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Abstract
On-demand routing protocols discover routes through network-wide searches. Route requests are broadcast to a large number 
of nodes, and route replies may contain long routes. In this paper, we address the route discovery problem and aim to reduce 
route discovery overhead. We propose using data packets to discover routes. A source sets a boolean variable in a data packet 
to be true when it has only one route to the destination. This variable is a new form of a route request. The nodes forwarding 
the data packet send route replies containing cached routes. To prevent nodes from sending duplicate routes to the source, 
we define a forward list and a backward list in the data packet. The node sending a route reply records route diverging and 
converging information about the route in the route reply. Subsequent nodes use the information in the data packet to decide 
whether to send a route reply. Our algorithm reduces route discovery latency and discovers routes shorter than or having the 
same length as the active data path. Due to these shorter routes, it reduces the total size of route requests and route replies 
significantly. Routing overhead increases slowly as mobility or network load increases. Our algorithm is independent of 
node movement. It improves packet delivery ratio by 15% and reduces latency by 54% for the 100-node networks at node 
mean speed of 20 m/s.

Keywords Routing protocols · Mobile ad hoc networks · Route discovery problems · Broadcast storms · Directed route 
discoveries · Mobility independent · Highly mobile scenarios · Space communications · Delay-tolerant networks · 
Scalability issues

1 Introduction

In a mobile ad hoc network (MANET), on-demand routing 
protocols discover routes through network-wide searches. To 
find a route to a destination, a source broadcasts a ROUTE 
REQUEST. The node receiving a ROUTE REQUEST sends 
a ROUTE REPLY to the source if it has a cached route and 
rebroadcasts the packet if it does not have a cached route 
to the destination. ROUTE REQUESTS are forwarded to 
a large number of nodes, and ROUTE REPLIES may con-
tain long routes. A straightforward broadcasting by flood-
ing results in serious redundancy, contention, and collision. 
This problem is called broadcast storms [1]. Routing pack-
ets consist of ROUTE REQUESTS, ROUTE REPLIES and 
ROUTE ERRORS. Routing overhead is the total number 

or the total size of routing packets transmitted. For packets 
sent over multiple hops, each transmission of the packet is 
counted as one transmission [2]. ROUTE REQUESTS and 
ROUTE REPLIES are the major source of routing overhead. 
As mobility increases, routes break more frequently. Net-
work-wide searches incur more routing overhead and packet 
losses caused by MAC (Media Access Control) collisions. 
In this paper, we address the route discovery problem in 
mobile ad hoc networks and aim to reduce route discovery 
overhead, namely the number and the size of route discov-
ery messages. Route discovery overhead is the total size of 
ROUTE REQUESTS and ROUTE REPLIES. The larger a 
packet is, the higher probability packet collisions will occur 
with. Large amount of routing packets cause severe wireless 
interference and packet losses, degrading network through-
put and capacity.

To address the route discovery problem, previous studies 
mainly focused on restricting search space. We describe the 
most well- known two pieces of work first and will discuss 
more related work shortly. Ko and Vaidya [3] suggested an 
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approach to reduce the overhead of route discovery by utiliz-
ing location information. Such information will be obtained 
using global position system (GPS). They presented two 
Location-Aided Routing (LAR) protocols for route discov-
ery. The LAR protocols aim to reduce the search space for 
a desired route, and limiting the search space leads to fewer 
route discovery messages. The protocols use location infor-
mation to limit a search to a request zone, which is deter-
mined based on the past location of the destination and its 
speed. However, this work requires GPS. Castaneda and Das 
[4] proposed a query localization technique, which uses prior 
routing histories to estimate a small region with high prob-
ability of finding the destination. A smaller region results in 
lower routing overhead, but a route within the region may 
not exist. If a route search fails, another route discovery with 
a larger region increases route discovery latency. Thus, there 
is a trade-off between routing overhead and route discovery 
latency. Subsequent research mainly used probabilistic meth-
ods [5–7]. Compared with using flooding, the probabilistic 
methods reduce route discovery messages significantly, but 
their performance depends on whether the time-distance cor-
relation holds. The authors assume mobility processes are 
homogenous, but node movement is fully random in reality. 
Moreover, these approaches cannot guarantee that a route to 
the destination can be found.

In contrast to previous studies, our goal is to reduce the 
total number of network-wide route searches or broadcast-
ings. We present an algorithm called directed route discov-
ery (DRD) for the Dynamic Source Routing protocol (DSR) 
[8], and this algorithm discovers routes through data packets. 
The intuition behind this idea is that each source node con-
tinuously sends data packets to the destination. Initially, a 
source discovers routes through a network-wide search. It 
caches routes sent back through ROUTE REPLIES. When 
it has only one route to the destination, it piggybacks a 
ROUTE REQUEST on a data packet, which is a boolean 
variable. The nodes forwarding the data packet send ROUTE 
REPLIES using cached routes. These ROUTE REPLIES 
contain the routes shorter than or having the same length as 
the current route being used. Thus, the protocol reduces the 
total size of ROUTE REPLIES, since a ROUTE REPLY in 
DSR contains a source route from the source to the destina-
tion. As long as an intermediate node has a cached route that 
satisfies the condition, the algorithm avoids a route search.

The nodes forwarding the data packet should avoid 
sending duplicate routes to a source. In DSR, each packet 
contains a source route from the source to the destina-
tion. A ROUTE REQUEST contains a sequence of nodes 
that have been traversed. If a node receiving a ROUTE 
REQUEST has a cached route to the destination, it uses 
the route to construct a source route and sends a ROUTE 
REPLY to the source. The node sending a ROUTE 
REPLY does not propagate the ROUTE REQUEST to its 

neighboring nodes, and thus no ROUTE REPLIES con-
tain the same route. In our method, a ROUTE REQUEST 
is a boolean variable in a data packet. When it is true, it 
indicates that a source wants to find routes to a destina-
tion. When a data packet contains a ROUTE REQUEST, 
several nodes on the active data path may send the same 
route to the source.

To address this problem, we define a forward list and a 
backward list in a data packet. The node sending a ROUTE 
REPLY records route diverging and converging informa-
tion about the cached route in the ROUTE REPLY. Diverg-
ing information refers to the first node pair where a cached 
route diverges from the source route. Converging informa-
tion refers to the first node pair where a cached route and 
the source route converge. Each node on the data path uses 
the information in the data packet and two rules to decide 
whether to send a ROUTE REPLY.

The algorithm has four desirable properties. First, it 
reduces route discovery latency because routes are obtained 
before the last route breaks. Second, it is independent of 
node movement. The intermediate nodes will send ROUTE 
REPLIES to a source no matter how fast the source and 
the destination move. Third, it finds shorter routes and 
thus reduces packet delivery latency. Finally, it reduces the 
size of both ROUTE REPLIES and ROUTE REQUESTS. 
In DSR, the size of a ROUTE REQUEST depends on the 
number of hops traversed. In our method, a source needs to 
broadcast a ROUTE REQUEST when no ROUTE REPLY 
is sent by intermediate nodes. We found that the total size 
of ROUTE REQUESTS is significantly reduced. Since most 
of found routes are shorter than the current route, the nodes 
close to the source are in the vicinity of the destination and 
have cached routes to the destination. They send ROUTE 
REPLIES, and ROUTE REQUESTS are not broadcast 
further.

We show that the algorithm significantly improves packet 
delivery ratio and reduces packet delivery latency. Packet 
delivery ratio describes the loss rate that will be seen by the 
transport protocols and characterizes both the completeness 
and correctness of the routing protocol [2]. For the 100-
node networks, it improves packet delivery ratio by 15% and 
reduces packet delivery latency by 54%. It reduces packet 
delivery latency by 48% and 45% for the 150- node and the 
200-node networks, respectively. Simulation results show 
that 80% of routing overhead results from route discoveries. 
The algorithm reduces route discovery overhead by 78% and 
81% for the 150-node and 200-node networks, respectively. 
It reduces the total size of ROUTE REQUESTS by 75% for 
the 150-node networks and 79% for the 200-node networks. 
Under high network load, such as 40 flows, it improves 
packet delivery ratio by 22% and reduces packet delivery 
latency by 46% for the 100-node networks at node mean 
speed of 10 m/s.
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This paper makes two contributions. First, we present a 
new route discovery algorithm for one of the most popular 
on-demand routing protocols in mobile ad hoc networks. 
Second, due to finding shorter routes, the algorithm reduces 
the length of the routes traversed by ROUTE REPLIES, and 
ROUTE REQUESTS sent through broadcast are handled 
by the nodes close to a source. The main goal of the algo-
rithm is to reduce network-wide route searches. For the 100-
node networks, it reduces route searches by 17%. For the 
150-node and 200-node networks, it reduces route searches 
by 12% and 17%, respectively. Because of the above three 
features, our algorithm reduces route discovery overhead 
significantly. Moreover, routing overhead increases slowly 
as mobility or network load increases. Routing overhead 
measures the scalability of a routing protocol, the degree to 
which it will function in congested or low-bandwidth envi-
ronments, and its efficiency in terms of consuming node 
battery power [2].

