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Abstract. In this paper priority is assigned to the handover calls over new call attempts and blocked handover

calls are placed in a finite storage queue. Total handover forced termination probability is evaluated and a suitable

function for the mean service time at each position in the queue is theoretically estimated. Quality of service is

obtained by introducing a threshold in the maximum waiting time of a handover call in the queue. In case the

handover call mean service time at each queue position is found to be greater than this threshold, this call will be

blocked. Simulation results show that this scheme provides satisfactory results for both types of calls.
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1. Introduction

In case of microcellular networks where frequent handovers is a fact, Quality of Service (QoS)
may degenerate below an acceptable level due to brief service interruptions. As the frequency
of these interruption increases the perceived Qos is reduced. Also the chances of dropping a
call due to factors such as the availability of channels increase with the number of handover
attempts. All these issues place additional challenges on the design and dimensioning of
microcellular wireless networks. Increasing the handoff rate, the probability of an ongoing
call to be dropped due to a lack of free channel is high. This probability is also described
as the probability of forced termination of handover calls PF and it is a major criterion in
performance evaluation of cellular systems.

Forced termination of an ongoing call is clearly less desirable than blocking of a new call
attempt. Therefore, some channel assignment strategies with handover prioritization, guard
channels [1], have been proposed in order to decrease the probability of forced termination.
Hong and Rappaport [1] first proposed and analyzed a priority queuing model, according to
which handover calls can be queued if all channels in the target cell are busy. If any channel is
released while the mobile is in the handoff area, the first call in the queue occupies this channel.
Infinite queue size is here considered. Chang et al. [5] later on proposed a two dimensional
Markov chain queuing model for both types of calls, and in their model they also proved that
it is not necessary to provide a very large queue size, thus a finite queuing is more suitable
and realistic. Guerin [4] made also use of handover guard channels and new call queuing by
proposing a two-dimensional Markov chain model. In his model, Guerin managed to find a
closed-form solution for the state probabilities.

This paper is organized as follows: In Section 2, the mathematical analysis of the priori-
tized handover procedure is presented and the mean channel holding time is also empirically
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calculated using the model presented in [1]. In Section 3 we give the mathematical analysis of
our proposed algorithm, giving priority to the handover calls over the new call attempts and
also puts the blocked handover calls in a finite storage queue. The idea of the maximum waiting
time in a queue is introduced, where a call should not wait in the queue for a long time before
a free channel serves it, even if this call is still in the handoff area. Finally a mathematical
expression for the new call and handover blocking probabilities is presented. Conclusions are
provided in Section 4.

2. The Prioritized Handover Procedure

In order to study the handover queuing and present the impact of a queue on the system
performance, it is necessary to analyze the prioritized handover procedure. The main aspects
that have to be considered are (1) The mean channel holding time; (2) The cell radius; (3)
The user mobility; (4) The mean call duration; (5) The guard channel reservation for handover
calls.

The channel holding time TH in a cell is defined as the time duration between the instant
that a channel is occupied by a call and the instant it is released by either completion of the call
or a cell boundary crossing by a portable, whichever is less. This time is a function of the cell
radius R and of the maximum mobile velocity Vmax. We assume that the mean call duration TM

is the time an assigned channel would be held if no handoff is required and has an exponential
distribution with mean value TM (≡ 1/μM ). The speed of a mobile in a cell is assumed to
have a uniform distribution on the interval [0, Vmax]. The time for which a mobile resides in a
cell to which the call is originated (is handed off) is denoted Tn(Th). The probability density
functions of these holding times are [1]:
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The channel holding times of a new and handover call are given by:

THn = min(TM , Tn)

THh = min(TM , Th).

Finally, it is proved [1] that the pdf of TH is a function of the equations above and can be
approximated to a negative exponential distribution with mean TH = 1/μH . The value of μH

can then be calculated using the following equation:∫ ∞

0

(
FC

T H (t) − e−μH t
)
dt = 0 (3)

where FC
T H is the complementary distribution function of the channel holding time.
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Figure 1. State-transition diagram for the prioritized handover procedure.

Priority can be given to handoff attempts by assigning Ch channels exclusively for handoff
calls among the C channels in a cell. Both the new and the handoff calls can share the remaining
C − Ch channels. We define the state E j of a cell such that there are j calls in progress and
let Pj represent the steady-state probability to find this cell in state E j . The probabilities can
be determined by using a Markovian birth-death process in Figure 1.

Let λn and λh be the new calls and the handoff calls arrival rate, respectively. Denoting
λ = λh + λn as the total call arrival rate, then we can set

λh = aλ (4)

The offered load ρ in a communication system is defined as

ρ = (λh + λn)

μH
(5)

Using the steady-state equations from Figure 1, we conclude:

Pj =

⎧⎪⎨⎪⎩
ρ j P0

j!
, 0 ≤ j ≤ C − Ch

ρ j P0a j−(C−Ch )

j!
, C − Ch < j ≤ C

(6)

where P0 denotes the probability of having 0 channels in use (calls in progress) and is derived
by the total probability

∑C
j=0 Pj = 1. Thus

P0 = 1∑C−Ch
j=0

ρ j

j!
+ ∑C

j=C−Ch+1
ρ j a j−(C−Ch )

j!

