
Vol.:(0123456789)

Wireless Networks
https://doi.org/10.1007/s11276-024-03796-0

ORIGINAL PAPER

Exploiting data transmission for route discoveries in mobile ad hoc
networks

Xin Yu1

Accepted: 6 June 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
On-demand routing protocols discover routes through network-wide searches. Route requests are broadcast to a large number
of nodes, and route replies may contain long routes. In this paper, we address the route discovery problem and aim to reduce
route discovery overhead. We propose using data packets to discover routes. A source sets a boolean variable in a data packet
to be true when it has only one route to the destination. This variable is a new form of a route request. The nodes forwarding
the data packet send route replies containing cached routes. To prevent nodes from sending duplicate routes to the source,
we define a forward list and a backward list in the data packet. The node sending a route reply records route diverging and
converging information about the route in the route reply. Subsequent nodes use the information in the data packet to decide
whether to send a route reply. Our algorithm reduces route discovery latency and discovers routes shorter than or having the
same length as the active data path. Due to these shorter routes, it reduces the total size of route requests and route replies
significantly. Routing overhead increases slowly as mobility or network load increases. Our algorithm is independent of
node movement. It improves packet delivery ratio by 15% and reduces latency by 54% for the 100-node networks at node
mean speed of 20 m/s.

Keywords Routing protocols · Mobile ad hoc networks · Route discovery problems · Broadcast storms · Directed route
discoveries · Mobility independent · Highly mobile scenarios · Space communications · Delay-tolerant networks ·
Scalability issues

1 Introduction

In a mobile ad hoc network (MANET), on-demand routing
protocols discover routes through network-wide searches. To
find a route to a destination, a source broadcasts a ROUTE
REQUEST. The node receiving a ROUTE REQUEST sends
a ROUTE REPLY to the source if it has a cached route and
rebroadcasts the packet if it does not have a cached route
to the destination. ROUTE REQUESTS are forwarded to
a large number of nodes, and ROUTE REPLIES may con-
tain long routes. A straightforward broadcasting by flood-
ing results in serious redundancy, contention, and collision.
This problem is called broadcast storms [1]. Routing pack-
ets consist of ROUTE REQUESTS, ROUTE REPLIES and
ROUTE ERRORS. Routing overhead is the total number

or the total size of routing packets transmitted. For packets
sent over multiple hops, each transmission of the packet is
counted as one transmission [2]. ROUTE REQUESTS and
ROUTE REPLIES are the major source of routing overhead.
As mobility increases, routes break more frequently. Net-
work-wide searches incur more routing overhead and packet
losses caused by MAC (Media Access Control) collisions.
In this paper, we address the route discovery problem in
mobile ad hoc networks and aim to reduce route discovery
overhead, namely the number and the size of route discov-
ery messages. Route discovery overhead is the total size of
ROUTE REQUESTS and ROUTE REPLIES. The larger a
packet is, the higher probability packet collisions will occur
with. Large amount of routing packets cause severe wireless
interference and packet losses, degrading network through-
put and capacity.

To address the route discovery problem, previous studies
mainly focused on restricting search space. We describe the
most well- known two pieces of work first and will discuss
more related work shortly. Ko and Vaidya [3] suggested an

 * Xin Yu
 yu_xin2014@hotmail.com

1 Sen Pu Software Corporation, Jinan, Shandong Province,
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-024-03796-0&domain=pdf
http://orcid.org/0000-0002-7821-1698

 Wireless Networks

approach to reduce the overhead of route discovery by utiliz-
ing location information. Such information will be obtained
using global position system (GPS). They presented two
Location-Aided Routing (LAR) protocols for route discov-
ery. The LAR protocols aim to reduce the search space for
a desired route, and limiting the search space leads to fewer
route discovery messages. The protocols use location infor-
mation to limit a search to a request zone, which is deter-
mined based on the past location of the destination and its
speed. However, this work requires GPS. Castaneda and Das
[4] proposed a query localization technique, which uses prior
routing histories to estimate a small region with high prob-
ability of finding the destination. A smaller region results in
lower routing overhead, but a route within the region may
not exist. If a route search fails, another route discovery with
a larger region increases route discovery latency. Thus, there
is a trade-off between routing overhead and route discovery
latency. Subsequent research mainly used probabilistic meth-
ods [5–7]. Compared with using flooding, the probabilistic
methods reduce route discovery messages significantly, but
their performance depends on whether the time-distance cor-
relation holds. The authors assume mobility processes are
homogenous, but node movement is fully random in reality.
Moreover, these approaches cannot guarantee that a route to
the destination can be found.