Li et al. [9] show that traffic pattern determines whether 
per node capacity scales to large networks, and the aver-
age distance between sources and destinations must remain 
small as the network grows. We show that the locality of 
routing packets is critical for the scalability of on-demand 
routing protocols. However, as network load increases, both 
packet delivery ratio and delivery latency degrade rapidly 
because of a large amount of wireless interference and 
packet collisions. Making network throughput or capacity 
degrade slowly with respect to network load is not solved.

The rest of this paper is organized as follows. In Sect. 3, 
we give an overview of DSR. In Sect. 4, we describe the 
directed route discovery protocol. We present simula-
tion methodology and simulation results in Sects. 6 and 7, 
respectively. In Section 2, we discuss related work. Finally, 
we conclude in Sect. 8.

2  Related work

Castaneda and Das [4] proposed query localization protocols 
in which a query message is flooded in the neighborhood 
of the prior route. The message includes a set of nodes on 
the prior route, and is forwarded by the nodes for which 
the source route in the packet has at most k nodes not on 
the route. If the region is too small, a route may not exist, 
and another route discovery with incremented k will be 
needed, which increases route discovery latency. A larger 
region increases routing overhead. Thus, there is a trade-
off between latency and routing overhead. In contrast, our 
protocol reduces both packet delivery latency and routing 
overhead.

In the work of Ferriere et al. [6], successive searches 
advance toward the destination. A source searches for a node 

that encountered the destination more recently. This proce-
dure continues until the destination is found. The intuition 
is that if a node encounters a destination more recently than 
another node, the former is probably closer to the destina-
tion. However, the performance of the algorithm depends 
on whether the time-distance correlation holds. If mobil-
ity processes are heterogeneous, the relationship between 
encounter age and distance becomes noisy.

Haas et al. [5] proposed a gossiping-based approach to 
reduce the overhead of flooding commonly used in on-
demand protocols. Each node forwards a message with some 
probability. The results in percolation theory [10] show 
that gossiping exhibits a certain type of bimodal behavior. 
Let the gossip probability be p. Then, in sufficiently large 
graphs, there are fractions θS (p) and θR (p) such that the 
gossip quickly dies out in 1—θS (p) of the executions and, in 
almost all of the fraction θS (p) of the executions where the 
gossip does not die out, a fraction θR (p) of the nodes get the 
message. Moreover, θR (p) is close to 1 in many cases. Thus, 
in almost all executions of the algorithm, either hardly any 
nodes receive the message, or most of them do. They show 
that using gossiping probability between 0.6 and 0.8 suffices 
to ensure that almost every node gets the message in almost 
every execution. They also show that, by using appropriate 
heuristics, the gossiping protocol saves up to 35% message 
overhead compared with flooding. However, with gossip-
ing, a source may not always discover the shortest routes. 
The gossiping protocol may not guarantee that a route to 
the destination is found, either because the destination is 
missed due to inappropriate gossiping probability choices 
or because the physical layer broadcast is sent with certain 
probability.

Beraldi [7] presented a probabilistic protocol called polar-
ized gossiping for path discovery in mobile ad hoc networks. 
The gossiping probability of a node is variable and high 
enough only for sustaining the spreading process towards 
the destination. It is determined by the difference between its 
proximity to the destination and the proximity to the destina-
tion of the node from which the message was received. The 
proximity is obtained using periodic beacons. The polar-
ized gossip algorithm contains a polarizing node, n* , and 
two gossiping probabilities, pF and pB . If node i receives 
a message for the first time and from node j, it forwards the 
message with probability pF if i is closer than j to the desti-
nation and with probability pB otherwise. The author shows 
that the protocol saves up to 80% of broadcast transmissions 
compared with flooding. The above two probabilistic proto-
cols are more scalable than the protocols using flooding, but 
their performance also depends on whether the time-distance 
correlation holds.

Hui et al. [11] studied the data forwarding problem for 
Pocket Switched Networks (PSN), a type of Delay Tolerant 
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Networks [12]. A PSN allows humans to communicate with-
out network infrastructure. They exploited two social met-
rics, namely centrality and community, using real human 
mobility traces. They designed and evaluated BUBBLE, a 
novel social-based forwarding algorithm, that utilizes the 
two metrics to improve message delivery performance. Mes-
sages bubble up and down the social hierarchy, based on the 
observed community structure and node centrality, together 
with explicit label data. However, there are several issues 
for this algorithm. First, message delivery ratio is lower than 
the routing protocols designed for mobile ad hoc networks. 
For example, delivery success ratio is less than 0.5 when the 
time TTL of the messages (the maximum time a message 
can stay in the system after its creation.) is one week, and 
less than 0.6 when the time TTL is three weeks. As shown in 
Fig. 5, packet delivery ratio is 0.85 for DSR with DRD and 
0.8 for DSR, for the 150-node networks at pause time 0 s and 
with node mean speed of 10 m/s. Second, packet delivery 
latency of the BUBBLE algorithm is high. For example, if 
the time TTL is one day, delivery success ratio is only less 
than 0.2 on Reality dataset because the Reality network is 
very sparse. In contrast, packet delivery latency is 0.42 s 
for DSR and 0.22 s for DSR with DRD for the 150-node 
networks at pause time 0 s. It is unclear how TCP performs 
on top of such social-based forwarding algorithms. Finally, 
node moving speed is very low in a PSN because nodes 
are devices carried by humans. We believe that social-based 
forwarding does not apply to mobile ad hoc networks with 
mild mobility, such as node mean speed of 5 m/s, or high 
mobility.

Lee et al. [13] presented the Whirlpool Routing Protocol 
(WARP) for sensor networks, which efficiently routes data to 
a node moving within a static mesh. The key insight behind 
WARP is that, when a destination moves, the existing dis-
tance vector tree can quickly find its new location. WARP 
uses the existing topology to search around the destination’s 
old location for nodes that still have routes. When it finds 
such a node, it quickly repairs the local topology. WARP 
uses speculative routing to search for a destination’s new 
location. Speculative routing sends packets along a spiral 
trajectory around the last known position of the destination. 
Similar to query localization [4], WARP limits the range 
over which nodes search for a route. However, as discussed, 
WARP becomes inefficient when the destination moves very 
fast. Both the path length and routing overhead increase dra-
matically, and spiral whirlpool packets fail to find the new 
location of the destination.

Ladas et  al. [14] presented Multipath-ChaMeLeon 
(M-CML) as an update of the existing ChaMeLeon (CML) 
[15] routing protocol. The concept of multi-path is that a 
source maintains multiple paths to a destination and dis-
tributes load among these paths [16, 17]. CML is a hybrid 
protocol designed for mobile ad hoc networks, which 

adapts its routing behavior according to network size. 
For small networks, CML routes data proactively using 
the OLSR (Optimized Link State Routing) [18] proto-
col, and for large networks, it utilizes the reactive AODV 
[19] protocol. They implemented the multi-path approach 
on the proactive phase of CML. M-CML extends OLSR 
so as to calculate multiple paths based on the Expected 
Transmission Count (ETX) [20]. To reduce the genera-
tion of multiple duplicated messages produced, M-CML 
implements a simplified approach by sending data to the 
two most optimal disjoint next addresses. They show that 
M-CML’s multipath routing combined with ETX signifi-
cantly reduces end-to-end delay compared with OLSR. 
Our algorithm finds shorter routes when the source is 
sending data packets to the destination but does not send 
duplicated packets to several paths. Although it maintains 
multiple paths, it is different from multi-path routing.

Tang et  al. [21] studied the problem of on-demand 
route discovery in asynchronous duty-cycling sensor net-
works and presented four optimizations: Delayed Selec-
tion, Duty-Cycled Selection, Reply Updating and Adap-
tive Backoff. They show that with only simple changes 
made at the MAC or network layers, their optimizations 
enabled nodes to improve significantly discovered routes 
while reducing route discovery latency and node energy 
consumption. These optimizations can find routes that 
were only 0.2% longer than the theoretical shortest routes 
or routes with an ETX only 9% larger than the ETX of 
the theoretical optimal ETX routes. However, this work 
focused on asynchronous dutycycling sensor networks and 
does not aim to reduce route discovery overhead in mobile 
ad hoc networks.

