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Abstract In this paper, an overview of various algorithms for wireless position estimation
is presented. Although the position of a node in a wireless network can be estimated directly
from the signals traveling between that node and a number of reference nodes, it is more
practical to estimate a set of signal parameters first, and then to obtain the final position
estimation using those estimated parameters. In the first step of such a two-step positioning
algorithm, various signal parameters such as time of arrival, angle of arrival or signal strength
are estimated. In the second step, mapping, geometric or statistical approaches are commonly
employed. In addition to various positioning algorithms, theoretical limits on their estimation
accuracy are also presented in terms of Cramer—Rao lower bounds.

Keywords Position estimation - Cramer—Rao lower bound - Mapping techniques -
Bayerian estimation - Maximum likelihood estimation

1 Introduction

Recently, the subject of positioning in wireless networks has drawn considerable attention.
With accurate position estimation, a variety of applications and services such as enhanced-
911, improved fraud detection, location sensitive billing, intelligent transport systems, and
improved traffic management can become feasible for cellular networks [1]. For short-range
networks, on the other hand, position estimation facilitates applications such as inventory
tracking, intruder detection, tracking of fire-fighters and miners, home automation and patient
monitoring [2]. These potential applications of wireless positioning have also been recognized
by the IEEE, which set up a standardization group 802.15.4a for designing a new physical
layer for low-data rate communications combined with positioning capabilities [3]. Also, the
Federal Communications Commission (FCC) in the US has required wireless providers to
locate mobile users within tens of meters for emergency 911 calls [4].
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Fig. 1 a Direct positioning, b two-step positioning

In order to realize potential applications of wireless positioning, accurate estimation of
position should be performed even in challenging environments with multipath and non-line-
of-sight (NLOS) propagation [5]. For accurate position estimation, the details of the position
estimation process and its theoretical limits should be well-understood. Position estimation
can be defined as the process of estimating the position of a node, called the “target” node, in
a wireless network by exchanging signals between the target node and a number of reference
nodes.? The position of the target node can be estimated by the target node itself, which is
called self-positioning, or it can be estimated by a central unit that obtains information via
the reference nodes, which is called remote-positioning (network-centric positioning) [6].
Also, depending on whether the position is estimated from the signals traveling between the
nodes directly or not, two different position estimation schemes can be considered. Direct
positioning refers to the case in which the position estimation is performed directly from
the signals traveling between the nodes [7]. On the other hand, two-step positioning extracts
certain signal parameters from the signals first, and then estimates the position based on those
signal parameters (Fig. 1). Although the two-step positioning is suboptimal in general, it can
have significantly lower complexity than the direct approach. Also, the performance of the
two approaches are usually very close for sufficiently high signal bandwidths and/or signal-
to-noise ratios (SNRs) [7,8]. Therefore, the two-step positioning is the common technique
in most positioning systems, which is the main focus of this paper.

In the first step of a two-step positioning algorithm, signal parameters, such as time-of-
arrival (TOA) and received signal strength (RSS), are estimated. Then, in the second step,
the position of the target node is estimated based on the signal parameters obtained in the
first step, as shown in Fig. 1b. In the second step of position estimation, mapping (fingerprint-
ing) approaches, geometric or statistical techniques can be used depending on the accuracy
requirements and system constraints.

The remainder of the paper is organized as follows. In Sect. 2, estimation of position related
signal parameters is studied, and RSS, angle-of-arrival (AOA), TOA, time-difference-of-
arrival (TDOA), and other parameter estimation schemes are investigated. Then, in Sect. 3,
position estimation schemes based on mapping, geometric and statistical approaches are
studied, and theoretical limits are presented in terms of Cramer—Rao lower bounds (CRLBs).
Finally, some concluding remarks are made in Sect. 4.

2 Estimation of Position Related Parameters

In the first step of a two-step positioning algorithm, position related parameters of the sig-
nals traveling between the target node and a number of reference nodes are estimated. For

L' A “node” refers to any device involved in the position estimation process, such as a cellular phone, a base
station or a wireless sensor.

2 In this article, radiolocation is considered, which is the process of position estimation through the use of
radio signals. Other techniques for position estimation include dead-reckoning and proximity systems [1].
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Fig. 2 One node measures the RSS and determines the distance d between itself and the other node, which
defines a circle of uncertainty

self-positioning, the signals received by the target node are used by the target node itself
for parameter estimation. On the other hand, for remote-positioning, each reference node
can estimate the parameter(s) of the signal it receives from the target node, and forward its
estimate to a central unit.®> In other words, the parameter estimation block in Fig. 1b resides
in the target node for self-positioning systems and in the reference nodes, with each node
estimating a subset of the total signal parameters, for remote-positioning systems.
Depending on accuracy requirements and system constraints, various signal parameters
can be estimated in the first-step of a positioning algorithm. Commonly, signal parameters
employed in positioning are related to power, direction and/or timing of a received signal.

