

u,k7ĥu,k4 + ŷ∗
u,k8ĥu,k3

)
− 2

√
ρu

K∑
k=1

4∑
i=1

(|ĥu,ki |2)du,2

∥∥∥∥
2

d̂u,3 = arg min
du,3∈ϒ

∥∥∥∥
K∑

k=1

(
ŷu,k1ĥ∗

u,k3 + ŷu,k2ĥ∗
u,k4 − ŷu,k3ĥ∗

u,k1 − ŷu,k4ĥ∗
u,k2 + ŷ∗

u,k5ĥu,k3

+ŷ∗
u,k6ĥu,k4 − ŷ∗

u,k7ĥu,k1 − ŷ∗
u,k8ĥu,k2

)
− 2

√
ρu

K∑
k=1

4∑
i=1

(|ĥu,ki |2)du,3

∥∥∥∥
2

d̂u,4 = arg min
du,4∈ϒ

∥∥∥∥
K∑

k=1

(
ŷu,k3ĥ∗

u,k2 − ŷu,k1ĥ∗
u,k4 − ŷu,k2ĥ∗

u,k3 − ŷu,k4ĥ∗
u,k1 − ŷ∗

u,k5ĥu,k4

+ŷ∗
u,k7ĥu,k2 − ŷ∗

u,k6ĥu,k3 − ŷ∗
u,k8ĥu,k1

)
− 2

√
ρu

K∑
k=1

4∑
i=1

(|ĥu,ki |2)du,4

∥∥∥∥
2

(9)

where {ĥu,ki } are the elements of Ĥu , and they are the estimated values of channel coefficients
{hu,ki }. Due to the estimation errors, the available CSI will be imperfect, and thus the esti-
mation matrix Ĥu is different with actual channel matrix Hu . Only with perfect estimation,
Ĥu will be the same as Hu .

Similarly, when another 4-antenna H4 code in (2) is used for STC-CDMA system (corre-
spondingly, T = 4 and L = 3), we may obtain the following simple decoding scheme with
imperfect CSI:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d̂u,1 = arg min
du,1∈ϒ

∥∥∥∥∥
K∑

k=1

[
ŷu,k1ĥ∗

u,k1 + ŷu,k2ĥ∗
u,k2+ŷ∗

u,k3ĥu,k3 + ŷ∗
u,k4ĥu,k4

]
−√

ρu
K∑

k=1

4∑
i=1

(|ĥu,ki |2)du,1

∥∥∥∥∥
2

d̂u,2 = arg min
du,2∈ϒ

∥∥∥∥∥
K∑

k=1

[
ŷu,k3ĥ∗

u,k1 + ŷ∗
u,k4ĥu,k2 − ŷ∗

u,k1ĥu,k3−ŷu,k2ĥ∗
u,k4

]
−√

ρu
K∑

k=1

4∑
i=1

(|ĥu,ki |2)du,2

∥∥∥∥∥
2

d̂u,3 = arg min
du,3∈ϒ

∥∥∥∥∥
K∑

k=1

[
ŷ∗

u,k1ĥu,k4 − ŷu,k2ĥ∗
u,k3+ŷ∗

u,k3ĥu,k2 − ŷu,k4ĥ∗
u,k1

]
−√

ρu
K∑

k=1

4∑
i=1

(|ĥu,ki |2)du,3

∥∥∥∥∥
2

(10)

For perfect CSI case, the estimation matrix Ĥu = Hu , and thus the above simple decod-
ing schemes for different STC-CDMA systems under perfect CSI can be easily obtained by
substituting Ĥu with Hu in Eqs. (9) and (10). The above analysis method for receiver scheme
design can be applied to the other space-time coding schemes (such as G2, G3, H′

3, and X
code, etc.) based STC-CDMA systems, and accordingly, the simple decoding schemes are
obtained for both imperfect and perfect CSI.

From Eqs. (9) to (10), it is observed that our developed decoding scheme has linear com-
plexity. For Ref. [11], its receiver decoding schemes with coherent detection (i.e. (44) and
(45) in [11]) are shown:

1. For general spreading codes:

D̂u = arg min
{du,1,...,du,L }∈ϒ

{vecH (Ŷu − √
ρuHuDu)�−1

k vec(Ŷu − √
ρuHuDu)} (11)

2. For orthogonal spreading codes:

D̂u = arg min
{du,1,...,du,L }∈ϒ

∥∥∥Ŷu − √
ρuHuDu

∥∥∥
2

F
(12)

With the above two equations, we can see that the decoding scheme in [11] has exponential
complexity. Namely, if ϒ is a constellation consists of Q symbols, the search times to obtain
the transmitted L symbols is QL . Thus, when Q and L become larger, the complexity will be
much higher, which will result in the significant increase of implementation complexity of
the system. While for the developed scheme, the needed search times are only LQ. Accord-
ing to the above analysis, we may give the complexity comparison between the developed
scheme and existing scheme [11] in Table 1. In Table 1, scheme 1 and scheme 2 represent
the existing decoding scheme [11] and our improved scheme, respectively. From this table,
we observe that the proposed scheme 2 has lower complexity than the existing scheme 1.
Especially, when the constellation size Q and the number of transmitted symbols L are larger,
the low-complexity advantage of our scheme 2 becomes more significant.