Current protocols for sensor networks mainly support 
multihop upward traffic from many sensors to a collection 
point; however, the scenarios involving low-power wireless 
devices increasingly require support for downward traffic. 
For example, a controller needs to issue actuation commands 
based on the monitored data. The IETF Routing Protocol for 
Low-power and Lossy Networks (RPL) [22] deals with both 
traffic patterns. Istomin et al. [23] observed that a simple 
dissemination-based flooding protocol systematically pro-
vided near-perfect reliability even in scenarios where the 
routing-based approach of ContikiRPL performed unaccept-
ably. As a result, they tackled the routing problem by extend-
ing RPL with two extremes. At one extreme, they retained 
the route-based operation of RPL and added techniques that 
were neglected by popular implementations. At the other 
extreme, they rely on flooding as the main networking primi-
tive. In order to send commands to the monitored area, the 
root needs to find routes to a small group of sensors; this is 
a route search problem. The authors show that a carefully 
balanced mix of routing and flooding strikes performance 
tradeoffs not achievable by either approach.
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The energy consumption problem is severe for large-scale 
systems that involve several thousands servers. Zakarya et al. 
[24] discussed the energy consumption and performance 
problems of large-scale systems and presented several tax-
onomies of energy and performance aware methodologies. 
To solve the route discovery problem, our goal is to find 
routes as fast as possible while incurring as few routing 
packets as possible. These routing packets cause interfer-
ence, collisions, and retransmissions, consuming limited 
bandwidth and node energy. This work fits into the broad 
range of Zakarya’s research of energy efficiency and perfor-
mance problems.

Araniti et al. [25] presented an overview, enhancements, 
and the performance for Contact Graph Routing [26] in 
DTN (Delay-Tolerant Networking) [27] space networks. 
They said:“ Satellite systems already have to cope with 
difficult communication challenges:long round trip times 
(RTTs); the likelihood of data loss due to errors on the 
communication link; possible channel disruptions; and 
coverage issues at high latitudes and in challenging ter-
rain. These problems are magnified in space communi-
cations characterized by huge distances among networks 
nodes, which imply extremely long delays and intermittent 
connectivity. At the same time, a space communication 
system must be reliable over time due to the long dura-
tion of space missions. Moreover, the importance of ena-
bling Internet-like communications with space vehicles is 
increasing.” As described by Wyatt et al. [28], DTN was 
originally designed to meet the emerging need to provide 
capable network services for space flight operations. It 
runs directly over link-layer protocols, taking the place 
of the IP network protocol when necessary. Route com-
putation is based on a schedule of planned contacts, and 
forwarding at each router is store-and-forward rather than 
immediate. In NASA’s (National Aeronautics and Space 
Administration) EPOXI mission [28], the routing proto-
col used is CGR, which computes dynamic routes through 
time-varying network topology of scheduled communica-
tion contacts in a DTN network. The fundamental features 
of space networks are interplanetary distances and high 

mobility of spacecrafts; topology changes occur more rap-
idly than they can be reported.

The DTN architecture introduces an overlay protocol 
that interfaces with either the transport layer or lower lay-
ers. Each node can store information for a long time before 
forwarding it. “Approaches that assume minimal accurate 
network state information have historically been considered 
‘opportunistic’ while those that assume complete network 
state information are regarded as ‘deterministic.”’ [29]
Opportunistic approaches rely on the exchange of infra-
structure and/or in-networks measurements in a timely 
manner to support on-demand calculations of routes. Such 
approaches often use a replication-based strategy and are 
suitable for networks with high mobility and nearly random 
contact establishment. In scheduled DTNs, contact plans are 
determined based on the estimations of future episodes of 
communication. Madoery et al. [29] said:“Whether kept in 
centralized planning node or distributed to all nodes, the 
contact plan is used by algorithms such as CGR to derive 
efficient routes.” In addition to knowing contact plans in the 
planning stage, CGR faces the scalability problem, namely 
computing routes through a contact plan comprising mil-
lions of contacts in large space networks.

We believe that mobile ad hoc networks are important 
for space networks; spacecrafts are mobile nodes with fast 
moving speeds and intermittent connectivity. The routing 
protocols for ad hoc networks will address the high mobil-
ity of spacecrafts and the scalability issues. Our protocol 
reduces route discovery latency and packet delivery latency. 
Both metrics are critical for space networks. The algorithm 
applies to space networks where contacts plans are not 
known ahead of time and the network is arbitrarily large. 
The feasibility of mobile ad hoc networks for space com-
munications is yet to be validated and proved by NASA 
and other space agencies. The reasons why such networks 
have not been considered for space communications are also 
worthy of investigations. DTN is a concept, and the reality 
of space communications is that nodes are highly mobile. 
When data volume is large, store-and-forward mode will 
encounter problems too.

Table 1  Comparison of seven popular methods for route discovery in mobile ad hoc networks

Name Advantages Limitations

LAR It reduces route discovery messages using request zone GPS is required
Query localization A smaller search region causes lower routing overhead If the region is too small, a route may not exist
Gossip-based routing It saves up to 35% message overhead It may not guarantee that a route is found
Bubble rap Messages bubble up and down the social hierarchy Message delivery ratio is lower and latency is high
Whirlpool routing It limits the range over which nodes search for a route It is inefficient when the destination moves fast
CGR Contact plans are determined in advance It has scalability issues and TCP cannot be used
RPL They combined both routing and flooding Flooding is used as the main networking primitive
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For easy comparison with the most significant related 
studies, we summarize seven pieces of previous work that 
have been widely cited in a table (Table 1), namely the LAR 
protocol [30], query localization techniques, gossip-based 
routing, social based forwarding (bubble rap) for PSN [31], 
whirlpool routing protocol (WARP) for sensor networks, 
Contact Graph Routing for space networks [26], and efficient 
support for downward traffic in RPL [23].

3  overview of DSR

DSR consists of two on-demand mechanisms: Route Discovery 
and Route Maintenance. When a source node wants to send 
packets to a destination to which it does not have a route in its 
cache, it initiates a Route Discovery by broadcasting a ROUTE 
REQUEST. The node receiving a ROUTE REQUEST checks 
whether it has a route to the destination in its cache. If it has, it 
sends a ROUTE REPLY to the source node including a source 
route, which is the concatenation of the source route in the 
ROUTE REQUEST and the cached route. Otherwise, the node 
adds its address to the source route in the ROUTE REQUEST 
and rebroadcasts the packet. When a ROUTE REQUEST 
reaches the destination, the destination sends a ROUTE REPLY 
containing the source route to the source. Each node forward-
ing the ROUTE REPLY caches the route starting from itself to 
the destination. When the source receives a ROUTE REPLY, 
it caches the source route. A source may learn multiple routes 
through a Route Discovery and will cache all found routes.

In Route Maintenance, a node forwarding a packet is 
responsible for confirming that the packet has been deliv-
ered to the next hop. If no acknowledgement is received after 
the maximum number of retransmissions, the forwarding 
node assumes that the next hop is unreachable and sends a 
ROUTE ERROR to the source node. Each node receiving a 
ROUTE ERROR removes from its cache all routes contain-
ing the broken link.

Besides Route Maintenance, DSR uses two mechanisms 
to remove stale routes. First, a source piggybacks on the next 
ROUTE REQUEST the last broken link information called a 
GRATUITOUS ROUTE ERROR. Second, DSR uses heuris-
tics: a small cache size for path caches with FIFO (First-In-
First-Out) and adaptive timeout mechanisms for link caches 
[32], where link timeouts are chosen based on observed link 
usages and breakages. However, topology changes are fast 
and unpredictable, and adaptive timeout mechanisms may 
keep stale routes and remove good ones. In order to remove 
stale routes quickly, Yu and Kedem presented a new cache 
structure called cache table and a distributed cache update 
algorithm for DSR [33]. The earliest version of DSR uses 
path caches, and cache size is fixed. A small cache size 
causes DSR to fail to scale to large networks. We studied 

the impact of the cache update algorithm and a cache table 
without capacity limit on the scalability of DSR in [34]. 
Details about how they handled topology changes and link 
failures are described in [33].

4  Directed route discovery

In this section, we first present the motivations of this work 
and give an overview of the algorithm. We then present two 
examples in order for the readers to quickly understand its 
operations. Later, we describe the algorithm step by step 
based on pseudo code and provide the data flow diagrams. 
Finally, we discuss several implementation details and the 
comparison with SLR (Source routing with Local Recovery) 
[35] with its limitations.

4.1  Motivations and concepts

Mobile ad hoc networks apply to situations like battlefields 
or disaster areas where networks need to be deployed imme-
diately but base stations are not available [1]. Although 
MANETs have been studied for more than two decades, the 
route discovery problem has not been solved. The major 
method for finding a route is broadcastings or pure flood-
ing. Due to mobility, broadcastings are expected to be per-
formed frequently because a route breaks when two nodes 
move out of the transmission range of each other. Ni et al. 
[1] observed that serious redundancy, contention, and colli-
sion could exist if flooding is done blindly. First, because a 
physical location may be covered by the transmission range 
of several hosts, many rebroadcasts are redundant. Second, 
heavy contention could exist because rebroadcasting hosts 
are probably close to each other. Third, packet collisions are 
more likely to occur because the RTS (Request-To-Send)/
CTS (Clear-To-Send) dialogue is inapplicable, and the tim-
ing of rebroadcasts is highly correlated. The problems asso-
ciated with flooding are called broadcast storms [1].