2.1 Received Signal Strength (RSS)

The power, or energy, of a signal traveling between two nodes is a signal parameter that
contains information related to the distance (“range”) between those nodes. This parameter,
commonly referred to as RSS, can be used together with a path-loss and shadowing model
to provide a distance estimate. Therefore, in the error-free case, an RSS estimate at a node
determines the position of the other node on a circle for two-dimensional positioning,* as
shown in Fig. 2.

A signal traveling from one node to another experiences fast (multipath) fading, shadow-
ing and path-loss [9]. Ideally, averaging RSS over a sufficiently long time interval excludes
the effects of multipath fading and shadowing, which results in the following model:’

P(d) = Py — 10n logyy(d/do), (1

where 7 is the path loss exponent, P(d) the average received power in dB at a distance d,
and Py is the received power in dB at a short reference distance dj.

In practice, the observation interval is not long enough to mitigate the effects of shad-
owing. Therefore, the received power is commonly modeled to include both path-loss and
shadowing effects, the latter of which are modeled as a zero mean Gaussian random variable
with a variance of oszh in the logarithmic scale. Therefore, the received power P (d) in dB can
be expressed as

P(d)~N (Pd), o). ()

3 Itis also possible to forward the received signals directly to the central unit, and to perform both parameter
and position estimation there. However, this approach has considerably higher complexity and is not com-
monly preferred for two-step positioning systems. However, for direct-positioning systems, that is the only
way to perform remote positioning.

4 Two-dimensional positioning is considered in this paper for the convenience of illustrations.

5 Note that there is also thermal noise in real systems, which is commonly position-dependent. It is assumed
that the effects of thermal noise are sufficiently mitigated [10].
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Fig. 3 AOA measurement between two nodes

where P(d) is as given in (1). Note that this model can be used in both line-of-sight (LOS)
and NLOS scenarios with an appropriate choice of channel parameters.
From the received power model in (2), the CRLB for unbiased distance estimators can be

expressed as [10]
- In 10) ogn d
Jvar(dy » I 100w d. 3)
10n

where d represents an unbiased estimate for the distance d. From (3), it is observed that the
RSS estimates get more accurate as the standard deviation of the shadowing decreases, since
RSS estimates vary less around the true average power in that case. Also a larger path-loss
exponent results in a smaller lower bound, as the average power becomes more sensitive to
distance for larger n. Finally, the accuracy deteriorates as the distance between the nodes
increases.

2.2 Angle of Arrival (AOA)

The angle between two nodes can be determined by estimating the AOA parameter of a signal
traveling between the nodes (Fig.3). Commonly, antenna arrays are employed in order to
estimate the AOA of a signal.® The main principle behind the AOA estimation via antenna
arrays is that differences in arrival times of an incoming signal at different antenna elements
include the angle information if the array geometry is known.

For narrowband signals, time differences can be represented as phase shifts. Therefore,
the combinations of the phase shifted versions of received signals at different array elements
can be tested in order to estimate the AOA [1]. However, for wideband systems, time delayed
versions of received signals should be considered, since a time delay cannot be represented
by a unique phase value for a wideband signal.

In order to study the effects of system parameters on the achievable accuracy of an AOA
estimator, consider a uniform linear array (ULA) with N, elements and assume the same
fading coefficient « for all signals arriving at the array elements. Then, the CRLB on the
variance of unbiased AOA estimators can be expressed as [12,13]

- 3
V Var{yr} > 7 L @)

27/SNR B A\/Ny(N2 = 1) sinyy’

where v is the AOA, ¢ the speed of light, SNR = > E /A is the signal-to-noise ratio for each
element, with E denoting the signal energy and A being the spectral density of background

6 Another approach is to use the ratio of RSS estimates between at least two directional antennas located on
anode [11].
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noise,’” A the inter-element spacing, and § is the effective bandwidth defined by

| o 12
p = (E /_ fZIS(f)Izd.f) )

with S(f) representing the Fourier transform of the received signal.

From (4), itis observed that as the SNR, effective bandwidth, inter-element spacing and/or
the number of antenna elements is increased, the accuracy of AOA estimation increases. It is
also noted that a ULA provides the best AOA estimation accuracy when the signal direction
and the ULA line are perpendicular to each other.

2.3 Time of Arrival (TOA)

Similar to the RSS parameter, estimating the flight time of a signal traveling from one node to
another, called TOA, provides information related to the distance between those two nodes.
Therefore, in the absence of any errors, a TOA estimate provides an uncertainty region in the
shape of a circle as shown in Fig. 2.