Table 1 Comparison of complexity

QPSK 8PSK 16QAM 16QAM 64QAM
Q = 4, Q = 8, Q = 16, Q = 16, Q = 64,
L = 2 L = 2 L = 3 L = 4 L = 3

Scheme 1 16 64 4096 65, 536 262, 144
Scheme 2 8 16 48 64 192
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4 BER Analysis of STC-CDMA Systems with Perfect and Imperfect CSI

In this section, we will give the BER performance analysis of space-time coded CDMA
system in Nakagami-m fading channel. Let Z = ZSH(SSH)−1, and Zu be K × T submatrix
of Z consisting of the columns starting from (u − 1)T + 1 to uT, then Z = [Z1, . . . , ZU ].
Considering that the elements of Z are linear combing of complex Gaussian noise variables
{zk(p)}, these elements are complex Gaussian variables with zero mean. Thus the covariance
matrix of Z can be written as

E{ZH
Z} = E{[ZSH(SSH)−1]H ZSH(SSH)−1}

= (SSH)−1SE{ZH Z}SH(SSH)−1 (13)

Since {nk(p), k = 1, . . ., K , p = 1, . . ., P} are i.i.d. complex Gaussian random variables
with zero mean and variance unit, we have E{ZH Z} = IP . Thus (13) becomes

VZ = E{ZH
Z} = (SSH )−1 = S̃ (14)

where S̃ = (SSH)−1, with (13) and (14), the following equations can be attained.

VZu = E{ZH
u Zu} = S̃(u−1)T +1:uT,(u−1)T +1:uT , u = 1, . . . , U. (15)

When the orthogonal W–H code is used for spreading code, the matrix S̃ will be an identity
matrix IU T , and accordingly, VZu is also an identity matrix. While for the quasi-orthogonal
Gold code, the S̃ will be a symmetric Toeplitz matrix with first row being [a, μ, μ, . . . , μ],
where (U T −1)μ is included. When U and T are given, the elements a, μ are only relative to
the correlation coefficients of Gold code [20]. Thus VZu is also a symmetric Toeplitz matrix
with first row being [a, μ, μ, . . . , μ], where (T − 1)μ is included.

According to the above analysis, the elements of Z are complex Gaussians variables with
zero mean. So the elements {zu,kt } of Zu(u = 1, . . ., U ) are also complex Gaussians variables
with zero mean, and variance unit for orthogonal spreading code case, while in the case of
quasi-orthogonal spreading code, their covariance is a or μ. Namely, E{|zu,kt |2} = a and
E{zu,kt z∗

u,k′t ′ } = μ , k �= k′ or t �= t ′. Using Eq. (7) and the definition of Yu , the effective
output of the decorrelator of user u can be written as:

Ŷu = Yu + Zu = √
ρuHuDu + Zu, u = 1, 2, . . . , U (16)

4.1 Orthogonal W–H Code and Perfect CSI Case

In this subsection, we will analyze the average BER of the system when the orthogonal
W–H code is used for spreading code, where perfect CSI is considered. With the orthogonal
spreading code, the covariance of Zu will be an identity matrix, and its elements are i.i.d.
complex Gaussian variables with zero mean and variance unit. For this, it can be shown that
orthogonal space-time code converts a matrix channel into a scalar channel with a gain of the
Frobenius norm of the matrix channel [8–10]. So before ML detection toward the transmitted
symbols, the equivalent output signal yu can be described by

yu,l = ε
√

ρu ‖Hu‖2
F du,l + wu,l , l = 1, 2, . . . , L , u = 1, 2, . . . , U. (17)

where wu,l is an equivalent noise term after MRC combining with a complex Gaussian
distribution C N (0, ε ‖Hu‖2

F ). Therefore, the effective SNR at the receiver is given by

γ = ε2 ‖Hu‖4
F E{|du,l |2}ρu/(ε ‖Hu‖2

F ) = ρu ‖Hu‖2
F /R (18)
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To ease notation, we denote x ∼ G(κ, v)as a Gamma distributed random variable with
parameters κ and v. Then the pdf of x is f (x) = vκ xκ−1e−vx/�(κ) [21]. According to (1),
we have: α2

u,ki ∼ G(m, m). Let β = ‖Hu‖2
F , then β = ∑K

k=1
∑M

i=1 α2
u,ki ∼ G(mK M, m).