In contrast to previous studies, our goal is to reduce the
total number of network-wide route searches or broadcast-
ings. We present an algorithm called directed route discov-
ery (DRD) for the Dynamic Source Routing protocol (DSR)
[8], and this algorithm discovers routes through data packets.
The intuition behind this idea is that each source node con-
tinuously sends data packets to the destination. Initially, a
source discovers routes through a network-wide search. It
caches routes sent back through ROUTE REPLIES. When
it has only one route to the destination, it piggybacks a
ROUTE REQUEST on a data packet, which is a boolean
variable. The nodes forwarding the data packet send ROUTE
REPLIES using cached routes. These ROUTE REPLIES
contain the routes shorter than or having the same length as
the current route being used. Thus, the protocol reduces the
total size of ROUTE REPLIES, since a ROUTE REPLY in
DSR contains a source route from the source to the destina-
tion. As long as an intermediate node has a cached route that
satisfies the condition, the algorithm avoids a route search.

The nodes forwarding the data packet should avoid
sending duplicate routes to a source. In DSR, each packet
contains a source route from the source to the destina-
tion. A ROUTE REQUEST contains a sequence of nodes
that have been traversed. If a node receiving a ROUTE
REQUEST has a cached route to the destination, it uses
the route to construct a source route and sends a ROUTE
REPLY to the source. The node sending a ROUTE
REPLY does not propagate the ROUTE REQUEST to its

neighboring nodes, and thus no ROUTE REPLIES con-
tain the same route. In our method, a ROUTE REQUEST
is a boolean variable in a data packet. When it is true, it
indicates that a source wants to find routes to a destina-
tion. When a data packet contains a ROUTE REQUEST,
several nodes on the active data path may send the same
route to the source.

To address this problem, we define a forward list and a
backward list in a data packet. The node sending a ROUTE
REPLY records route diverging and converging informa-
tion about the cached route in the ROUTE REPLY. Diverg-
ing information refers to the first node pair where a cached
route diverges from the source route. Converging informa-
tion refers to the first node pair where a cached route and
the source route converge. Each node on the data path uses
the information in the data packet and two rules to decide
whether to send a ROUTE REPLY.

The algorithm has four desirable properties. First, it
reduces route discovery latency because routes are obtained
before the last route breaks. Second, it is independent of
node movement. The intermediate nodes will send ROUTE
REPLIES to a source no matter how fast the source and
the destination move. Third, it finds shorter routes and
thus reduces packet delivery latency. Finally, it reduces the
size of both ROUTE REPLIES and ROUTE REQUESTS.
In DSR, the size of a ROUTE REQUEST depends on the
number of hops traversed. In our method, a source needs to
broadcast a ROUTE REQUEST when no ROUTE REPLY
is sent by intermediate nodes. We found that the total size
of ROUTE REQUESTS is significantly reduced. Since most
of found routes are shorter than the current route, the nodes
close to the source are in the vicinity of the destination and
have cached routes to the destination. They send ROUTE
REPLIES, and ROUTE REQUESTS are not broadcast
further.