When broadcastings are used, ROUTE REPLIES may 
contain long routes. A source node uses these long routes 
until they are broken or evicted by FIFO policy when DSR 
uses path caches. The packet size of such ROUTE REPLIES 
is large, and these long routes lead to high packet delivery 
latency too. Moreover, ROUTE REQUESTS are broadcast 
to the entire network and will be dropped until they reach 
the maximum number of hops. Routing overhead is the total 
number or the total size of routing packets transmitted. Route 
discovery overhead is the total size of ROUTE REQUESTS 
and ROUTE REPLIES. In this paper, we aim to reduce route 
discovery overhead. The solution is to reduce the total num-
ber of network-wide searches or broadcastings.



Wireless Networks 

4.2  Overview

In on-demand routing protocols, a source node needs to find 
routes before it starts data transmission. Found routes are 
stored in a route cache. The key idea of the DRD algorithm 
is to use data packets to find routes so as to avoid broadcast-
ing ROUTE REQUESTS. To achieve this goal, the problem 
to be solved is that we should prevent intermediate nodes 
from sending duplicate routes to the source. As shown in 
Fig. 1, when source A has only one route ABCDEF to the 
destination, node F, it piggybacks a ROUTE REQUEST on a 
data packet to node F. Node B has a route BCGEF and sends 
a ROUTE REPLY containing route ABCGEF. Node C has 
a route CGEF and also sends a ROUTE REPLY containing 
route ABCGEF. Node E has a route EGCBA and sends a 
ROUTE REPLY containing route ABCGEF. The node for-
warding the data packet does not know what routes have 
been sent to the source by the preceding nodes.

We define a forward list and a backward list to capture the 
minimum information that identifies a cached route. A forward 
list contains the first diverging node pairs of the routes starting 
from the current node. A diverging node pair refers to a node 
and its next hop where the route in a ROUTE REPLY diverges 
from the source route. For example, in Fig. 1, the source route is 
ABCDEF, which is contained in each data packet. Node C and 
node G are the first diverging node pair of route BCGEF. If the 
first diverging node pairs of two routes are different, the routes 
must be different. A backward list contains the first converging 
node pairs of the routes starting from the current node. A con-
verging node pair refers to a node and its previous hop where a 
cached route and the source route converge. For example, node 
E and node G are the first converging node pair of route BCGEF. 
The first converging node pair is used to identify a route to the 
source node. In DSR, a node may use a route to the source node 
or the destination node to construct a source route and send a 
ROUTE REPLY containing this source route. The node where 
two routes diverge or converge is called an anchor.

After receiving a data packet, the node sending a ROUTE 
REPLY adds a diverging node pair and/or a converging node 
pair to the data packet. If a node uses a route to the destina-
tion node to send a ROUTE REPLY, it adds the first diverg-
ing node pair to the forward list and the first converging 
node pair to the backward list. If it uses a route to the source 

node to send a ROUTE REPLY, it adds the first converging 
node pair to the backward list.

In order to decide whether to send a ROUTE REPLY, 
the nodes forwarding the data packet containing a ROUTE 
REQUEST use two rules. The first rule is that, the node uses a 
route to the source node to send a ROUTE REPLY if the route 
does not contain any converging node pair in the backward list. 
The second rule is that, the node uses a route to the destina-
tion node to send a ROUTE REPLY if the forward list does not 
contain the first diverging node pair of the route. The two rules 
ensure that the intermediate nodes on the current route do not 
send duplicate routes to the source node.

We show a simple example in Fig.  1. Node B uses 
route BCGEF to send a ROUTE REPLY containing route 
ABCGEF. It adds node C and node G to the forward list, 
and node E and node G to the backward list. When node C 
receives the data packet, according to the second rule, it will 
not use route CGEF to send a ROUTE REPLY, since the for-
ward list contains the first diverging node pair of this route. 
Node C will use route CDHF to send a ROUTE REPLY 
containing route ABCDHF. It adds node D and node H to 
the forward list, and node F and node H to the backward list. 
Thus, according to the second rule, node D will not use route 
DHF to send a ROUTE REPLY. When node E receives the 
data packet, according to the first rule, it will not use route 
EGCBA to send a ROUTE REPLY, since this route contains 
a converging node pair in the backward list. Similarly, node 
F will not send a ROUTE REPLY containing either route 
ABCGEF or route ABCDEF.

4.3  Examples

We show two examples in more details. The first example is 
shown in Fig. 2. When source A has only one route ABCDEF 
to destination F, it sets a boolean variable called has_rreq 
in a data packet to be true. This variable indicates whether 
a source wants to find routes to a destination. Node B has a 
cached route BGHEF and sends a ROUTE REPLY contain-
ing route ABGHEF. Before sending the ROUTE REPLY, 
node B adds the first converging node pair, node E and node 
H, to the backward list, so that node E and the nodes after 
it do not send a ROUTE REPLY containing the same route, 
ABGHEF. Node B forwards the data packet to the next hop.

Fig. 1  An Example of the Directed Route Discovery Protocol

Fig. 2  Example 1 of the Directed Route Discovery Protocol
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Node C has a cached route to the source, CIA. The route 
does not contain any converging node pair in the back-
ward list, and thus node C uses the route to send a ROUTE 
REPLY. Node C adds the first converging node pair, itself 
and node I, to the backward list, so that the nodes after it do 
not use route CIA to send a ROUTE REPLY. It also has a 
route to the destination, CDJF. The first diverging node pair 
of this route is not in the forward list, and thus node C uses 
this route in a ROUTE REPLY. It adds node D and node J 
to the forward list, so that node D does not use route DJF to 
send a ROUTE REPLY. It also adds node F and node J to 
the backward list. Node C constructs a source route AICDJF 
and sends a ROUTE REPLY to node A.

Node D has route DCIA and route DJF, but cannot use 
both of them. Route DCIA contains a converging node 
pair, node C and node I, in the backward list, and the first 
diverging node pair of route DJF is in the forward list. 
Node E has route EHGBA, but the route contains a con-
verging node pair in the backward list, node E and node H. 
Thus, node E does not send a ROUTE REPLY containing 
route ABGHEF. Node F does not send a ROUTE REPLY 
containing either route AICDJF or route ABGHEF. The 
first converging node pair of route FJDCIA contains node 
F and node J, and it is in the backward list, which means 
the preceding nodes have sent a route containing this link. 
Node F also has a route FEHGBA, and the first converging 
node pair contains node E and node H. The backward list 
contains this link.

In summary, when a node uses a route to the source node to 
send a ROUTE REPLY, it adds the first converging node pair to 
the backward list. When it uses a route to the destination node, 
it adds the first diverging node pair to the forward list and the 
first converging node pair to the backward list.

In the second example shown in Fig. 3, we show the case 
where the algorithm does not attempt to find all cached routes. 
Source node A starts a directed route discovery. Node B has 
route BCHEFG. It adds node C and node H to the forward list, 
and node E and node H to the backward list. It sends a ROUTE 
REPLY containing route ABCHEFG. Assume that node C only 
has route CHJFG. It cannot use the route because the forward 
list contains the first diverging node pair, node C and node H, 
although the route is different from the route sent by node B.

Assume that node C has route CIEFKG. Since it is the 
first anchor, it adds only the first converging node pair, node 
E and node I, to the backward list. Thus, node E and the 
nodes after it do not send a route containing link IE. They 
will not send route ABCIEFKG to the source. If any of these 
nodes has the same route, it must contain the converging 
node pair added by node C. The first rule allows an interme-
diate node to decide whether a route to the source was used 
by the preceding nodes to construct a source route.

4.4  Algorithm description

The pseudo code for the algorithm is shown in Algorithm 1. 
When a source has only one route to the destination, it sets a 
boolean variable called has_rreq in the source route header 
of a data packet to be true. This variable is a new form of a 
ROUTE REQUEST. It also maintains an integer variable called 
request_status for each destination locally, which is set to 1 when 
the source piggybacks a ROUTE REQUEST on a data packet. 
When the source receives a ROUTE REPLY, it sets the corre-
sponding request_status to be 0, so that it can piggyback another 
ROUTE REQUEST when only one route is available. If none of 
the intermediate nodes sends a ROUTE REPLY, request_status 
for the destination will be 1 till the last route breaks. The source 
does not initiate another route discovery using a data packet dur-
ing this period. Request_status will be set to 0 when the source 
broadcasts a normal ROUTE REQUEST. We add three vari-
ables to the source route header of a data packet: forward list, 
backward list, and has_rreq. The type of both lists is array.