Hence, the pdf of β can be written as

f (β) = mmK MβmK M−1e−mβ/�(mK M) (19)

Using (18), (19) and transformation of random variable, the pdf of γ can be obtained by

f (γ ) = (m Rγ /ρu)mK M exp(−m Rγ /ρu)/[γ · �(mK M)], γ ≥ 0 (20)

According to [22] and utilizing (20), we can evaluate the average BER for STC-CDMA
system with coherent MPSK modulation as follows

Pe,p ∼= 2

max(log2 Q, 2)

max(Q/4,1)∑
j=1

1

2

+∞∫

0

f (γ )er f c
(√

γ sin((2 j − 1)π/Q)
)

dγ

= �(mK M)]−1

max(log2 Q, 2)

(
m R

ρu

)mK M

×
max(Q/4,1)∑

j=1

+∞∫

0

γ mK M−1 exp

(
−m R

ρu
γ

)
er f c

(√
γ sin

(
(2 j − 1)π

Q

))
dγ (21)

where Q is modulation size, er f c(z) = (2/
√

π)
∫ +∞

z exp(−x2)dx .
When mKM is not an integer, utilizing the analytical results of [23], (21) can be rewritten

as

Pe,p ∼= 1

max(log2 Q, 2)

�(mK M + 1/2)

�(mK M + 1)

×
max(Q/4,1)∑

j=1

√
s/π

(1 + s)mK M+1/2 2 F1

(
1, mK M + 1

2
; mK M + 1; 1

1 + s

)
,

s = sin2((2 j − 1)π/Q)/(m R/ρu) (22)

where the equality
∫ +∞

0 e−ax xb−1er f c(
√

cx)dx =
√

c
a+c

�(b+1/2)

b
√

π
(a+c)−b

2 F1
(
1, b+ 1

2 ; b+
1; a

a+c

)
[23] is utilized, and 2 F1(u, v;w; z) is the Gaussian hypergeometric function [17].

Equation (22) is a tight closed-form expression of average BER of STC-CDMA with MPSK
modulation for non-integer mKM.

When mKM is an integer, let F(γ ) = ∫ γ

0 f (v)dv, then F(γ ) with f (γ ) given in (20) is
expressed as

F(γ ) = 1 −
mK M−1∑

i=0

(m Rγ /ρu)i exp(−m Rγ /ρu)/�(i + 1) (23)

With (23), the following integral can be obtained.

I =
+∞∫

0

f (γ )er f c
(√

gγ
)

dγ = 1 −
√

g

m R/ρu + g

×
mK M−1∑

i=0

(
m R/ρu

4(m R/ρu + g)

)i (
2i
i

)
(24)
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The detailed derivation of (24) can be found in Appendix.
Using (24), (21) can be simplified to

Pe,p ∼= 1

max(log2 Q, 2)

max(Q/4,1)∑
j=1

[
1 −

√
s

s + 1

m M K−1∑
i=0

(4(1 + s))−i
(

2i
i

)]
(25)

where s = ρusin2((2 j − 1)π/Q)/(m R). Equation (25) is a tight closed-form expression of
average BER of STC-CDMA with MPSK modulation for integer mKM. Moreover, (22) and
(25) are exact closed-form expressions of average BER of STC-CDMA system with BPSK
and QPSK modulation because the BER of BPSK and QPSK modulation have accurate BER
expressions [15].

According to [24,25], the average BER of MQAM with Gray coding over an AWGN
channel is given by

Pe,q(γ ) =
∑

j

ζ j er f c
{√

κ jγ
}

(26)

where ζ j and κ j are constants which depend on the constellation size Q, and the values of
the constant sets {ζ j , κ j } for MQAM can be found in [24,25]. Hence, using (26) and (20),
we can evaluate the average BER of the system with MQAM as follows

Pe,q =
(

m R

ρu

)mK M ∑
j

ζ j

+∞∫

0

γ mK M−1

�(mK M)
exp

(
−m R

ρu
γ

)
er f c{√κ jγ }dγ (27)

When mKM is not an integer, (27) can be rewritten as following (28) according to the
above analysis for MPSK modulation.

Pe,q = �(mK M + 1/2)

�(mK M + 1)

×
∑

j

ζ j

√
s/π

(1 + s)mK M+1/2 2 F1

(
1, mK M + 1

2
; mK M + 1; 1

1 + s

)
(28)

where s = κ jρu/(m R), Eq. (28) is an exact closed-form expression of average BER of STC-
CDMA with MQAM modulation for non-integer mKM.