In order to calculate the TOA parameter for a signal traveling between two nodes, the nodes
must either have a common clock, or exchange timing information by certain protocols such
as a two-way ranging protocol [3,14,15].

Conventionally, TOA estimation is performed via correlator or matched filter (MF) receiv-
ers [16]. Consider a scenario in which s(¢) is transmitted from a node to another, and the
received signal is expressed as

r(t) =s(t —1)+n(), (6)

where 7 represents the TOA and n(¢) is white Gaussian noise with zero mean and a spectral
density of Ny/2. Then, the correlator-based approach correlates the received signal with a
local template s(+ — ) for various delays 7, and calculates the delay corresponding to the
correlation peak. Similarly, the MF approach employs a filter that is matched to the transmit-
ted signal and estimates the instant at which the filter output reaches its largest value. Both
approaches are optimal in the maximum likelihood (ML) sense for the signal model in (6).
However, in practical systems, the signal arrives at the receiver via multiple signal paths. In
such multipath environments, the conventional schemes become suboptimal as they use the
transmitted signal to set their template signals or MF impulse responses.® In order to obtain
accurate TOA estimation in multipath environments, high-resolution time delay estimation
techniques, such as that described in [17], have been studied for narrowband systems, and
first path detection algorithms are proposed for ultra-wideband (UWB) systems [14, 18-20].

In order to observe the main relations between the signal bandwidth and the theoretical
limits for TOA estimation, consider the CRLB for the signal model in (6), which is given by
Poor [21], Cook and Bernfeld [22]°

1
Jvar()y > —— 7
ar(®) 2 24/27+/SNR B @

where T represents an unbiased TOA estimate, SNR = E /A is the SNR, with E denoting
the signal energy, and B is the effective signal bandwidth defined by (5).

7 The same average noise power is assumed at each element.

8 Since the effects of the propagation environment, such as the multipath, are not known at the time of TOA
estimation, the use of a template signal or a MF impulse response that includes the overall effects of the
channel is not usually possible.

9 Refer to [5,23] for the CRLB for TOA estimation in multipath channels.
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From (7), it is observed that unlike the RSS estimation, the accuracy of the TOA estimation
can be improved by increasing the SNR and/or the effective signal bandwidth. Therefore, for
(ultra) wideband systems, TOA estimation can provide very accurate range information.

2.4 Time Difference of Arrival (TDOA)

In the absence of synchronization between the target node and the reference nodes, the TDOA
estimation can be performed if there is synchronization among the reference nodes [1]. TDOA
estimation provides the difference between the arrival times of two signals traveling between
the target node and two reference nodes, which determines the position of the target node on
a hyperbola, with foci at the two reference nodes, as shown in Fig.4.

One approach for estimating TDOA is to first estimate TOA for each signal traveling
between the target node and a reference node, and then to obtain the difference between the
two estimates. Since the target node and the reference nodes are not synchronized, the TOA
estimates include a timing offset, which is the same in all estimates as the reference nodes are
synchronized, in addition to the time of flight. Therefore, the TDOA estimate can be obtained
as

TTDOA = T1 — T2, (8)

where 7;, for i = 1, 2, denotes the TOA estimate for the signal traveling between the target
node and the ith reference node.

For the TDOA estimates obtained as in (8), the accuracy limits can be deduced from the
CRLB expression in Sect. 2.3. Namely, it is concluded that the accuracy of TDOA estimation
increases as effective bandwidth and/or SNR increases.

Another approach for TDOA estimation is to perform cross-correlations of the two sig-
nals traveling between the target node and the reference nodes, and to calculate the delay
corresponding to the largest cross-correlation value. The cross-correlation function is given
by Caffery and Stuber [24]

1 T
B0 = / O + )dr, ©
0

where r; (1), for i = 1, 2, represents the signal traveling between the target node and the ith
reference node, and T is the observation interval. From (9), the TDOA estimate is calculated
as

TTDOA = arg mrax|¢1,2(r)|. (10)

Although the cross-correlation-based TDOA estimation in (10) performs well for single
path channels and white noise models, its performance can degrade considerably over multi-

.

Fig. 4 A TDOA measurement defines a hyperbola passing through the target node with foci at the reference
nodes
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path channels and/or colored noise. In order to improve the performance of the cross-corre-
lation scheme in (9) and (10), generalized cross-correlation (GCC) techniques are proposed
[25-27].In GCC-based TDOA estimation, filtered versions of the signals are cross-correlated,
which corresponds to shaping the cross-power spectral density of the transmitted signals, in
order to provide robustness against colored noise [28].

2.5 Other Position Related Parameters

In some positioning systems, two or more of the position related parameters, studied in the
previous subsections, can be employed in order to obtain more information about the position
of the target node. Examples of such hybrid schemes include TOA/AOA [29], TOA/RSS [30]
and TDOA/AOA [31], TOA/TDOA [32] positioning.