The node forwarding the data packet checks whether it 
has a route to the source or the destination. It first checks 
whether it has a route to the source (lines: 7–19). This route 
should be shorter than or have the same length as the cur-
rent route to the source. The node checks the backward list 
to decide whether to send a ROUTE REPLY. It will use the 
route if it does not contain any converging node pair in the 
backward list. If the route was sent by a preceding node, 
that node had added the first converging node pair to the 
backward list. If the node uses the route, it will add the first 
converging node pair of the route to the backward list.

The node then checks whether it has a route to the destina-
tion (lines: 20–37). This route should be shorter than or have the 
same length as the current route to the destination. It uses the 
route to send a ROUTE REPLY if the first diverging node pair 
is not in the forward list. If the route has been sent, the forward 
list should contain the first diverging node pair. If the node uses 
the route, it will add the first diverging node pair to the forward 
list. As described in Sect. 4.2, we call the node where two routes 
diverge or converge an anchor. Due to adding the first diverging 
node pair to the data packet, the nodes between the current node 
and the first anchor do not send the same route to the source. The 
node also adds the first converging node pair to the backward 
list. According to the first rule, the nodes after the second anchor Fig. 3  Example 2 of the Directed Route Discovery Protocol
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do not send a route containing the node pair. If the current node 
is the first anchor, it will add only the first converging node pair 
to the backward list.

Algorithm 1   Directed Route Discovery(DRD)

If the current node is an anchor in the forward_list, it will 
remove the entry because subsequent nodes do not need this 
information (lines: 38-42). If the number of entries in the 
backward list reaches the maximum value, the current node 

will set has_rreq in the source route header to be false, so 
that subsequent nodes on the route will not send ROUTE 
REPLIES. It will also remove all entries in both lists and 
forwards the data packet to the next hop (lines: 43-48). A 

source route in DSR contains at most 16 nodes [8], and the 
maximum number of entries of both lists is set to be 5.

The node concatenates the route to the source and the route to 
the destination found from the cache as a source route and sends 
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a ROUTE REPLY (lines: 49–66). If the node uses only the route 
to the destination, it will concatenate the upstream nodes of the 
current route and the cached route as a source route. If it uses 
only the route to the source, it will concatenate the route and the 
downstream nodes of the current route as a source route.

For the first rule, it is insufficient that the backward list 
does not contain the first converging node pair. If a node uses 
a route to the destination, it will add only the first converging 
node pair to the backward list. However, the route may have 
several converging node pairs. The nodes after those node 
pairs may have a route to the source, which was sent to the 
source before. But the first converging node pair of the route, 
which is the last converging node pair of the route sent by 
a preceding node, was not in the backward list. Therefore, 
this rule requires that a route to the source do not contain 
any converging node pair in the backward list.

If the data packet containing a ROUTE REQUEST encoun-
ters a link failure, the node detecting the link failure will pig-
gyback a notification on a ROUTE ERROR. When the source 
receives the ROUTE ERROR, it sets request_status for that 
destination to be 0 so that the source will start a new route 
discovery when only one route is available in its cache.

When a data packet is salvaged after a link failure, the 
salvaging node becomes the first node on the new route; oth-
erwise, the first node of the current route is the source node 
of the data packet. In the algorithm, we do not handle the 
case where a data packet is salvaged, which means the nodes 
on the new route will not send ROUTE REPLIES if they 
have shorter routes to the destination. The reason is that the 
alternative route can be longer than the downstream nodes 
of the original source route. If we want to handle this case, 
we will use the upstream nodes in the source route header for 
comparison. We will use both forward and backward lists to 
decide whether to send a ROUTE REPLY. We consider this 
case as an optimization in future work.

For AODV (Ad hoc On-demand Distance Vector) [19], a 
source node needs to cache multiple routes to the destination 
to decide when to start a route discovery. Several multi-path 
routing protocols were proposed for AODV [36, 37]. For 
distance vector protocols like AODV, DRD requires a few 
modifications in order to prevent duplicate routes from being 
sent to the source.

4.5  Data flow diagram

The data flow diagram of the algorithm is shown in Fig. 4. 

4.6  Discussions

We have several design decisions. First, we keep the size 
of the data packet with a ROUTE REQUEST small. The 
node sending a ROUTE REPLY adds at most three node 
pairs to the data packet, and an entry in a forward list is 
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Fig. 4  The data flow diagram of the Directed Route Discovery algo-
rithm
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removed when an anchor forwards the packet. Second, a 
source initiates a route discovery when only one route 
is available in its cache. If it does so when two or more 
routes are available, the frequency of route discoveries will 
increase, and routing overhead caused by ROUTE REPLIES 
degrades performance. Finally, a node uses a route shorter 

than or having the same length as the active data path to 
send a ROUTE REPLY. Thus, DRD reduces the total size 
of ROUTE REPLIES. A ROUTE REPLY contains both the 
source route and the route to be used for sending the packet 
to the source.

The algorithm uses a network-wide search in several 
cases. First, a source did not send data packets and the last 
route breaks. Second, found routes and the current route 
have a common link, and the link breaks. Third, cached 
routes that satisfy the condition are not available at the inter-
mediate nodes forwarding the data packet. Finally, no cached 
routes are available.

As described, a source starts the route discovery pro-
cess before the last route breaks. Since ROUTE REPLIES 
contain the routes shorter than or having the same length 
as the current route, the source maintains shorter distance 
to the destination. Thus, both routing and data packets are 
localized. The two rules prevent the nodes forwarding the 
data packet containing the true flag from sending duplicate 
routes. ROUTE REPLIES are sent when only one route is 
available at the source, and the intermediate nodes send only 
a few ROUTE REPLIES. Thus, these control packets do 
not interfere data forwarding. A cached route contained in 
a ROUTE REPLY may be stale. Such routes are removed 
through on-demand Route Maintenance described in Sect. 3.

The problem of route searches is complicated, and prior 
work mainly focus on reducing search ranges or using 
probabilistic methods. There must be a completely novel 
approach to solve this problem. Our solution is simple, and 
there is no need for theoretical models. There are no ad hoc 
parameters in the DRD algorithm, which makes it efficient 
in highly mobile scenarios. Fast node movement, frequent 
link failures, and transmission interference, such as hid-
den terminals, are the major difficulties for mobile ad hoc 
networks; the specific tasks are route discoveries and route 
maintenance. Note that we explained the three reasons why 
the results were achieved in both Sects. 1 and 7.

5  Comparison with the SLR protocol

Sengul and Kravets [35] proposed a local recovery protocol 
called SLR (Source routing with Local Recovery) to reduce 
the frequency of ROUTE REQUEST floods. In this section, 
we briefly describe the protocol and our observations about 
SLR.

When a node detects a broken link, if it cannot salvage 
the packet or the packet has been salvaged, it will perform 
a bypass recovery. The node buffers the current packet 
and all packets in the network interface queue between 
the routing layer and the MAC layer that contain the bro-
ken link. A list of downstream nodes of these packets is 
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Fig. 4  (continued)
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broadcast to one-hop neighbors, to see whether they are 
neighbors with any of those nodes. Each node maintains 
a MAC cache, which contains the most recent neighbor 
state. The node receiving the query searches its MAC 
cache for a neighbor listed in the query and includes all 
such neighbors in its reply.

When the querying node receives a reply, it repairs the 
packets with the broken link using the new connectivity 
information. One packet is marked in order to notify the 
destination about the broken link. The destination sends an 
enhanced ROUTE ERROR to the source to indicate the sal-
vaged route as an alternative route.

We implemented this protocol and found two problems. 
First, SLR keeps the full path for each salvaged packet, so 
that the destination will send an enhanced ROUTE ERROR 
containing the salvaged route. A salvaged packet contains 
the route starting from the salvaging node. Under high 
mobility, a packet may be salvaged multiple times and will 
have a long path. We will not provide simulation results for 
SLR because we used high mobility rates and path length 
of SLR exceeds the maximum source route length in some 
scenarios. Second, SLR sends an enhanced ROUTE ERROR 
for each source and destination pair of salvaged packets, 
which causes higher routing overhead than DSR, such as at 
node mean speed of 15 m/s and 20 m/s. The authors used 
node speed between 0 and 20 m/s, which results in an aver-
age speed of 5 m/s [38].

The authors observed that SLR forwards more data 
packets over longer routes and has similar packet deliv-
ery latency as DSR, thus comparable to DSR in terms of 
throughput. DRD finds more shorter routes than DSR, as 
indicated by average data packet size, and reduces packet 
delivery latency by 54% at node mean speed of 20 m/s. 
Moreover, SLR reduces routing overhead by 20% com-
pared with DSR, while DRD achieves between 60 and 80% 
reduction in routing overhead because it reduces the size of 
ROUTE REQUESTS and ROUTE REPLIES packets. The 
main difference between them is that, SLR repairs a broken 
link reactively while DRD proactively finds routes before 
the last route breaks.