We show that the algorithm significantly improves packet
delivery ratio and reduces packet delivery latency. Packet
delivery ratio describes the loss rate that will be seen by the
transport protocols and characterizes both the completeness
and correctness of the routing protocol [2]. For the 100-
node networks, it improves packet delivery ratio by 15% and
reduces packet delivery latency by 54%. It reduces packet
delivery latency by 48% and 45% for the 150- node and the
200-node networks, respectively. Simulation results show
that 80% of routing overhead results from route discoveries.
The algorithm reduces route discovery overhead by 78% and
81% for the 150-node and 200-node networks, respectively.
It reduces the total size of ROUTE REQUESTS by 75% for
the 150-node networks and 79% for the 200-node networks.
Under high network load, such as 40 flows, it improves
packet delivery ratio by 22% and reduces packet delivery
latency by 46% for the 100-node networks at node mean
speed of 10 m/s.

Wireless Networks

This paper makes two contributions. First, we present a
new route discovery algorithm for one of the most popular
on-demand routing protocols in mobile ad hoc networks.
Second, due to finding shorter routes, the algorithm reduces
the length of the routes traversed by ROUTE REPLIES, and
ROUTE REQUESTS sent through broadcast are handled
by the nodes close to a source. The main goal of the algo-
rithm is to reduce network-wide route searches. For the 100-
node networks, it reduces route searches by 17%. For the
150-node and 200-node networks, it reduces route searches
by 12% and 17%, respectively. Because of the above three
features, our algorithm reduces route discovery overhead
significantly. Moreover, routing overhead increases slowly
as mobility or network load increases. Routing overhead
measures the scalability of a routing protocol, the degree to
which it will function in congested or low-bandwidth envi-
ronments, and its efficiency in terms of consuming node
battery power [2].

Li et al. [9] show that traffic pattern determines whether
per node capacity scales to large networks, and the aver-
age distance between sources and destinations must remain
small as the network grows. We show that the locality of
routing packets is critical for the scalability of on-demand
routing protocols. However, as network load increases, both
packet delivery ratio and delivery latency degrade rapidly
because of a large amount of wireless interference and
packet collisions. Making network throughput or capacity
degrade slowly with respect to network load is not solved.

The rest of this paper is organized as follows. In Sect. 3,
we give an overview of DSR. In Sect. 4, we describe the
directed route discovery protocol. We present simula-
tion methodology and simulation results in Sects. 6 and 7,
respectively. In Section 2, we discuss related work. Finally,
we conclude in Sect. 8.

2 Related work

Castaneda and Das [4] proposed query localization protocols
in which a query message is flooded in the neighborhood
of the prior route. The message includes a set of nodes on
the prior route, and is forwarded by the nodes for which
the source route in the packet has at most k nodes not on
the route. If the region is too small, a route may not exist,
and another route discovery with incremented k will be
needed, which increases route discovery latency. A larger
region increases routing overhead. Thus, there is a trade-
off between latency and routing overhead. In contrast, our
protocol reduces both packet delivery latency and routing
overhead.

In the work of Ferriere et al. [6], successive searches
advance toward the destination. A source searches for a node

that encountered the destination more recently. This proce-
dure continues until the destination is found. The intuition
is that if a node encounters a destination more recently than
another node, the former is probably closer to the destina-
tion. However, the performance of the algorithm depends
on whether the time-distance correlation holds. If mobil-
ity processes are heterogeneous, the relationship between
encounter age and distance becomes noisy.

Haas et al. [5] proposed a gossiping-based approach to
reduce the overhead of flooding commonly used in on-
demand protocols. Each node forwards a message with some
probability. The results in percolation theory [10] show
that gossiping exhibits a certain type of bimodal behavior.
Let the gossip probability be p. Then, in sufficiently large
graphs, there are fractions θS (p) and θR (p) such that the
gossip quickly dies out in 1—θS (p) of the executions and, in
almost all of the fraction θS (p) of the executions where the
gossip does not die out, a fraction θR (p) of the nodes get the
message. Moreover, θR (p) is close to 1 in many cases. Thus,
in almost all executions of the algorithm, either hardly any
nodes receive the message, or most of them do. They show
that using gossiping probability between 0.6 and 0.8 suffices
to ensure that almost every node gets the message in almost
every execution. They also show that, by using appropriate
heuristics, the gossiping protocol saves up to 35% message
overhead compared with flooding. However, with gossip-
ing, a source may not always discover the shortest routes.
The gossiping protocol may not guarantee that a route to
the destination is found, either because the destination is
missed due to inappropriate gossiping probability choices
or because the physical layer broadcast is sent with certain
probability.