When mKM is an integer, using (24), (27) can be further simplified to

Pe,q =
∑

j

ζ j

[
1 −

√
s

s + 1

m M K−1∑
i=0

(4(1 + s))−i
(

2i
i

)]
(29)

where s = κ jρu/(m R), Eq. (29) is an exact closed-form expression of average BER of STC-
CDMA with MQAM modulation for integer mKM.

4.2 Orthogonal W–H Code and Imperfect CSI Case

In the previous subsection, we analyze the system performance with perfect CSI. In practice,
however, the CSI will be imperfect due to channel estimation errors and quantization. So in
this subsection, we will investigate the effect of imperfect CSI on BER with channel esti-
mation errors modeled as complex Gaussian random variables (r.v.s) [26,27] for practical
purposes.
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From [28] and [15], we know that a Nakagami r.v. with integer parameter m can be mod-
eled as the square root of the sum of 2m squared independent Gaussian r.v.s. Using this
property, Eq. (18) can be expressed as

γ = ρu/(m R)

K∑
k=1

M∑
i=1

m∑
v=1

|hu,kiv|2 = ρu/(m R)

K∑
k=1

M∑
i=1

m∑
v=1

α2
u,kiv (30)

where {hu,kiv} and {αu,kiv = |hu,kiv|} are respectively mKM independent complex Gaussian
and Rayleigh r.v.s. with E(α2

u,kiv) = 1. Utilizing the analytical results in [26] and [27], the
pdf of γ with Gaussian channel errors can be evaluated by

f (γ ) =
mK M∑
n=1

AmK M
n (c2)(m Rγ /ρu)n exp(−m Rγ /ρu)/[γ · �(n)], γ ≥ 0 (31)

where c is the normalized cross correlation between the actual equivalent complex

channel gain hu,kiv and its estimate ĥu,kiv , and c2 �= |E{ĥu,kivh∗
u,kiv}|2.Am N K

n (c2) =(
m N K − 1
n − 1

)
(1 − c2)m N K−n(c2)n−1 is a Bernstein polynomial with the following proper-

ties:
∑m N K

n=0 Am N K+1
n+1 (c2) = 1 and Am N K

n (1) = δ(n −m N K ). When the channel estimation

is perfect, i.e., ĥu,ki = hu,ki , c2 = 1. Using Am N K
n (1) = δ(n − m N K ), the pdf in (31) is

equal to (20).
Using (31), (21) and (24), we can obtain the average BER for STC-CDMA system with

MPSK modulation and imperfect CSI as follows:

Pe,p ∼= 2

max(log2 Q, 2)

max(Q/4,1)∑
j=1

1

2

+∞∫

0

f (γ )er f c
(√

γ sin((2 j − 1)π/Q)
)

dγ

= 1

max(log2 Q, 2)

mK M∑
n=1

AmK M
n (c2)

×
max(Q/4,1)∑

j=1

[
1 −

√
s

s + 1

n−1∑
i=0

(4(1 + s))−i
(

2i
i

)]
(32)

where s = ρusin2((2 j − 1)π/Q)/(m R).
Similarly, using (31), (26) and (24), we can obtain the average BER for STC-CDMA

system with MQAM modulation and imperfect CSI as follows:

Pe,q =
mK M∑
n=1

AmK M
n (c2)

×
∑

j

ζ j

[
1 −

√
s

s + 1

n−1∑
i=0

(4(1 + s))−i
(

2i
i

)]
, s = κ jρu/(m R) (33)

With (32) and (33), we can effectively evaluate the performance of STC-CDMA system
with orthogonal W–H code when CSI is not perfectly available.

Note: When the CSI is perfectly known, each channel coefficient is completely correlated,
i.e., c2 = 1, and correspondingly, (32) and (33) will reduce to (25) and (29) under perfect
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CSI, respectively. Namely, the BER expressions under imperfect CSI include perfect CSI as
a special case.

4.3 Quasi-Orthogonal Gold Code and Perfect CSI Case

In this subsection, we will discuss the BER performance when quasi-orthogonal Gold code
is employed for spreading code, where perfect CSI is first considered. Under this scenario,
the covariance of Zu will be not an identity matrix. Hence, the above analytical method from
Sect. 4.1 needs corresponding revision. For the simplicity of analysis, we take the G4 code as
an example to analyze the corresponding STC-CDMA system performance. When G4 code
is adopted, we can evaluate the decision metrics for the detection of the transmitted symbols
{du,l , l = 1, . . ., 4} according to (9). Due to symmetry considerations, the symbols du,1, du,2,
du,3, du,4 have the same error probability. So we can analyze just one of decision metrics
and corresponding effective SNR. Without loss of generality, symbol du,1 is considered, then
with (9) and (16), the corresponding decision metrics is