6  Simulation methodology

We incorporated the algorithm into DSR with path caches. 
We used ns-2.28 and random waypoint model [2] in which 
node speed was randomly chosen from v 土0.1 v m/s. Note 
that we did not use node speed between 0 and 20 m/s, 
which results in an average speed of 5  m/s [38]. We per-
formed three sets of experiments. First, we evaluated the 
algorithm under various mobility rates, with node mean 
speed varying from 5 to 20 m/s. The highest mobility rate 
used in the literature is 20 m/s, which is 44.74 miles per 

hour and the normal driving speed in highways. Second, 
we evaluated how the algorithm performs as network size 
increases. We used node mean speed of 10 m/s and 5 m/s 
for the 150-node and the 200-node scenarios, respectively. 
We used 5 m/s for the latter because small cache size in 
DSR causes a large amount of route discoveries under high 
mobility and large networks. Using lower speed reduces 
the effect of cache size on the results. Finally, we evaluated 
it using different loads, such as 10 flows, 20 flows, 30 flows 
and 40 flows, in order to see how network load affects it.

We used CBR (Constant Bit Rate) traffic with 4 pack-
ets per second and packet size of 64 bytes as in [2]. The 
sources and destinations were chosen randomly. We used 
the same evaluation method as in [2] and [32]. The way 
the source node and the destination node are chosen is 
irrelevant to the performance of DRD. The route discovery 
process starts from broadcastings or network-wide flood-
ing. The source node and the destination node move ran-
domly and can be in any locations during the simulations. 
We used four field configurations: a 1500 m × 500 m field 
with 50 nodes, a 2200 m × 600 m field with 100 nodes [2], 
a 2200 m × 1000 m field with 150 nodes, and a 2200 m × 
1200 m field with 200 nodes. The field sizes were chosen 
to keep similar node density for different network sizes. 
Simulations ran for 900 s. Each data point represents an 
average of 10 runs of randomly generated scenarios. The 
results will be shown with the error bars in the graphs 
representing the 95% confidence interval of the average. 
We used the following metrics in the evaluations:

• Packet delivery ratio: the ratio between the number of 
packets received by the CBR sink at the destination and 
the number of packets originated by the CBR source.

• Packet delivery latency: the delay from when a data 
packet is sent until it is received by the destination.

• Route discovery overhead: the total size of ROUTE 
REQUESTS and ROUTE REPLIES sent and for-
warded.

• Routing overhead: the total size of ROUTE REQUESTS, 
ROUTE REPLIES and ROUTE ERRORS sent and for-
warded.

• Route requests sent: the total number of ROUTE 
REQUESTS sent by the sources, which is the total num-
ber of network-wide route searches. Our main goal is to 
reduce this metric, and the second goal is to reduce route 
discovery overhead.

• Average data packet size: the total size of data packets 
received by the destination divided by the total number 
of data packets received by the destination.

• Packet overhead: the total number of ROUTE 
REQUESTS, ROUTE REPLIES and ROUTE ERRORS 
sent and forwarded.
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• Route errors sent and forwarded: the total number of 
ROUTE ERRORS sent and forwarded. DSR piggybacks 
the last broken link information to the next ROUTE 
REQUEST, and thus this metric also reflects the amount 
of ROUTE REQUESTS broadcast in the network.

7  Simulation results

7.1  Packet delivery ratio

Figure 5(a), (c), (e), and (g) show packet delivery ratio. For 
the 100-node scenarios, DRD outperforms DSR by 15% at 
node mean speed of 20 m/s. The improvement increases 
as mobility increases because of the reduction in routing 
overhead, which will be described shortly. As mobility 
increases, routes break more frequently, and network-wide 
route searches cause more MAC collisions and packet losses. 
For the 50-node scenarios, DRD has similar performance as 
DSR because for small networks, route searches do not incur 
much routing overhead. DRD outperforms DSR by 7% for 
the 150-node scenarios at node pause time of 0 s.

7.2  Packet delivery latency

Figure 5(b), (d), (f), and (h) show packet delivery latency. 
DRD has higher latency than DSR by 0.008 s for 50-node 
scenarios at node mean speed of 10 m/s. This phenomenon 
may be caused by the higher number of ROUTE REPLIES. 
For the 100-node scenarios, DRD reduces packet delivery 
latency by 54% at node mean speed of 20 m/s. DRD reduces 
route acquisition latency because it discovers routes before 
the last route breaks. Moreover, it discovers the routes 
shorter than the current data path. As nodes move and 
actively cache overheard routes, many short routes around 
the data path become available. DRD discovers these routes 
in a timely manner, thus significantly reducing packet deliv-
ery latency. For example, it reduces latency by 48% and 45% 
for the 150-node and the 200-node scenarios, respectively. 
The reduction in packet delivery latency increases as mobil-
ity increases.

7.3  Route discovery overhead and routing 
overhead

Figure 6(a), (c), (e), and (g) show route discovery overhead. 
DRD reduces route discovery overhead by 57% and 71% for 
the 50-node and the 100-node scenarios, respectively. For 
the 100- node scenarios, DRD reduces the size of ROUTE 
REQUESTS by 90% and the size of ROUTE REPLIES by 
74%, as shown in Fig. 7. Intermediate nodes send ROUTE 

REPLIES containing routes shorter or with the same length 
as the data path; therefore, the size of ROUTE REPLIES is 
reduced. The smaller size of ROUTE REQUESTS indicates 
that most ROUTE REQUESTS are forwarded by nodes not 
far away from the source. Since a source discovers shorter 
routes, the nodes close to the source are in the vicinity of the 
destination and have cached routes to the destination. Due 
to the locality of routing packets, route discovery overhead 
increases slowly as mobility increases. For the 200-node 
scenarios, DRD reduces route discovery overhead by 81%.

Figure 6(b), (d), (f), and (h) show the total size of rout-
ing packets, namely routing overhead. Routing overhead is 
the total size of ROUTE REQUESTS, ROUTE REPLIES, 
and ROUTE ERRORS. DRD reduces routing overhead by 
52% for the 50- node scenarios and 77% for the 100-node 
scenarios. DRD reduces routing overhead by 78% for both 
the 150-node and 200-node scenarios. Since it discov-
ers shorter routes as nodes move, the paths traversed by 
ROUTE ERRORS are shorter too, compared with ROUTE 
ERRORS sent when network-wide searches are used. The 
size of ROUTE ERRORS depends on the paths used to send 
ROUTE ERRORS. Routing overhead remains low as mobil-
ity increases. Thus, DRD makes DSR scalable with respect 
to mobility, since routing overhead is the measure of scal-
ability used in the literature.

7.4  Route requests sent and average data packet 
size

Figure 8(a), (c), (e), and (g) show the number of ROUTE 
RE QUESTS sent. As long as an intermediate node has a 
cached route to the destination, DRD reduces a network-
wide search. Normally several distinct routes will be sent 
to the source. The source switches to the shortest one and 
starts the next route discovery when one route is left in its 
cache. If no ROUTE REPLIES are sent to the source, it 
uses flooding to find routes. For the 100-node scenarios, 
DRD reduces route searches by 17%. For the 150-node and 
200-node scenarios, DRD reduces route searches by 12% 
and 17%, respectively. The algorithm reduces the total size 
of ROUTE REQUESTS by 75% for the 150-node scenarios 
and 79% for the 200-node scenarios, as shown in Fig. 7. 
Recall that a ROUTE REQUEST contains a sequence of 
nodes traversed by the packet. Thus, ROUTE REQUESTS 
sent through broadcast are restricted to the nodes close to 
a source.

We measured average data packet size and show the 
results in Fig. 8(b), (d), (f), and (h). The average data packet 
size of DRD is smaller than that of DSR. Although node 
pairs in the source route header of a data packet increase 
packet size, only the data packet containing true for has_rreq 
has this overhead. The smaller data packet size demonstrates 
that DRD finds more shorter routes.