Beraldi [7] presented a probabilistic protocol called polar-
ized gossiping for path discovery in mobile ad hoc networks.
The gossiping probability of a node is variable and high
enough only for sustaining the spreading process towards
the destination. It is determined by the difference between its
proximity to the destination and the proximity to the destina-
tion of the node from which the message was received. The
proximity is obtained using periodic beacons. The polar-
ized gossip algorithm contains a polarizing node, n* , and
two gossiping probabilities, pF and pB . If node i receives
a message for the first time and from node j, it forwards the
message with probability pF if i is closer than j to the desti-
nation and with probability pB otherwise. The author shows
that the protocol saves up to 80% of broadcast transmissions
compared with flooding. The above two probabilistic proto-
cols are more scalable than the protocols using flooding, but
their performance also depends on whether the time-distance
correlation holds.

Hui et al. [11] studied the data forwarding problem for
Pocket Switched Networks (PSN), a type of Delay Tolerant

 Wireless Networks

Networks [12]. A PSN allows humans to communicate with-
out network infrastructure. They exploited two social met-
rics, namely centrality and community, using real human
mobility traces. They designed and evaluated BUBBLE, a
novel social-based forwarding algorithm, that utilizes the
two metrics to improve message delivery performance. Mes-
sages bubble up and down the social hierarchy, based on the
observed community structure and node centrality, together
with explicit label data. However, there are several issues
for this algorithm. First, message delivery ratio is lower than
the routing protocols designed for mobile ad hoc networks.
For example, delivery success ratio is less than 0.5 when the
time TTL of the messages (the maximum time a message
can stay in the system after its creation.) is one week, and
less than 0.6 when the time TTL is three weeks. As shown in
Fig. 5, packet delivery ratio is 0.85 for DSR with DRD and
0.8 for DSR, for the 150-node networks at pause time 0 s and
with node mean speed of 10 m/s. Second, packet delivery
latency of the BUBBLE algorithm is high. For example, if
the time TTL is one day, delivery success ratio is only less
than 0.2 on Reality dataset because the Reality network is
very sparse. In contrast, packet delivery latency is 0.42 s
for DSR and 0.22 s for DSR with DRD for the 150-node
networks at pause time 0 s. It is unclear how TCP performs
on top of such social-based forwarding algorithms. Finally,
node moving speed is very low in a PSN because nodes
are devices carried by humans. We believe that social-based
forwarding does not apply to mobile ad hoc networks with
mild mobility, such as node mean speed of 5 m/s, or high
mobility.

Lee et al. [13] presented the Whirlpool Routing Protocol
(WARP) for sensor networks, which efficiently routes data to
a node moving within a static mesh. The key insight behind
WARP is that, when a destination moves, the existing dis-
tance vector tree can quickly find its new location. WARP
uses the existing topology to search around the destination’s
old location for nodes that still have routes. When it finds
such a node, it quickly repairs the local topology. WARP
uses speculative routing to search for a destination’s new
location. Speculative routing sends packets along a spiral
trajectory around the last known position of the destination.
Similar to query localization [4], WARP limits the range
over which nodes search for a route. However, as discussed,
WARP becomes inefficient when the destination moves very
fast. Both the path length and routing overhead increase dra-
matically, and spiral whirlpool packets fail to find the new
location of the destination.