In addition to the RSS, AOA and T(D)OA parameters and their combinations, another
scheme for position related parameter estimation involves obtaining multipath power delay
profile (PDP) or channel impulse response (CIR) related to a received signal [33-36]. In
some cases, PDP or CIR estimation can provide significantly more information about the
position of the target node than the previously studied schemes. However, extracting the
position information from such parameters commonly requires a database consisting of pre-
vious PDP (or CIR) estimates. Therefore, algorithms employing PDP or CIR estimation
commonly implement training phases, before the actual position estimation process.

Similar to the PDP approach, multipath angular power profile parameter can be estimated
at nodes with antenna arrays. Note that both the PDP (CIR) and the angular power profile
estimation increase the complexity of the first step in the two-step positioning algorithm in
Fig. 1b compared to the conventional RSS, AOA, and T(D)OA schemes, since a large number
of unknown parameters need to be estimated in the former case. However, such parameters
can also facilitate accurate position estimation in challenging environments [36].

3 Position Estimation

As shown in Fig. 1b, the second step of a two-step positioning algorithm involves estimation
of position from the position related parameters estimated in the first step. Depending on the
presence of a database (training data), two types of position estimation techniques can be
considered:

e Mapping (fingerprinting) techniques use a database that consists of previously estimated
signal parameters at known positions to estimate the position of the target node. Com-
monly, the database is obtained by a training (off-line) phase before the real-time posi-
tioning starts.

e Geometric and statistical techniques do not utilize such a database, and estimate the
position of the target node directly from the signal parameters estimated in the first step
of the positioning algorithm by using geometric relationships and statistical approaches,
respectively.

3.1 Mapping Techniques
The main idea behind position estimation via mapping techniques is to determine a regres-

sion scheme based on a set of training data, and then to estimate position of a given node
according to that regression function.
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Let the training data be expressed as

7 = {(my, 1), (2, L), ...y, I} (1n

where 1; is the position (location) vector for the ith training data, which is given by I; =
[x; y:]7 for two-dimensional positioning, m; represents the vector of estimated parameters
for the ith position, and Nt is the total number of elements in the training set (i.e., “size”
of the database). Depending on signal parameters employed in the positioning algorithm,
m; consists of a number of position related parameters related to the reference nodes; e.g.,
each element of m; can be an RSS estimate at a reference node when the target node is at
location I;.

Given the training set in (11), a mapping technique first determines a position estimation
rule (pattern matching algorithm/regression function), and then estimates the position 1 of a
given target node based on a parameter vector m related to that target node. Some common
mapping techniques employed in position estimation include k-nearest—neighbor (k-NN)
estimation, support vector regression (SVR), and neural networks [36—40].

Due to its simplicity, the k-NN estimation technique is considered in this section in order
to provide intuition on mapping-based position estimation. In its simplest form, the k-NN
estimation technique estimates the position of the target node as the position vector in the
training set 7 corresponding to the parameter vector that has the shortest distance to the
given (estimated) parameter vector m. That is, the position is estimated as 1;, where

J= argie{lr?}{lNT}llm m; | (12)
with ||m —m; || representing the Euclidean distance between m and m; . This scheme is called
the 1-NN, or simply the NN, estimation technique.

In general, the k-NN scheme estimates the position of the target node according to the k
parameter vectors in 7 that have the smallest distances to the given parameter vector m. The
position estimate 1 is obtained by a weighted sum of the positions corresponding to those
nearest parameter vectors; i.e.,

k
i= Zwi(m) 19, (13)
i=1

where 1V, ..., 1% are the positions corresponding to the k nearest parameter vectors,
mD, . m®, tom, and wi(m), ..., wr(m) are the weighting factors for each position.
In general, the weights are determined according to the parameter vector m and the training
parameter vectors m", ..., m®_ Various weighting functions can be employed, as studied
in [37]. For example, for the uniform weighting scheme, the position estimate is the sample
mean of the positions 1D 10 e,

k

N 1 .

1= z 19, (14)
i=1

The main advantage of mapping techniques is that they can provide very accurate position
estimation in challenging environments with multipath and NLOS propagation. In other
words, they have a certain degree of inherent robustness against undesired propagation con-
ditions. However, the main disadvantage is the requirement that the training database should
be large enough and representative of the current environment for accurate position estima-
tion. In other words, the database should be updated frequently enough so that the channel

=1
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characteristics in the training and position estimation phases do not differ significantly. Such
an update requirement can be very costly for positioning systems operating in dynamic envi-
ronments, such as for an outdoor positioning system.