 Wireless Networks

1

0.8

0.6

0.4

0.2

0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

DSR with DRD
DSR

DSR with DRD
DSR DSR with DRD

DSR

5

5

0

10 15 20 5 10 15 20

Mean Speed (m/s) Mean Speed (m/s)

(a) 50 nodes, 20 flows (b) 50 nodes, 20 flows

1

0.8

0.6

0.4

0.2

0

0.6

0.5

0.4

0.3

0.2

0.1

0

DSR with DRD
DSR

10 15 20 5 10 15 20

Mean Speed (m/s) Mean Speed (m/s)

(d) 100 nodes, 20 flows(c) 100 nodes, 20 flows

1 0.5

0.4

0.3

0.2

0.1

0

DSR with DRD
DSR

DSR with DRD
DSR0.95

0.9

0.85

0.8

0.75

0.7
30 60 120 300 600 900 0 30 60 120 300 600 900

Pause Time (s) Pause Time (s)

(e) 150 nodes, 20 flows (Mean Speed of 10 m/s) (f) 150 nodes, 20 flows (Mean Speed of 10 m/s)

0.21

DSR with DRD
DSR with DRD

DSR
0.98 DSR

0.150.96

0.94

0.92

0.9

0.1

0.05

0

0.88

0.86

0 30 60 120 300 600 900 0 30 60 120 300 600 900

Pause Time (s) Pause Time (s)

(g) 200 nodes, 20 flows (Mean Speed of 5 m/s) (h) 200 nodes, 20 flows (Mean Speed of 5 m/s)

P
a
c
k

e
t 

D
e
li

v
e
ry

 R
a
ti

o
P

a
c
k

e
t 

D
e
li

v
e
ry

 R
a
ti

o
P

a
c
k

e
t 

D
e
li

v
e
ry

 R
a
ti

o
P

a
c
k

e
t 

D
e
li

v
e
ry

 R
a
ti

o

P
ac

k
et

 D
el

iv
er

y
 L

at
en

cy
 (

s)
P

ac
k

et
 D

el
iv

er
y

 L
at

en
cy

 (
s)

P
ac

k
et

 D
el

iv
er

y
 L

at
en

cy
 (

s)
P

ac
k

et
 D

el
iv

er
y

 L
at

en
cy

 (
s)

Fig. 5   Packet Delivery Ratio and Packet Delivery Latency



Wireless Networks 

3500

3000

2500

2000

1500

1000

500

5000

4000

3000

2000

1000

0

DSR with DRD
DSR

DSR with DRD
DSR

0
5 10 15 20 5 10 15 20

Mean Speed (m/s) Mean Speed (m/s)
(a) 50 nodes, 20 flows (b) 50 nodes, 20 flows

20000

15000

10000

5000

0

30000

25000

20000

15000

10000

5000

0

DSR with DRD
DSRDSR with DRD

DSR

5 10 15 20 5 10 15 20
Mean Speed (m/s) Mean Speed (m/s)

(c) 100 nodes, 20 flows (d) 100 nodes, 20 flows
35000

30000

25000

20000

15000

10000

5000

0

40000

35000

30000

25000

20000

15000

10000

5000

DSR with DRD
DSR

DSR with DRD
DSR

0
0 30 60 120 300 600 900 0 30 60 120 300 600 900

Pause Time (s) Pause Time (s)
(e) 150 nodes, 20 flows (Mean Speed of 10 m/s) (f) 150 nodes, 20 flows (Mean Speed of 10 m/s)

30000 30000
DSR with DRD

DSR
DSR with DRD

DSR25000

20000

15000

10000

5000

0

25000

20000

15000

10000

5000

0
0 30 60 120 300 600 900 0 30 60 120 300 600 900

Pause Time (s) Pause Time (s)
(g) 200 nodes, 20 flows (Mean Speed of 5 m/s) (h) 200 nodes, 20 flows (Mean Speed of 5 m/s)

Ro
ut

e 
D

isc
ov

er
y 

O
ve

rh
ea

d 
(K

By
te

s)
Ro

ut
e 

D
isc

ov
er

y 
O

ve
rh

ea
d 

(K
By

te
s)

Ro
ut

e 
D

isc
ov

er
y 

O
ve

rh
ea

d 
(K

By
te

s)
Ro

ut
e 

D
isc

ov
er

y 
O

ve
rh

ea
d 

(K
By

te
s)

Ro
ut

in
g 

O
ve

rh
ea

d 
(K

By
te

s)
Ro

ut
in

g 
O

ve
rh

ea
d 

(K
By

te
s)

Ro
ut

in
g 

O
ve

rh
ea

d 
(K

By
te

s)
Ro

ut
in

g 
O

ve
rh

ea
d 

(K
By

te
s)

Fig. 6   Route Discovery Overhead and Routing Overhead



 Wireless Networks

1000

800

600

400

200

0

2000

1500

1000

500

0
5 10 15 20 5 10 15 20

Mean Speed (m/s)

(a) 50 nodes, 20 flows

Mean Speed (m/s)

(b) 50 nodes, 20 flows

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

12000

10000

8000

6000

4000

2000

0

DSR with DRD
DSR

DSR with DRD
DSR

5 10 15 20 5 10 15 20

Mean Speed (m/s) Mean Speed (m/s)

(c) 100 nodes, 20 flows (d) 100 nodes, 20 flows

12000

10000

8000

6000

4000

2000

0

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

DSR with DRD
DSR

DSR with DRD
DSR

0 30 60 120 300 600 900 0 30 60 120 300 600 900

Pause Time (s) Pause Time (s)

(e) 150 nodes, 20 flows (Mean Speed of 10 m/s) (f) 150 nodes, 20 flows (Mean Speed of 10 m/s)

16000 DSR with DRD
DSR

12000 DSR with DRD
DSR

14000

12000

10000

8000

6000

4000

2000

0

10000

8000

6000

4000

2000

0
0 30 60 120 300 600 900 0 30 60 120 300 600 900

Pause Time (s) Pause Time (s)

(g) 200 nodes, 20 flows (Mean Speed of 5 m/s) (h) 200 nodes, 20 flows (Mean Speed of 5 m/s)

T
o

ta
l 

S
iz

e
 o

f 
R

o
u

te
 R

e
q

u
e
st

s 
(K

b
y

te
s)

T
o

ta
l 

S
iz

e
 o

f 
R

o
u

te
 R

e
q

u
e
st

s 
(K

b
y

te
s)

T
o

ta
l 

S
iz

e
 o

f 
R

o
u

te
 R

e
q

u
e
st

s 
(K

b
y

te
s)

T
o

ta
l 

S
iz

e
 o

f 
R

o
u

te
 R

e
q

u
e
st

s 
(K

b
y

te
s)

T
o

ta
l 

S
iz

e
 o

f 
R

o
u

te
 R

e
p

li
e
s 

(K
b

y
te

s)
T

o
ta

l 
S

iz
e
 o

f 
R

o
u

te
 R

e
p

li
e
s 

(K
b

y
te

s)
T

o
ta

l 
S

iz
e
 o

f 
R

o
u

te
 R

e
p

li
e
s 

(K
b

y
te

s)
T

o
ta

l 
S

iz
e
 o

f 
R

o
u

te
 R

e
p

li
e
s 

(K
b

y
te

s)

Fig. 7   Total Size of Route Requests and Route Replies



Wireless Networks 

3000

2500

2000

1500

1000

500

100

80

60

40

20

0

DSR with DRD
DSR

DSR with DRD
DSR

0
5 10 15 20 5 10 15 20

Mean Speed (m/s) Mean Speed (m/s)
(a) 50 nodes, 20 flows (b) 50 nodes, 20 flows

6000

5000

4000

3000

2000

1000

0

DSR with DRD
DSR

100

80

60

40

20

0

DSR with DRD
DSR

5 10 15 20 5 10 15 20
Mean Speed (m/s) Mean Speed (m/s)

(c) 100 nodes, 20 flows (d) 100 nodes, 20 flows

4000

3500

3000

2500

2000

1500

1000

120

100

80

60

40

20

0

DSR with DRD
DSR

500 DSR with DRD
DSR

0
0 30 60 120 300 600 900 0 30 60 120 300 600 900

Pause Time (s) Pause Time (s)
(e) 150 nodes, 20 flows (Mean Speed of 10 m/s) (f) 150 nodes, 20 flows (Mean Speed of 10 m/s)

1202500

100

80

60

40

20

0

2000

1500

1000

500

0

DSR with DRD
DSR

DSR with DRD
DSR

0 30 60 120 300 600 900 0 30 60 120 300 600 900
Pause Time (s) Pause Time (s)

(g) 200 nodes, 20 flows (Mean Speed of 5 m/s) (h) 200 nodes, 20 flows (Mean Speed of 5 m/s)

N
um

be
ro

fR
ou

te
Re

qu
es

ts
Se

nt
N

um
be

ro
fR

ou
te

Re
qu

es
ts

Se
nt

N
um

be
ro

fR
ou

te
Re

qu
es

tS
en

t
N

um
be

ro
fR

ou
te

Re
qu

es
tS

en
t

A
ve

ra
ge

D
at

a
Pa

ck
et

Si
ze

(B
yt

es
)

A
ve

ra
ge

D
at

a
Pa

ck
et

Si
ze

(B
yt

es
)