Ladas et al. [14] presented Multipath-ChaMeLeon
(M-CML) as an update of the existing ChaMeLeon (CML)
[15] routing protocol. The concept of multi-path is that a
source maintains multiple paths to a destination and dis-
tributes load among these paths [16, 17]. CML is a hybrid
protocol designed for mobile ad hoc networks, which

adapts its routing behavior according to network size.
For small networks, CML routes data proactively using
the OLSR (Optimized Link State Routing) [18] proto-
col, and for large networks, it utilizes the reactive AODV
[19] protocol. They implemented the multi-path approach
on the proactive phase of CML. M-CML extends OLSR
so as to calculate multiple paths based on the Expected
Transmission Count (ETX) [20]. To reduce the genera-
tion of multiple duplicated messages produced, M-CML
implements a simplified approach by sending data to the
two most optimal disjoint next addresses. They show that
M-CML’s multipath routing combined with ETX signifi-
cantly reduces end-to-end delay compared with OLSR.
Our algorithm finds shorter routes when the source is
sending data packets to the destination but does not send
duplicated packets to several paths. Although it maintains
multiple paths, it is different from multi-path routing.

Tang et al. [21] studied the problem of on-demand
route discovery in asynchronous duty-cycling sensor net-
works and presented four optimizations: Delayed Selec-
tion, Duty-Cycled Selection, Reply Updating and Adap-
tive Backoff. They show that with only simple changes
made at the MAC or network layers, their optimizations
enabled nodes to improve significantly discovered routes
while reducing route discovery latency and node energy
consumption. These optimizations can find routes that
were only 0.2% longer than the theoretical shortest routes
or routes with an ETX only 9% larger than the ETX of
the theoretical optimal ETX routes. However, this work
focused on asynchronous dutycycling sensor networks and
does not aim to reduce route discovery overhead in mobile
ad hoc networks.

Current protocols for sensor networks mainly support
multihop upward traffic from many sensors to a collection
point; however, the scenarios involving low-power wireless
devices increasingly require support for downward traffic.
For example, a controller needs to issue actuation commands
based on the monitored data. The IETF Routing Protocol for
Low-power and Lossy Networks (RPL) [22] deals with both
traffic patterns. Istomin et al. [23] observed that a simple
dissemination-based flooding protocol systematically pro-
vided near-perfect reliability even in scenarios where the
routing-based approach of ContikiRPL performed unaccept-
ably. As a result, they tackled the routing problem by extend-
ing RPL with two extremes. At one extreme, they retained
the route-based operation of RPL and added techniques that
were neglected by popular implementations. At the other
extreme, they rely on flooding as the main networking primi-
tive. In order to send commands to the monitored area, the
root needs to find routes to a small group of sensors; this is
a route search problem. The authors show that a carefully
balanced mix of routing and flooding strikes performance
tradeoffs not achievable by either approach.

Wireless Networks

The energy consumption problem is severe for large-scale
systems that involve several thousands servers. Zakarya et al.
[24] discussed the energy consumption and performance
problems of large-scale systems and presented several tax-
onomies of energy and performance aware methodologies.
To solve the route discovery problem, our goal is to find
routes as fast as possible while incurring as few routing
packets as possible. These routing packets cause interfer-
ence, collisions, and retransmissions, consuming limited
bandwidth and node energy. This work fits into the broad
range of Zakarya’s research of energy efficiency and perfor-
mance problems.

Araniti et al. [25] presented an overview, enhancements,
and the performance for Contact Graph Routing [26] in
DTN (Delay-Tolerant Networking) [27] space networks.
They said:“ Satellite systems already have to cope with
difficult communication challenges:long round trip times
(RTTs); the likelihood of data loss due to errors on the
communication link; possible channel disruptions; and
coverage issues at high latitudes and in challenging ter-
rain. These problems are magnified in space communi-
cations characterized by huge distances among networks
nodes, which imply extremely long delays and intermittent
connectivity. At the same time, a space communication
system must be reliable over time due to the long dura-
tion of space missions. Moreover, the importance of ena-
bling Internet-like communications with space vehicles is
increasing.” As described by Wyatt et al. [28], DTN was
originally designed to meet the emerging need to provide
capable network services for space flight operations. It
runs directly over link-layer protocols, taking the place
of the IP network protocol when necessary. Route com-
putation is based on a schedule of planned contacts, and
forwarding at each router is store-and-forward rather than
immediate. In NASA’s (National Aeronautics and Space
Administration) EPOXI mission [28], the routing proto-
col used is CGR, which computes dynamic routes through
time-varying network topology of scheduled communica-
tion contacts in a DTN network. The fundamental features
of space networks are interplanetary distances and high

mobility of spacecrafts; topology changes occur more rap-
idly than they can be reported.