3.2 Geometric and Statistical Techniques

In the absence of a training database, the position is estimated directly from the position
related parameters obtained in the first step of a two-step positioning algorithm. In this case,
one can employ either a deterministic approach and estimate the position according to certain
geometric relationships, or a statistical approach and try to obtain the most likely position
for the target node.

3.2.1 Geometric Techniques

Geometric techniques solve for the position of the target node as the intersection of position
lines obtained from a set of position related parameters at a number of reference nodes. As
studied in Sect.2, an RSS or a TOA parameter defines a circle for the position of the target
node; hence three parameter estimates can be used to determine the position via trilatera-
tion, as shown in Fig. 5. On the other hand, an AOA parameter defines a straight line passing
through the target node and the reference node, as shown in Fig.3. Therefore, two AOA
parameters are sufficient to locate the target node via triangulation as shown in Fig.6. In
the case of TDOA-based positioning, each TDOA parameter determines a hyperbola for the
position of the target node. For three reference nodes, two range differences (obtained from
TDOA parameters) define two hyperbolas, the intersection of which yields the position of
the target node, as shown in Fig.7, However, the position may not always be determined
uniquely depending on the geometrical conditioning of the nodes [1,41].

Fig. 5 Determining the position of the target node (the gray node) via trilateration

=
<

Fig. 6 Determining the position of the target node (the gray node) via triangulation

I\
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Fig. 7 Positioning via TDOA measurements

Fig. 8 Hybrid TOA/AOA positioning

The geometric techniques can also be applied to hybrid systems, in which multiple types
of position related parameters, such as TDOA/AOA [31] or TOA/TDOA [32], are employed
in position estimation. For example, for a hybrid AOA/TOA system as shown in Fig.8, in
which the reference node can estimate both AOA and TOA of the signal from the target node,
the position can be calculated as

x =x1+d cos Y, (15)
y =y +dsin ¢, (16)

where (x1, y1) is the position of the reference node, ¥ the AOA, and d is the range estimate
obtained from TOA estimation. In other words, the minimum number of nodes that are
required to determine the position of the target node can change depending on the capabili-
ties of the target and/or the reference nodes.

One of the disadvantages of geometric techniques is that they do not provide a theoretical
framework in the presence of noise in position related parameters. In other words, when
the position lines intersect at multiple points, instead of a single point, due to certain errors
in the parameter estimation step, the geometric approach does not provide any inside as to
which point to choose as the position of the target node. In addition, as the number of param-
eters increases, the number of intersections can increase even further. For example, Fig.9
illustrates three erroneous AOA parameter estimates related to three reference nodes, which
results in multiple intersections of the position lines, without all three lines intersecting at a
single point. As this example illustrates, the geometric approach does not provide an efficient
data fusion mechanism; i.e., cannot utilize multiple parameter estimates efficiently.
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Fig. 9 Position ambiguity in the presence of noisy AOA parameters

3.2.2 Statistical Techniques

Unlike the geometric techniques, the statistical approach presents a theoretical framework
for position estimation in the presence of multiple position related parameter estimates with
or without noise. In order to formulate this generic framework, consider the following model
for the parameters estimated in the first step of a two-step positioning algorithm

zi=fi(x,y)+n, i=1,..., Nn, (17)

where Np, is the number of parameter estimates, 7; the noise at the ith estimation, and
fi(x, y) is the true value of the ith signal parameter, which is a function of the position of
the target, (x, y). Note that Ny, is equal to the number of reference nodes for RSS, AOA,
and TOA-based positioning, whereas it is one less than the number of reference nodes for
TDOA-based positioning as each TDOA parameter is estimated with respect to one reference
node.

For various positioning systems, f;(x, y) in (17) can be expressed as'®

Vo =x)?+ 0 -2, TOA/RSS
fi(x,y) = {tan~! (%) AOA  , (I8)

Ve =302+ —y)? =& —x0)?+ (y —y)%  TDOA

where (x;, y;) is the position of the ith reference node and (xg, yo) is the reference node,
relative to which the TDOA parameters are estimated.
In vector notations, the model in (17) can be expressed as

z="1(x,y)+n, (19)
where z = [z1 -+ 2y, 1T, £, y) = [0, y) - fvn o 1T and g = [ -+ v, 17
Depending on the available information related to the noise term # in (19), parametric or
non-parametric approaches can be followed. In the case that the probability density function
of the noise 5 is known except for a set of parameters, denoted by A, parametric approaches,
such as Bayesian and maximum likelihood (ML) estimation, can be employed. In the absence
of information about the form of the probability density function of », non-parametric tech-
niques need to be used. Note that the k-NN, SVR and neural networks approaches studied
in Sect.3.1 are examples of non-parametric estimators since they do not assume any form
for the probability density function of the noise. However, they utilize a training database.
Although the form of the density function is unknown in the non-parametric case, there can
still be some generic information about some of its parameters [42], such as its variance and
symmetry properties, which can be used to design non-parametric estimation rules, such as
the least median of squares technique in [43], the residual weighting algorithm in [44], and
the variance weighted least squares technique in [45].