Dm =
K∑

k=1

(
ŷu,k1h∗

u,k1 + ŷu,k2h∗
u,k2 + ŷu,k3h∗

u,k3 + ŷu,k4h∗
u,k4 + ŷ∗

u,k5hu,k1 + ŷ∗
u,k6hu,k2

+ŷ∗
u,k7hu,k3 + ŷ∗

u,k8hu,k4
)

= 2
√

ρu

K∑
k=1

4∑
i=1

(|hu,ki |2
)

du,1 + z′ (34)

where z′ = ∑K
k=1(zu,k1h∗

u,k1+zu,k2h∗
u,k2+zu,k3h∗

u,k3+zu,k4h∗
u,k4+z∗

u,k5hu,k1+z∗
u,k6hu,k2+

z∗
u,k7hu,k3 + z∗

u,k8hu,k4) is an equivalent noise. According to the previous analysis, it will be
a complex Gaussian random variable with zero mean, and the variance is

var{z′} ≤ 2a
K∑

k=1

4∑
i=1

(|hu,ki |2
) + 2μ

K∑
k=1

4∑
i=1

(|hu,ki |2
) = 2(a + μ)

K∑
k=1

4∑
i=1

(|hu,ki |2
)

(35)

where the inequality hu,ki h∗
u,k j + hu,k j h∗

u,ki ≤ |hu,ki |2 + |hu,k j |2 is utilized, it is due to the
fact

|hu,ki − hu,k j |2 = |hu,ki |2 + |hu,k j |2 − hu,ki h
∗
u,k j − hu,k j h

∗
u,ki

and |hu,ki − hu,k j |2 ≥ 0 (36)

Thus with (35), we can obtain the lower bound of effective SNR γ by

γl = R−1[ρu/(a + μ)] ‖Hu‖2
F = R−1ρul ‖Hu‖2

F , ρul = ρu/(a + μ) (37)

It is well known that the CDMA system performance with quasi-orthogonal spreading
code is worse than that with orthogonal spreading code. Namely, the BER of the former is
higher than that of the latter under the same SNR. In other words, the effective SNR (denoted
by γno) of the former is lower than γo(effective SNR for the orthogonal spreading code case,
i.e. γ in (18)) of the latter. Hence, γo can be regarded as the upper bound of γno. Thus, we
have: γl ≤ γno < γo. Moreover, μ is small and a is slightly larger than 1 in general, thus γl

in (37) is indeed lower than γo in (18), so the upper bound and lower bound of γno exist.
Considering that the lower bound of SNR corresponds to the upper bound of BER, we

can evaluate the upper bound of average BER of the space-time coded CDMA system with
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MPSK modulation when quasi-orthogonal gold code is used. Namely, by substituting ρu

with ρul into (22) and (25), the upper-bound expressions of average BER are attained for
the system with non-integer mKM and integer mKM, respectively. Similarly, by substituting
ρu with ρul into (28) and (29), the upper-bound expressions of average BER for the system
with MQAM modulation can be obtained under non-integer mKM and integer mKM cases,
respectively. To attain the approximate BER expression, we can take the mean value between
the upper bound and lower bound of γno as its approximate value, that is,

γ no = (γl + γo)/2 = R−1 ‖Hu‖2
F (ρul + ρu)/2 = R−1 ‖Hu‖2

F ρno (38)

is regarded as an approximate value of γno, and ρno = (ρul +ρu)/2 = [1 + (a +μ)−1]ρu/2
is an approximate value of effective SNR accordingly. By substituting ρu with ρno, utilizing
(22) and (25), the closed-form approximation of average BER of the system with MPSK
modulation can be given by

Pe,p ∼= 1

max(log2 Q, 2)

�(mK M + 1/2)

�(mK M + 1)

max(Q/4,1)∑
j=1

√
s/π

(1 + s)mK M+1/2

× 2 F1

(
1, mK M + 1

2
; mK M + 1; 1

1 + s

)
, for non-integer mKM (39)

and

Pe,p ∼= 1

max(log2 Q, 2)

max(Q/4,1)∑
j=1

[
1 −

√
s

s + 1

m M K−1∑
i=0

(4(1 + s))−i
(

2i
i

)]
,

for integer mKM (40)

where s = ρuosin2((2 j − 1)π/Q)/(m R), ρno = [1 + (a + μ)−1]ρu/2.
According to (28) and (29), by substituting ρu with ρno, the closed-form approximation

of average BER of the system with MQAM modulation can be obtained as follows:

Pe,q = �(mK M + 1/2)

�(mK M + 1)