The DTN architecture introduces an overlay protocol
that interfaces with either the transport layer or lower lay-
ers. Each node can store information for a long time before
forwarding it. “Approaches that assume minimal accurate
network state information have historically been considered
‘opportunistic’ while those that assume complete network
state information are regarded as ‘deterministic.”’ [29]
Opportunistic approaches rely on the exchange of infra-
structure and/or in-networks measurements in a timely
manner to support on-demand calculations of routes. Such
approaches often use a replication-based strategy and are
suitable for networks with high mobility and nearly random
contact establishment. In scheduled DTNs, contact plans are
determined based on the estimations of future episodes of
communication. Madoery et al. [29] said:“Whether kept in
centralized planning node or distributed to all nodes, the
contact plan is used by algorithms such as CGR to derive
efficient routes.” In addition to knowing contact plans in the
planning stage, CGR faces the scalability problem, namely
computing routes through a contact plan comprising mil-
lions of contacts in large space networks.

We believe that mobile ad hoc networks are important
for space networks; spacecrafts are mobile nodes with fast
moving speeds and intermittent connectivity. The routing
protocols for ad hoc networks will address the high mobil-
ity of spacecrafts and the scalability issues. Our protocol
reduces route discovery latency and packet delivery latency.
Both metrics are critical for space networks. The algorithm
applies to space networks where contacts plans are not
known ahead of time and the network is arbitrarily large.
The feasibility of mobile ad hoc networks for space com-
munications is yet to be validated and proved by NASA
and other space agencies. The reasons why such networks
have not been considered for space communications are also
worthy of investigations. DTN is a concept, and the reality
of space communications is that nodes are highly mobile.
When data volume is large, store-and-forward mode will
encounter problems too.

Table 1 Comparison of seven popular methods for route discovery in mobile ad hoc networks

Name Advantages Limitations

LAR It reduces route discovery messages using request zone GPS is required
Query localization A smaller search region causes lower routing overhead If the region is too small, a route may not exist
Gossip-based routing It saves up to 35% message overhead It may not guarantee that a route is found
Bubble rap Messages bubble up and down the social hierarchy Message delivery ratio is lower and latency is high
Whirlpool routing It limits the range over which nodes search for a route It is inefficient when the destination moves fast
CGR Contact plans are determined in advance It has scalability issues and TCP cannot be used
RPL They combined both routing and flooding Flooding is used as the main networking primitive

 Wireless Networks

For easy comparison with the most significant related
studies, we summarize seven pieces of previous work that
have been widely cited in a table (Table 1), namely the LAR
protocol [30], query localization techniques, gossip-based
routing, social based forwarding (bubble rap) for PSN [31],
whirlpool routing protocol (WARP) for sensor networks,
Contact Graph Routing for space networks [26], and efficient
support for downward traffic in RPL [23].

3 overview of DSR

DSR consists of two on-demand mechanisms: Route Discovery
and Route Maintenance. When a source node wants to send
packets to a destination to which it does not have a route in its
cache, it initiates a Route Discovery by broadcasting a ROUTE
REQUEST. The node receiving a ROUTE REQUEST checks
whether it has a route to the destination in its cache. If it has, it
sends a ROUTE REPLY to the source node including a source
route, which is the concatenation of the source route in the
ROUTE REQUEST and the cached route. Otherwise, the node
adds its address to the source route in the ROUTE REQUEST
and rebroadcasts the packet. When a ROUTE REQUEST
reaches the destination, the destination sends a ROUTE REPLY
containing the source route to the source. Each node forward-
ing the ROUTE REPLY caches the route starting from itself to
the destination. When the source receives a ROUTE REPLY,
it caches the source route. A source may learn multiple routes
through a Route Discovery and will cache all found routes.