10 Time parameters are converted to distance values by scaling by the speed of light.
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For the remainder of this section, the parametric approaches are studied in detail. Let the
vector of unknown parameters be represented by 6, which consists of the position of the target
node, as well as the unknown parameters of the noise distribution;'! i.e., § = [x y XT]T.
Depending on the availability of prior information on 6, Bayesian or ML estimation tech-
niques can be employed [46].

In the presence of prior information on @, which is represented as a prior probability dis-
tribution 7 (@), the Bayesian approach can be used to obtain an estimate of # that minimizes a
specific cost function [21]. Two common Bayesian estimators are the minimum mean square
error (MMSE) and the maximum a posteriori (MAP) estimators,'? which estimate 6 as

Ovmse = E {012}, (20)
9MAP = arg m;lx p(z|0)m(0), 21

where E {0 z} is the conditional expectation of @ given z, and p(z|@) represents the probability
density function of z conditioned on 6.

In the absence of prior information on @, the ML estimation is commonly employed, which
calculates the value of @ that maximizes the likelihood function; i.e.,

éML = arg m;lx p(z|6). (22)

Note that since f (x, y) is a deterministic function, the likelihood function can be expressed
as

p(z|0) = py(z —£(x, ) |6), (23)

where py(-| @) represents the conditional probability density function of the noise vector
conditioned on 6.
Depending on the properties of the noise vector, various scenarios can be considered.

Case 1 Independent Noise Components: For independent noise components, the likelihood
function in (23) can be expressed as

N

pl6) =[] pnai — fitx, y)16), (24)

i=1

where py,, (- | ) represents the conditional probability density function for the ith noise com-
ponent given 6.

The independent noise assumption is usually valid for TOA, RSS and AOA estimation. How-
ever, for TDOA estimation, the noise components are correlated, as all TDOAs are computed
with respect to the same reference node. Therefore, TDOA-based systems can be studied
through the generic expression in (23), or by using a correlated Gaussian model under cer-
tain conditions, as will be investigated later.

For TOA, RSS, and AOA based systems in LOS conditions, the parameters of the noise
can be assumed to be known, which reduces the unknown parameter vector to § = [x y]7.
Also, it is possible to (approximately) model each noise component by a zero mean Gaussian

T 1n general, the noise components may also depend on the position of the mobile, in which case @ includes
the union of the elements in A, x, and y.

12 The MAP estimator is not a regular Bayesian estimator, but it fits within the Bayesian framework [21].
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random variable in the LOS case [10]; that is,

) = 1 o 25)
Pni(n) = \/EO’,‘ exp 20_1.2 .

Then, the likelihood function in (24) can be expressed as

N

1 (zi — fi(x, y))?

From (26), the ML estimator in (22) can be obtained as

p(z|0) =

Non
P . (zi — fi(x, y))?

ML = arg min —_—
[x yI” i—1 o;

€2))

which is the well-known non-linear least-squares (NLS) estimator [1]. Note that the weights
are inversely proportional to the noise variances since a larger variance means a less reli-
able estimate. Common techniques for solving (27) include gradient descent algorithms and
linearization techniques via the Taylor series expansion [1,47].

For NLOS conditions between the target node and some reference nodes, the noise model
can be significantly different for the parameter estimates at those reference nodes compared
to the ones at the LOS nodes. If the positions of the reference nodes are sufficiently separated,
the conditional independence assumption in (24) can still hold. Therefore, the ML position
estimator can be derived from (22) and (24) by using appropriate noise distributions for LOS
and NLOS reference nodes.'3

The noise distribution in the NLOS case is commonly modeled as the sum of two noise
terms, one related to the background noise, and the other related to the NLOS error. In this
case, the noise distribution is usually considerably different than the Gaussian model in (25).
Some common models for the NLOS error include Gamma distribution [ 10] and distributions
based on certain scattering models [51]. In many cases, the errors due to NLOS propagation
dominate the estimation errors due to background noise.

Case 2 Correlated Gaussian Noise Components: For a noise vector modeled as a multivari-
ate Gaussian random variable with mean g and covariance matrix X, the likelihood function
is given by

1
p(zl0) = —E(Z—f(x,y)—ﬂ)r D (C O R )

1
——————€X
QmyNr2 g2 P [
Then, the ML position estimator can be calculated as

O = arg min (z — £(x, y) - W' T @ —f(x,y) — p) +log| X, (29)

where 0 consists of the position of the target node and the unknown parameters related to g
and X.
For a noise distribution with zero mean and a known covariance matrix, (29) simplifies to

by = arg min (z—f(x, y)" 7' @~ f(x. y). (30)

[xy

which is called the weighted LS (WLS) solution [1].