∑
j

ζ j

√
s/π

(1 + s)mK M+1/2 2 F1

(
1, mK M + 1

2
; mK M + 1; 1

1 + s

)
,

for non-integermK M (41)

and

Pe,q =
∑

j

ζ j

[
1 −

√
s

s + 1

m M K−1∑
i=0

(4(1 + s))−i
(

2i
i

)]
, for integer mKM (42)

where s = κ jρno/(m R), ρno = [1 + (a + μ)−1]ρu/2.
Based on the above analytical method, we can easily obtain the approximate closed-form

expression of average BER of STC-CDMA system with other space-time coding (such as H4,
H′

3, G3 code, etc.). For STC-CDMA system with G2code (or X code), it is interesting to find
that this system BER has tight closed-form expression similar to the orthogonal spreading
code case. This is because the effective SNR γno has exact value as follows by the related
calculation

γno = R−1(ρu/a) ‖Hu‖2
F = R−1ρno ‖Hu‖2

F , ρno = (ρu/a) (43)

123



Performance Analysis of Space-Time Coded CDMA System 645

By substituting ρu with ρno = ρu/a, using (22), (25), (27) and (28), we can easily obtain
the closed-form expression of average BER of G2 code (or X code) based STC-CDMA
system with MPSK and MQAM modulation, respectively.

4.4 Quasi-Orthogonal Gold Code and Imperfect CSI Case

In this subsection, we will analyze the BER performance of the STC-CDMA systems with
imperfect CSI when quasi-orthogonal Gold code is employed. According to the theoretical
analysis in Sect. 4.3, the effective SNR of the system under quasi-orthogonal Gold code case
may be approximated by ρno. Based on this, by substituting ρu with ρno into (32) and (33),
the closed-form approximation of average BER of the STC-CDMA system with MPSK and
MQAM modulation can be respectively obtained by

Pe,p ∼= 1

max(log2 Q, 2)

mK M∑
n=1

AmK M
n (c2)

×
max(Q/4,1)∑

j=1

[
1 −

√
s

s + 1

n−1∑
i=0

(4(1 + s))−i
(

2i
i

)]
(44)

and

Pe,q ∼=
mK M∑
n=1

AmK M
n (c2)

∑
j

ζ j

[
1 −

√
s

s + 1

n−1∑
i=0

(4(1 + s))−i
(

2i
i

)]
(45)

where ρno = [1 + (a + μ)−1]ρu/2, s = ρuosin2((2 j − 1)π/Q)/(m R), for MPSK, and
s = κ jρno/(m R) for MQAM.

With the above two expressions, the influence of imperfect CSI on the BER performance
of systems can be assessed effectively. When channel estimation is perfect, c2 = 1, then
using AmKM

n (1) = δ(n − mK M), (44) and (45) will reduce to (40) and (42) under perfect
CSI case accordingly.

5 Simulation Results and Numerical Analysis

In this section, we will give the performance simulation results for different space-time coded
CDMA systems in Nakagami fading channel to testify the validity of the developed scheme
and the derived BER expressions. The G2, G3, H′

3, G4, H′
4 code are used for comparison. In

simulation, the channel is assumed to be quasi-static flat fading and the receiver has perfect
system synchronization. Every data frame includes 480 information bits, and Gray mapping
of the bits to symbol is employed. The Monte-Carlo method is used in simulation. For dif-
ferent STCs, we will adopt different modulation modes to maintain the same throughput.
6-user synchronous CDMA systems are considered, and conventional Gold codes (P = 63)
and W–H code (P = 64) are used for spreading code, respectively. The simulation results
are shown in Figs. 1, 2, 3, 4, 5 and 6, respectively. In the following figures, ‘G2-CDMA’,
‘G3-CDMA’, ‘H′

3-CDMA’, ‘G4-CDMA’, ‘H′
4-CDMA’ denote the CDMA systems with G2,

G3, H′
3, G4, H′

4 code, respectively. ‘4Q’, ‘8P’, ‘16Q’ and ‘64Q’ represent the 4QAM (QPSK),
8PSK, 16QAM and 64QAM modulation, respectively.

In Fig. 1, we plot the average BER of different STC-CDMA systems with one receive
antenna (1Rx) for the Nakagami parameter m = 1 and 2. For comparison consistency, perfect
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Fig. 1 BER versus SNR for different space-time coded CDMA systems with one receive antenna

Fig. 2 BER versus SNR for different space-time coded CDMA systems with one receive antenna (m = 1.5)

CSI is considered for the developed scheme and existing scheme in simulation. In Fig. 1,
4QAM is employed in conjunction with G2-CDMA, and 16QAM is applied to G4-CDMA.
Thus the system throughputs all equal 2 bit/s/Hz. Gold code is employed for spreading cod-
ing. It is shown in Fig. 1 that the G4-CDMA performs better than G2-CDMA because the
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former has greater diversity than the latter. Moreover, we can see that the bigger the value
of m, the smaller the BER is. This is because the fading severity decreases as the Nakagami
parameter m increases. These results accord with the existing knowledge as well, which
indicates that the scheme 2 (i.e., the developed decoding scheme) is reasonable. Besides, the
space-time coded CDMA systems with scheme 2 has almost the same performance as those
with scheme 1 (i.e., the existing decoding scheme [11]), but the implement complexity of
scheme 2 is much lower than scheme 1. It means that the scheme 2 is effective, and makes a
good tradeoff between performance and complexity. In the following simulation, the scheme
2 is used for the performance evaluation because of its simplicity.