In Route Maintenance, a node forwarding a packet is
responsible for confirming that the packet has been deliv-
ered to the next hop. If no acknowledgement is received after
the maximum number of retransmissions, the forwarding
node assumes that the next hop is unreachable and sends a
ROUTE ERROR to the source node. Each node receiving a
ROUTE ERROR removes from its cache all routes contain-
ing the broken link.

Besides Route Maintenance, DSR uses two mechanisms
to remove stale routes. First, a source piggybacks on the next
ROUTE REQUEST the last broken link information called a
GRATUITOUS ROUTE ERROR. Second, DSR uses heuris-
tics: a small cache size for path caches with FIFO (First-In-
First-Out) and adaptive timeout mechanisms for link caches
[32], where link timeouts are chosen based on observed link
usages and breakages. However, topology changes are fast
and unpredictable, and adaptive timeout mechanisms may
keep stale routes and remove good ones. In order to remove
stale routes quickly, Yu and Kedem presented a new cache
structure called cache table and a distributed cache update
algorithm for DSR [33]. The earliest version of DSR uses
path caches, and cache size is fixed. A small cache size
causes DSR to fail to scale to large networks. We studied

the impact of the cache update algorithm and a cache table
without capacity limit on the scalability of DSR in [34].
Details about how they handled topology changes and link
failures are described in [33].

4 Directed route discovery

In this section, we first present the motivations of this work
and give an overview of the algorithm. We then present two
examples in order for the readers to quickly understand its
operations. Later, we describe the algorithm step by step
based on pseudo code and provide the data flow diagrams.
Finally, we discuss several implementation details and the
comparison with SLR (Source routing with Local Recovery)
[35] with its limitations.

4.1 Motivations and concepts

Mobile ad hoc networks apply to situations like battlefields
or disaster areas where networks need to be deployed imme-
diately but base stations are not available [1]. Although
MANETs have been studied for more than two decades, the
route discovery problem has not been solved. The major
method for finding a route is broadcastings or pure flood-
ing. Due to mobility, broadcastings are expected to be per-
formed frequently because a route breaks when two nodes
move out of the transmission range of each other. Ni et al.
[1] observed that serious redundancy, contention, and colli-
sion could exist if flooding is done blindly. First, because a
physical location may be covered by the transmission range
of several hosts, many rebroadcasts are redundant. Second,
heavy contention could exist because rebroadcasting hosts
are probably close to each other. Third, packet collisions are
more likely to occur because the RTS (Request-To-Send)/
CTS (Clear-To-Send) dialogue is inapplicable, and the tim-
ing of rebroadcasts is highly correlated. The problems asso-
ciated with flooding are called broadcast storms [1].

When broadcastings are used, ROUTE REPLIES may
contain long routes. A source node uses these long routes
until they are broken or evicted by FIFO policy when DSR
uses path caches. The packet size of such ROUTE REPLIES
is large, and these long routes lead to high packet delivery
latency too. Moreover, ROUTE REQUESTS are broadcast
to the entire network and will be dropped until they reach
the maximum number of hops. Routing overhead is the total
number or the total size of routing packets transmitted. Route
discovery overhead is the total size of ROUTE REQUESTS
and ROUTE REPLIES. In this paper, we aim to reduce route
discovery overhead. The solution is to reduce the total num-
ber of network-wide searches or broadcastings.

Wireless Networks

4.2 Overview

In on-demand routing protocols, a source node needs to find
routes before it starts data transmission. Found routes are
stored in a route cache. The key idea of the DRD algorithm
is to use data packets to find routes so as to avoid broadcast-
ing ROUTE REQUESTS. To achieve this goal, the problem
to be solved is that we should prevent intermediate nodes
from sending duplicate routes to the source. As shown in
Fig. 1, when source A has only one route ABCDEF to the
destination, node F, it piggybacks a ROUTE REQUEST on a
data packet to node F. Node B has a route BCGEF and sends
a ROUTE REPLY containing route ABCGEF. Node C has
a route CGEF and also sends a ROUTE REPLY containing
route ABCGEF. Node E has a route EGCBA and sends a
ROUTE REPLY containing route ABCGEF. The node for-
warding the data packet does not know what routes have
been sent to the source by the preceding nodes.