13 Itis assumed to be known which nodes are LOS and which are NLOS. Such an information can be obtained
using NLOS detection algorithms [48-50].
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Although the independent noise model in Case 1 is not well-suited for TDOA-based posi-
tioning systems, the correlated Gaussian noise model in (28) can represent such systems quite
accurately for sufficiently large SNRs. As an example, consider TDOA estimation via differ-
ence of TOA estimates. If the estimates of range differences (equivalently, TDOA estimates)
are modeled as

Zizdi—d0+ni—n0, i=1,...,Nm, (31)
where d; = \/(x —xj)2 +(y — yj)2 for j =0,1,..., Nm, and ng, ny, ..., ny,, are zero
mean independent Gaussian random variables with variances ag, o 12 e, O ,%,m , respectively,
then the estimates can be modeled as

z="1f(x,y)+n, (32)

where fi(x,y) =d; —dpfori =1,..., Ny, and g ~ N (0, X) with

of +og o5 - o
2 2 2
o o5 + o
Y = 0 2 0 (33)
. . 0'2
2 2 2 2
T 0y O, T oy

In other words, the noise is Gaussian with correlated components (since the correlation matrix
is not diagonal) in this case.

In the case of NLOS propagation between the target node and a number of reference nodes,
the Gaussian model in (28) may not be very accurate. Therefore, the generic ML estimation
in (22) and (23) should be performed for TDOA estimation in NLOS scenarios.

3.3 CRLBs for Position Estimation

In this section, CRLBs for various position estimation algorithms are investigated. The CRLB
for an unbiased estimate 6 of # can be expressed as

Elé-0d-07|=1". (34)
where Iy is the FIM given by
31 0) (31 0\’
I =E og p(z|0) og p(z|0) (35)
90 20

with p(z | @) representing the conditional probability density function of the position related
parameter estimate given @, and I} > I, meaning that I} — I is positive semi-definite.

The CRLB provides also a lower bound on the mean square error (MSE) of a position
estimate as follows:

MSE 2 E{|| — 6)[?} = trace [E{(é —0) —0)T}] (36)
> trace [1;'] = MMSE, (37)

where MMSE refers to minimum MSE. In the following, the theoretical limits are investi-
gated in terms of MMSE expressions for TOA, TDOA, RSS, and AOA-based positioning
systems.

@ Springer



A Survey on Wireless Position Estimation 277

Matched Filter z

ry(t) —*
18) TOA Estimation

: * J NLOS . ML
: : * | Identification | » Position —g

' : s * +
Zn, | Estimation

Matched Filter Ny,

T, [t —H A 2
N () TOA Estumation

Fig. 10 An asymptotically optimal positioning receiver in the absence of statistical NLOS information

Consider a system with Ny, reference nodes, Np, of which are in LOS with the target node,
and the remaining ones are in NLOS. Without loss of generality, the LOS and the NLOS

nodes areindexedbyi =1, ..., Npandi = Np+1, ..., N, respectively. It is assumed that
signals propagate via a single LOS or NLOS path,'* and there is no prior statistical informa-
tion related to errors due to NLOS propagation. Let ¥; = tan ™! (’ i ) fori =1,..., Nm,

denote the angle between the ith reference node and the target node, where (x, y)and (xl , Vi)
are the positions of the target node and the ith reference node, respectively.
It can be shown that the MMSE for TOA-based positioning is given by Qi etal. [8]

zzt 10'

N, 1 ’
Z,’=L1 l, 1‘7 U % sin (W: Wj)

MMSET0A = (38)

where c is the speed of light and crl.z, fori = 1,..., N, is the variance of the zero mean
Gaussian noise in the LOS case. Note that the theoretical lower bound in (38) is independent
of the parameter estimates related to the NLOS nodes, which means that the NLOS nodes
do not contribute to the positioning accuracy in the absence of prior statistical information
related to NLOS errors. In addition, the geometric configuration of the LOS nodes can affect
the theoretical limit significantly through the last term in the denominator.

For sufficiently large SNR and/or effective bandwidth g, O’i_z is approximately equal
to SnzﬂZSNRi, where SNR; is the SNR for the ith signal [10]. In that case (38), can be
expressed as

2 > M SNR;
72p2 3N | X' Z\ SNR;SNR; sin?(y; — v

MMSETos = g (39

which shows the impact of the effective bandwidth on the MMSE. In [8], it is shown that an
ML estimator based on LOS delay estimates obtained via matched filtering (or correlation)
can attain the MMSE value in (39) for sufficiently large SNR and/or effective bandwidth. In
other words, the two-step positioning receiver in Fig. 10 is asymptotically optimal.