In Fig. 2, we plot the theoretical average BER and simulation results of different STC-
CDMA systems with 1Rx and Gold code, where m = 1.5, c2 = 1 (perfect CSI), the full-
diversity G2, G3 and H′

3 code are considered. For G2-CDMA, 8PSK modulation is employed,
while for H′

3-CDMA and G3-CDMA, 16QAM and 64QAM modulation are used, respec-
tively. Thus the system throughputs all equal 3 bit/s/Hz. The theoretical BER expression
(39) is employed for the systems with MPSK modulation and (41) is used for the system
with MQAM modulation. We can see in Fig. 2 that the derived theoretical BER agrees
with the simulation results for both H′

3-CDMA and G3-CDMA, while for G2-CDMA, the
theoretical values from (39) are basically consistent with the corresponding simulated val-
ues because (39) is an approximate closed-form expressions for MPSK modulation. Besides,
from this figure, it is observed that H′

3-CDMA outperforms G2-CDMA as expected. Although
G3-CDMA performs worse than G2-CDMA at low SNR since higher modulation (64QAM)
scheme is employed, it will be superior to the latter at very large SNR due to high diversity
gain.

In Fig. 3, we give the theoretical average BER and simulation results of different space-
time coded CDMA systems with Gold code and 1Rx. In simulation, m = 2, perfect CSI
(c2 = 1) and imperfect CSI (c2 = 0.85) are considered. G2, G3 and H′

3 code are used
for comparison. For G2-CDMA, 8PSK modulation is adopted, and for H′

3-CDMA and
G3-CDMA, 16QAM and 64QAM modulation are used, respectively. So the throughputs
are 3 bit/s/Hz. For perfect CSI, the theoretical BER expression (40) and (42) are employed
for the systems with MPSK and MQAM, respectively, while for imperfect CSI, the theoret-
ical expression (44) and (45) are used for the BER calculation for the systems with MPSK
and MQAM, respectively. As shown in Fig. 3, the theoretical BER are basically consistent
with the simulated values for different STC-CDMA systems. In Fig. 3, it is found that the
multiuser STC-CDMA systems with imperfect CSI perform worse than those with perfect
CSI because the former has estimation error and the available CSI is not perfect. Moreover,
by comparing the results of Figs. 2 and 3, we can see that the bigger the value of m, the
smaller the BER is. It is because the fading severity decreases as m increases.

In Fig. 4, we plot the theoretical average BER and simulation results of different space-
time coded CDMA systems with 2Rx and Gold code. In simulation, parameter sets are the
same as Fig. 3. Namely, m = 2, c2 is equal to 0.85 or 1, G2, G3 and H′

3 code are considered.
For perfect CSI, Eqs. (40) and (42) are employed for the BER calculation of the systems with
MPSK and MQAM, respectively. For imperfect CSI, Eqs. (44) and (45) are used for the BER
calculation for the systems with MPSK and MQAM, respectively. From this figure, we can
observe similar results as shown in Fig. 3. That is, for perfect CSI, the derived theoretical
BER make a good approximation with the actual simulated values. Due to the imperfection
of CSI, the system performance with imperfect CSI is still worse than that with perfect CSI
for two receive antennae cases. By comparing the results of Figs. 3 and 4, we can see that the
STC-CDMA systems with 2Rx perform better than those of using 1Rx because the former
has greater diversity than the latter. Moreover, with the number of receive antennae, the
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Fig. 3 BER versus SNR for different space-time coded CDMA systems with one receive antenna (m = 2)

Fig. 4 BER versus SNR for different space-time coded CDMA systems with two receive antennae (m = 2)

system performance with imperfect CSI is improved, the performance difference between
perfect CSI and imperfect CSI in Fig. 4 is lower than that in Fig. 3. The results from Figs. 2,
3, and 4 show that the derived theoretical formulae for STC-CDMA systems with Gold code
are effective and reasonable, and the effect of imperfect CSI on BER performance is also
assessed effectively.
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Fig. 5 BER versus SNR for different space-time coded CDMA systems with two receive antennae (m = 1.5)

Fig. 6 BER versus SNR for space-time coded CDMA systems with different receive antennae (m = 2)