(7)

A new call will be blocked if it finds the system at a state greater than or equal to C − Ch:

PB =
C∑

j=C−Ch

Pj (8)

A handoff attempt will fail if the state number is equal to C , thus:

Pf h = PC (9)
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3. Mathematical Analysis of the Proposed Handover Procedure

In this section we study a handover-prioritized procedure, according to which a handoff attempt
may be queued if the state number in the cell is equal to C (All channels in the cell are busy).
TQ is the time that this attempt remains queued at a position q depends normally on whether
or not a channel becomes available as long as the mobile is still in the handoff area. In this
area, the average received power level by a mobile is between the handoff threshold level –
initiation of the handover procedure – and the receiver threshold level [1]. A handoff attempt
that joins the queue will be successful, if both of the following events occur before the mobile
moves out of the handoff area:

(1) All of the attempts which joined the queue earlier than the given attempt have been disposed
(2) A channel becomes available when the given attempt is at the first position in the queue.

On the basis of our consideration, TQ should have an upper bound. In order to have an
effective system, a call must not be allowed to remain at a buffer position more than a maximum
time threshold. Moreover, the queue size has to be limited because it is more realistic and
practical than the infinite buffering. The maximum value of the mean service time TQ = 1/μQ

is here obtained by the mean waiting time Wh in the queue.
The same analysis as in Section 2 is used and a similar Markovian birth-death process with

k positions in the queue calculates the system steady-state probabilities in Figure 2.
Using the steady-state equations from Figure 2, we conclude:

Pj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ j

j!
P0, 0 ≤ j ≤ C − Ch

ρ j a j−(C−Ch )

j!
P0, C − Ch < j ≤ C

ρ j a
j−(C−Ch )

C!
∏ j−C

i=1 (CμH + iμQ)
P0, C < j ≤ C + k

(10)

In the same way as in Section 2, we can obtain the probability P0:

P0 = 1∑C−Ch
j=0

ρ j

j!
+ ∑C

j=C−Ch+1
ρ j a j−(C−Ch )

j!
+ ∑C+k

j=C+1
ρ j a j−(C−Ch )

C!
∏ j−C

i=1 (CμH +iμQ)

(11)

Now, we define the waiting time of a queued handoff call as the time of an arbitrarily
selected handoff call between the moment it is accepted and begin waiting in the queue to the
moment it successfully accesses a free channel. Given that the state of the system is when the
call arrives and waits in the queue, we denote the waiting time by Wh( j). Clearly, 0 ≤ q ≤ k−1

Figure 2. State transition diagram of the queuing traffic model.
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and Wh( j) can be obtained by the following formula [5]:

Wh( j) = − 1

μQ
ln(1 − Rh( j)) (12)

where “ln” is the natural logarithmic function and Rh( j) is the dropping probability of an
arbitrary selected handoff call, given that the system state is j = C + q just at the instant the
call is accepted by the system and waits in the queue. This probability is derived later on in
this section. Consequently, the average waiting time of a handoff call, denoted by Wh , can be
obtained by:

Wh =
∑C+k−1

j=C Pj Wh( j)∑C+k−1
j=C Pj

(13)

As we can easily conclude, Wh is a function of the mean queue service time TQ = 1/μQ .
Thus, setting an upper bound (Wh)MAX for the waiting time in the queue, we can solve for
TQ and find the corresponding maximum allowable mean service time at every position. Of
course, this solution of TQ should be inside the interval [0, +∞). From Equation (13), it is
obtained that:

(Wh)MAX = f (TQ)MAX ⇒ (TQ)MAX = f −1((Wh)MAX) (14)

The blocking probability of the new calls is the sum of the probabilities that the state
number of the cell is larger than or equal to C − Ch . Hence:

PB =
C+k∑

C−Ch

Pj (15)

As we already mentioned, the blocked handover calls join a queue. A handover attempt
that enters the queue at the position q(0 ≤ q ≤ k − 1) will be successful, if it manages to
reach the first position of the queue and get a channel before its mean service time becomes
greater than the calculated from Equation (14) value. Thus, the handoff blocking probability
can be expressed mathematically as:

Pf h =
[

k−1∑
q=0

PC+q × Pr(attempt fails given it enters the queue in position (q + 1))

]
+PC+k

or

Pf h =
k−1∑
q=0

PC+q Rh(C + q) + PC+k (16)
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In order to derive the probability of a handoff failure in the queue Rh(C + q), we assume
that:

1 − Rh(C + q) =
[

q∏
i=0

P(i/ i + 1)

]
× Pr(call remains in queue) (17)

The probability of transition from position i + 1 to i is denoted by P(i/ i + 1) in Equation
(17) and is contributed by two probabilities [5]:

i. The remaining channel holding time of any of the C calls in progress is smaller than each
of the following:

– The remaining channel holding time of any of the other (C − 1) calls in progress.
– The service time of any of the i waiting handoff calls.
– The service time of the waiting handoff call of interest.

ii. The remaining service time of any of the i handoff calls waiting in the queue is smaller
than each of the following:

– The channel holding time of any of the C calls in progress.
– The service time of any of the other (i − 1) waiting handoff calls.
– The service time of the waiting handoff call of interest.