A
ve

ra
ge

D
at

a
Pa

ck
et

Si
ze

(B
yt

es
)

A
ve

ra
ge

D
at

a
Pa

ck
et

Si
ze

(B
yt

es
)

Fig. 8   The Number of Route Requests Sent and Average Data Packet Size



 Wireless Networks

DSR with DRD
DSR

5 10 15                        20
Mean Speed (m/s) 

(a) 50 nodes, 20 flows

DSR with DRD
DSR

5 10 15              20
Mean Speed (m/s) 

(c)  100 nodes, 20 flows

DSR with DRD
DSR

0 30 60         120        300 600 900
Pause Time (s)

(e)  150 nodes, 20 flows (Mean Speed of 10 m/s)

DSR with DRD
DSR

0 30 60         120        300 600 900
Pause Time (s)

(g) 200 nodes, 20 flows (Mean Speed of 5 m/s)

DSR with DRD
DSR

5 10 15                        20
Mean Speed (m/s) 

(b) 50 nodes, 20 flows

DSR with DRD
DSR

5 10 15               20
Mean Speed (m/s) 

(d)  100 nodes, 20 flows

DSR with DRD
DSR

0 30 60         120        300 600 900
Pause Time (s)

(f)  150 nodes, 20 flows (Mean Speed of 10 m/s)

100000

80000

60000

40000

20000

0 
0 30 60         120        300 600 900

Pause Time (s)
(h) 200 nodes, 20 flows (Mean Speed of 5 m/s)

N
um

be
ro

fR
ou

te
Er

ro
rs

Se
nt

an
d

Fo
rw

ar
de

d
N

um
be

ro
fR

ou
te

Er
ro

rs
Se

nt
an

d
Fo

rw
ar

de
d

N
um

be
ro

fR
ou

te
Er

ro
rs

Se
nt

an
d

Fo
rw

ar
de

d
N

um
be

ro
fR

ou
te

Er
ro

rs
Se

nt
an

d
Fo

rw
ar

de
d

Pa
ck

et
O

ve
rh

ea
d

Pa
ck

et
O

ve
rh

ea
d

Pa
ck

et
O

ve
rh

ea
d

Pa
ck

et
O

ve
rh

ea
d

350000

300000

250000

200000

150000

100000

50000

0

350000

300000

250000

200000

150000

100000

50000

0

140000

120000

100000

80000

60000

40000

20000

0

160000

140000

120000

100000

80000

60000

40000

20000

0

35000

30000

25000

20000

15000

10000

5000

0

70000

60000

50000

40000

30000

20000

10000

0

250000

200000

300000

150000

100000

120000

50000

0

DSR with DRD
DSR

Fig. 9   Packet Overhead and the Number of Route Errors Sent and Forwarded



Wireless Networks 

7.5  Packet overhead and route errors generated

Figure 9 shows packet overhead and the number of ROUTE 
ERRORS sent and forwarded. As shown in Fig. 9(c), DRD 
reduces packet overhead by 17% at node mean speed of 
20  m/s. The reduction increases as mobility increases 
because more link failures occur and source nodes need 
to find routes more often. As shown in Fig. 9(e) and (g), 
DRD reduces packet overhead by up to 8% and 15% for 
the 150-node and 200-node networks at pause time of 30 s, 
respectively. As shown in Fig. 9(d) and (h), DRD reduces 
the number of ROUTE ERRORS by up to 14% and 15% for 
the 100-node and 200-node networks at node mean speed of 
20 m/s and pause time of 30 s, respectively. When a source 
starts a route discovery, it will piggyback the last broken 
link information to the ROUTE REQUEST, and thus such 
ROUTE REQUESTS are counted as ROUTE ERRORS.

7.6  The scalability of DRD as network load increases

Figure 10 shows the performance of the algorithm as network 
load increases. The maximum load is 40 CBR flows. DRD 
improves packet delivery ratio by 22% and reduces packet 
delivery latency by 46% compared with DSR. It reduces both 
route discovery overhead and routing overhead by 72%. As 
network load increases, more routes break because of seri-
ous wireless interference and packet collisions. A link breaks 
if the sending node does not receive an acknowledgement 
from the next hop after the maximum number of retransmis-
sions, which is seven for IEEE 802.11. Thus, DSR initiates 
more network-wide route searches for high load scenarios. 
For DRD, routing overhead increases slowly as network load 
increases, which indicates that it is robust to network load.

We believe this result is significant and helps us under-
stand the operation of the algorithm better. The average data 
packet size is 104.5, 104.4, 103.4, and 101 bytes for DSR, 
and is 87.5 bytes for DRD as network load increases. The 
smaller packet size of DRD shows that DRD finds shorter 
routes even under high load. However, for both DSR and 
DRD, packet delivery ratio and packet delivery latency are 
unfavorable for the 40-flow scenarios because of a large 
amount of wireless interference and packet losses.

8  Conclusions

In this paper, we presented an algorithm called DRD (Directed 
Route Discovery) that exploits data transmission for route dis-
coveries. When a source has only one route to a destination, 
it sets a boolean variable in a data packet to be true, which 
indicates that it needs routes to the destination. This variable 
is a new form of ROUTE REQUEST. The nodes forwarding 
the data packet send ROUTE REPLIES to the source using 

cached routes. To prevent nodes from sending duplicate routes, 
we define a forward list and a backward list to record route 
diverging and converging information about the cached route 
in a ROUTE REPLY. Subsequent nodes use this information to 
decide whether to send a ROUTE REPLY to the source node. 
The route contained in a ROUTE REPLY is shorter than or 
has the same length as the active data path from the source to 
the destination. Thus, our algorithm reduces packet delivery 
latency and the total size of ROUTE REPLIES.

We show that the algorithm significantly improves packet 
delivery ratio and reduces packet delivery latency. For exam-
ple, it improves packet delivery ratio by 15% and reduces 
latency by 54% for the 100-node networks at node mean 
speed of 20 m/s. Packet delivery latency consists of route 
discovery latency and end-to-end delivery latency, which 
is determined by hop count or route length. The algorithm 
reduces route discovery latency because it finds routes before 
the last route breaks, and discovers routes shorter than the 
active data path. It also significantly reduces network-wide 
route searches and the total size of ROUTE REQUESTS 
and ROUTE REPLIES. For the 100-node networks, DRD 
reduces route searches by 17%. For the 150-node and 200-
node networks, DRD reduces route searches by 12% and 
17%, respectively. For the 100-node networks, DRD reduces 
the size of ROUTE REQUESTS by 90% and the size of 
ROUTE REPLIES by 74%. Note that route discovery over-
head is the total size of ROUTE REQUESTS and ROUTE 
REPLIES. Finally, routing overhead increases slowly as 
mobility or network load increases. DRD achieves between 
52 and 78% reduction in routing overhead for the 50-node, 
100-node, 150-node and 200-node networks. This particular 
result demonstrates that it is independent of mobility.

The type of networks we study is mobile ad hoc net-
works where nodes move randomly and topology changes 
are unpredictable. Most previous studies used a maximum 
node speed of 20 m/s (average speed of 10 m/s) in simula-
tions. In contrast, we used mean node speed ranging between 
5 and 20 m/s, which is 44.74 miles per hour and the nor-
mal driving speed in highways. Therefore, our algorithm 
works in highly mobile scenarios. Examples of such net-
works include battlefields and networks containing vehicles 
or spacecrafts, such as vehicular ad hoc networks and space 
networks. DRD reduces the average distance traversed by 
ROUTE REQUESTS and ROUTE REPLIES, and routing 
packets are localized between the source and the destination. 
Thus, it significantly reduces transmissions and the interfer-
ence to nearby nodes; improving network throughput under 
high mobility is hard because mobility causes frequent route 
failures. The key feature of the algorithm is that it tracks the 
latest location of the destination when it moves through an 
active data connection. This work applies to larger mobile ad 
hoc networks with more than 200 nodes and sensor networks 
where flooding is commonly used for downward traffic to 
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monitored areas with RPL for LLNs (Low-power and Lossy 
Networks).

This work also contributes to the understanding of the 
scalability of DSR, or on-demand routing protocols. We 
solve the route discovery problem of DSR by reducing the 
number of network-wide searches and the total size of route 
discovery packets. Our algorithm reduces route discovery 
overhead significantly under high mobility and network load. 
The results for high load are shown in Fig. 10. Thus, we 
solve the traditional broadcast storm problem, because the 
algorithm reduces broadcastings by finding routes nearby 
the active data path. We believe that broadcasting is still 
required and cannot be avoided completely. One future 
direction is to study how DRD performs in sensor networks 
and how much energy it can save for battery-powered small 
devices. It was well-known that transmissions consume more 
energy than computations in the early 90 s. We conclude that 
it is important to reduce the total number of route searches 
in order to reduce transmissions and wireless interference.
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