In the following Figs. 5 and 6, we will evaluate the validity of the theoretical BER expres-
sions with orthogonal W–H spreading coding. In Fig. 5, we plot the theoretical average BER
and simulation results of different STC-CDMA systems with 4Tx and 2Rx. In simulation, m
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is set equal to 1.5, perfect CSI (c2 = 1) and G4 code are considered. For G4-CDMA, 16PSK
and 16QAM modulation are used, respectively, and thus the throughputs are 2 bit/s/Hz. The
theoretical average BER is calculated by (22) for the systems with MPSK modulation, while
for MQAM modulation, the theoretical values are obtained by (28). It is shown in Fig. 5
that G4-CDMA system with 16PSK is worse than that with 16QAM because the minimum
distance between 16PSK constellation symbols is smaller than the latter, which accords with
the existing knowledge. Moreover, for different STC-CDMA systems, we can see in Fig. 5
that the theoretical average BER accord with the simulation results.

In Fig. 6, we give the theoretical average BER and simulation results of STC-CDMA
system with different receive antennae and Nakagami parameter m = 2. Imperfect CSI
(c2 = 0.95) and perfect CSI (c2 = 1) are considered. In simulation, H4 code and 64QAM
are employed, the number of transmit antenna is 4, the numbers of receive antenna are set
equal to 1 and 2, respectively. The theoretical average BER are calculated by (33) and (29)
for the system with imperfect and perfect CSI, respectively. It is observed that the system
with 2Rx performs better than that with 1Rx because the former has greater diversity than
the latter. As shown in Fig. 6, the derived theoretical BER values are in good agreement with
the simulation results, that is, the theoretical values and simulated values match well for both
perfect and imperfect CSI. Moreover, because of the imperfection of CSI, the system perfor-
mance with imperfect CSI is worse than that with perfect CSI for both single and multiple
receive antenna cases. As shown in this figure, however, the performance difference between
imperfect and perfect CSI may be shortened by increasing the number of the receive antennae
(which can obtain the high diversity gain) or improving the estimation accuracy (which can
obtain high correlation). So the results from Figs. 5 to 6 show that the derived average BER
expressions for STC-CDMA system with W–H code are valid and reasonable.

6 Conclusions

Utilizing the existing space-time coding schemes, we have given multiuser space-time coded
CDMA systems, and investigated the system performance in Nakagami-m fading channel.
Simple and effective receiver schemes are developed for STC-CDMA systems with perfect
and imperfect CSI. The schemes can suppress MUI via multiuser detection method, and
simplify the high decoding complexity of the existing scheme, obtain the effective tradeoff
between the performance and complexity. Based on the perfect and imperfect CSI, by means
of the BER analysis and related mathematical calculation, the average BER expressions are
respectively derived for the system with MPSK and MQAM, and for perfect CSI, non-integer
m and integer m cases are both considered. For orthogonal spread coding, a tight closed-form
expression of average BER is attained, and for quasi-orthogonal spread coding, an approxi-
mate closed-form expression of average BER is obtained. With these expressions, the system
performance under perfect and imperfect CSI can be easily evaluated in theory. Simulation
results for BER show that the derived theoretical expressions can match the simulated val-
ues. Especially, when the orthogonal spreading code is employed, the simulation results are
in good agreement with the theory results. Besides, the imperfection of CSI will affect the
performance of STC-CDMA systems, that is, the systems have obvious BER performance
degradation.
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Appendix

In this appendix, we give the derivation of Eq.(24). Using (23), the integral. I is rewritten as

I =
+∞∫

0

f (γ )er f c
(√

gγ
)

dγ = F(γ ) er f c
(√

gγ
)∣∣+∞

0 + 2√
π

+∞∫

0

F(γ )e−gγ dγ

= 1 − 1√
π

mK M−1∑
i=0

[1/�(i + 1)]
+∞∫

0

(m Rγ /ρu)i√gγ −1/2 exp(−m Rγ /ρu − gγ )dγ

= 1 − 1√
π

mK M−1∑
i=0

[1/�(i + 1)](m R/ρu)i �(i + 1/2)
√

g

(m R/ρu + g)i+1/2

= 1 −
√

g

m R/ρu + g

mK M−1∑
i=0

(2i − 1)!!
i !2i

(
m R/ρu

m R/ρu + g

)i

= 1 −
√

g

m R/ρu + g

mK M−1∑
i=0

(
m R/ρu

4(m R/ρu + g)

)i (
2i
i

)

where the equality�(i + 1/2) = √
π(2i − 1)!!/2i is utilized, x!! denotes the double factorial

of x and is defined recursively by x !! = x × (x − 2)!!, if x ≥ 2; and x !! = 1, if x = 0 or
x = 1.
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