Thus, the transition probability can be obtained by:

P(i/ i + 1) = CμH + iμQ

CμH + (i + 1)μQ
(18)

The second term in Equation (17) is a logical condition that can have only two values. If
the mean service time at this position is smaller than or equal to the maximum mean service
time threshold (derived by Equation (14)), this term is set to “1”. Otherwise, it is set to “0”.
Thus:

Pr(call remains in queue) =
{

1, TQ ≤ (TQ)MAX

0, otherwise
(19)

Finally, by substituting (17), (18), (19) into (16), we have:

Pf h =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k−1∑
q=0

PC+q

[
1 −

q∏
i=0

CμH + iμQ

CμH + (i + 1)μQ

]
+ PC+k, TQ ≤ (TQ)MAX

k∑
q=0

PC+q, otherwise

(20)

At this point, it is important to introduce a new probability, which is more important than
Pf h . When the cell radius is small, the probability that a mobile crosses a cell boundary during
call duration is higher. Thus, from the user’s point of view, the probability PF that a call, which
is not blocked, is eventually forced into termination is a very significant parameter in mobile
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systems. This will occur if the call succeeds in each of the first (k − 1) handoff attempts that
it requires, but fails on the kth attempt. Therefore:

PF = Pf h PN

1 − PH (1 − Pf h)
(21)

Probabilities PN and PH in (21) denote the handoff demand of new and handoff calls, respec-
tively and can be obtained by [1]:

PN = Pr(TM > Tn) =
∫ ∞

0

e−μM t fT n(t)dt (22)

PH = Pr(TM > Th) =
∫ ∞

0

e−μM t fT h(t)dt (23)

Figure 3. New call blocking probability versus offered load for queue and non-queue strategy.

Figure 4. Handover forced termination probability PF versus offered load for queue and non-queue strategy.
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4. Simulation Results and Comparisons

In this section we present the results of our model and some comparisons are made with
other known schemes. Generally, our proposed prioritized handover and finite queuing pro-
cedure leads to a significant optimization on the handover forced termination probability. The
following assumptions have been made during simulation:

• The mean call duration TM is 120 seconds.
• The maximum speed of a mobile is 60 miles/hour.
• The total number of available channels in the cell is C = 20.
• Ch = 2 channels are reserved only for handover calls.
• The cell radius is 1 km.
• The handover call to total call is a ∼= 1

3
. This value is based on statistical measurements in

real cellular systems.
• The queue length is set to k = 3.

In order to calculate the other values that are involved in the simulation, we use the appro-
priate equation presented in this paper. For example, to calculate the mean channel holding
time, we substitute the values above in Equations (1)–(3) and find out that μH ≈ 1

85
sec−1.

The probabilities of handoff demand of new and handoff calls in (22) and (23) are found
to be PN = 0,43645 and PH = 0,31629, respectively. Figures 3 and 4 show PB and PF ,
respectively, as a function of the offered load for the prioritized handover scheme and for
our proposed handover queuing priority and finite storage scheme. As we notice, our model

Figure 5. Mean Queue Waiting Time vs. Offered Load for different queue sizes.

Figure 6. Mean Queue Waiting Time vs. Offered Load for different mean queue service times.
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seems to give better results for the forced termination probability, while the new call blocking
probability does not increase dramatically.

The relation between service and waiting time is presented in Figures 5 and 6. For various
values of the mean service time and for different queue sizes, we notice that, as the offered
load increases, the increment in Wh is more significant for a queue size of k = 2 than for a
size of k = 5.

5. Conclusions

This paper deals with a new complex telecommunication traffic model based on prioritized
handover and finite storage queuing. The prioritized handover is achieved by reserving a small
number of channels only for the handover calls and also, only handover-blocked calls are
allowed to enter a finite storage queue. The call arrival processes are assumed to be Poisson
and a suitable empirical model obtains the mean channel holding time for both types of calls.
For our mathematical analysis, we use a birth-death Markovian process and we derive all
the necessary probabilities. The basic idea of our approach is that any blocked handover call
should not wait in the queue for a very long time, either if this call is still in the handover area.
Finding the suitable function for the mean waiting time in the queue, we calculate an upper
bound for the mean service time at each queue position. As it is noticed from the figures, our
model gives satisfactory results for the derived handover forced termination probability.
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