As an example, consider the positioning scenario in Fig. 11, where the target node is sur-
rounded by six reference nodes that are uniformly located on a circle. Assuming that all the
signals have the same SNR, the theoretical lower bounds can be obtained as in Fig. 12, where
the square root of the MMSE expression in (39) is plotted against the effective bandwidth
for various numbers of NLOS nodes. Namely, for N, = 3, nodes 4-6; for N, = 4, nodes 5
and 6; and for N, = 5, node 6 are the NLOS nodes. From the figure, it is observed that as
the number of LOS nodes, the effective bandwidth and/or the SNR increases, the accuracy
of the positioning system increases.

14 Refer to [52] for theoretical limits of position estimation in multipath channels.
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5 6

Fig. 11 A positioning scenario, in which six reference nodes are estimating the position of the target node in

the middle via TOA estimation
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Fig.12 Square root of the MMSE expression in (39), called RMSE, versus the effective bandwidth for various
numbers of NLOS nodes and SNRs. For N, = 3, nodes 4-6; for N, = 4, nodes 5 and 6; and for N[, = 5,

node 6 are the NLOS nodes

For TDOA-based positioning, the MMSE can be expressed as [8]

NL
MMSETpoa = 2 Z Oi_z
i=1

N -2 N —4 i—1
(Zi:lai )2_21_L1‘7 Zz—l 1_10 o;
X

2 cos(Pi — )

where K; ; is given by

NL NL NL
Kij=sin(y; — ) D> o2+ D o sin(i — vi) + 0
k= =1 k=1

(40)

sin(yj — y). (41

As can be observed from (40), the MMSE is independent of the estimates related to NLOS
nodes as in the TOA case. Also, it can be shown that the MMSE for TDOA-based positioning
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is always larger than or equal to that for TOA-based positioning [53], which is expected due
to the presence of an extra unknown parameter, timing offset, in TDOA systems.
For RSS-based positioning systems, the MMSE is expressed as [8]

In 102 o i
MMSERss = ( 1110 ) Zl jz = lz 2 ’ (42)
n Z Z} lashl sh]d d Sll’l (WZ _1//])

where 7 is the path loss exponent, aszh ; 1s the variance of the log-normal shadowing for the

ith signal, and d; = \/ (x — x;)2 + (y — y;)? is the distance between the target node and
the ith reference node. Note that the accuracy of RSS-based positioning depends heavily on
the channel parameters, namely the path loss exponent and the shadowing variances. Also,
the accuracy depends on estimates at all nodes, LOS and NLOS, since the effects of NLOS
propagation are implicitly included in the RSS signal model, as studied in Sect.2.1.

For an AOA-based positioning system employing ULAs, the MMSE can be expressed as
(8]

3

472 AZN,(Ny + 1)(2N, + 1)

Ni SNR;
2k c sin? ;

X
1 SNR;SNR; ) ) J
Z Z d;dz . Snz(w, xﬁj)sm2 v smzwj

MMSEp0a =

(43)

where N, is the number of antenna elements and A is the inter-element spacing. Similar to
the time-based systems, the AOA-based positioning utilizes the estimates from LOS nodes
only.

For hybrid positioning systems, two different categories can be considered depending on
whether estimation errors for various types of position related parameters are correlated or
not. Some lower bound expressions for such systems can be found in [8,30].

The analysis in this section assumes that there is no prior statistical information related
to NLOS errors. In the presence of such prior information, the accuracy can be evaluated
by means of generalized CRLB (G-CRLB), as investigated in [8]. In that case, an asymp-
totically optimal positioning receiver can be implemented as shown in Fig. 13. Note that
estimates from both LOS and NLOS reference nodes are utilized in the presence of NLOS
error statistics.

4 Concluding Remarks

Various positioning algorithms have been investigated and theoretical limits for their posi-
tioning accuracy have been presented in terms of CRLBs. A two-step approach to position
estimation has been adopted. First, estimation of position related parameters has been studied
and accuracy of RSS, AOA, and T(D)OA estimation has been quantified in terms of CRLBs.
Then, for the second step, estimation of position based on position related parameters esti-
mated in the first step has been studied, and mapping, geometric and statistical approaches
have been investigated.

Note that the position estimation schemes considered in this paper have been based on a
single observation of signals at a given time instead of multiple observations over a period
of time. For the latter, tracking algorithms, such as Kalman filters, grid-based approaches or
particle filters can be employed [54].
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Fig. 13 An asymptotically optimal receiver for TOA-based positioning in the presence of statistical NLOS
information
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