We define a forward list and a backward list to capture the
minimum information that identifies a cached route. A forward
list contains the first diverging node pairs of the routes starting
from the current node. A diverging node pair refers to a node
and its next hop where the route in a ROUTE REPLY diverges
from the source route. For example, in Fig. 1, the source route is
ABCDEF, which is contained in each data packet. Node C and
node G are the first diverging node pair of route BCGEF. If the
first diverging node pairs of two routes are different, the routes
must be different. A backward list contains the first converging
node pairs of the routes starting from the current node. A con-
verging node pair refers to a node and its previous hop where a
cached route and the source route converge. For example, node
E and node G are the first converging node pair of route BCGEF.
The first converging node pair is used to identify a route to the
source node. In DSR, a node may use a route to the source node
or the destination node to construct a source route and send a
ROUTE REPLY containing this source route. The node where
two routes diverge or converge is called an anchor.

After receiving a data packet, the node sending a ROUTE
REPLY adds a diverging node pair and/or a converging node
pair to the data packet. If a node uses a route to the destina-
tion node to send a ROUTE REPLY, it adds the first diverg-
ing node pair to the forward list and the first converging
node pair to the backward list. If it uses a route to the source

node to send a ROUTE REPLY, it adds the first converging
node pair to the backward list.

In order to decide whether to send a ROUTE REPLY,
the nodes forwarding the data packet containing a ROUTE
REQUEST use two rules. The first rule is that, the node uses a
route to the source node to send a ROUTE REPLY if the route
does not contain any converging node pair in the backward list.
The second rule is that, the node uses a route to the destina-
tion node to send a ROUTE REPLY if the forward list does not
contain the first diverging node pair of the route. The two rules
ensure that the intermediate nodes on the current route do not
send duplicate routes to the source node.

We show a simple example in Fig. 1. Node B uses
route BCGEF to send a ROUTE REPLY containing route
ABCGEF. It adds node C and node G to the forward list,
and node E and node G to the backward list. When node C
receives the data packet, according to the second rule, it will
not use route CGEF to send a ROUTE REPLY, since the for-
ward list contains the first diverging node pair of this route.
Node C will use route CDHF to send a ROUTE REPLY
containing route ABCDHF. It adds node D and node H to
the forward list, and node F and node H to the backward list.
Thus, according to the second rule, node D will not use route
DHF to send a ROUTE REPLY. When node E receives the
data packet, according to the first rule, it will not use route
EGCBA to send a ROUTE REPLY, since this route contains
a converging node pair in the backward list. Similarly, node
F will not send a ROUTE REPLY containing either route
ABCGEF or route ABCDEF.

4.3 Examples

We show two examples in more details. The first example is
shown in Fig. 2. When source A has only one route ABCDEF
to destination F, it sets a boolean variable called has_rreq
in a data packet to be true. This variable indicates whether
a source wants to find routes to a destination. Node B has a
cached route BGHEF and sends a ROUTE REPLY contain-
ing route ABGHEF. Before sending the ROUTE REPLY,
node B adds the first converging node pair, node E and node
H, to the backward list, so that node E and the nodes after
it do not send a ROUTE REPLY containing the same route,
ABGHEF. Node B forwards the data packet to the next hop.

Fig. 1 An Example of the Directed Route Discovery Protocol

Fig. 2 Example 1 of the Directed Route Discovery Protocol

 Wireless Networks

Node C has a cached route to the source, CIA. The route
does not contain any converging node pair in the back-
ward list, and thus node C uses the route to send a ROUTE
REPLY. Node C adds the first converging node pair, itself
and node I, to the backward list, so that the nodes after it do
not use route CIA to send a ROUTE REPLY. It also has a
route to the destination, CDJF. The first diverging node pair
of this route is not in the forward list, and thus node C uses
this route in a ROUTE REPLY. It adds node D and node J
to the forward list, so that node D does not use route DJF to
send a ROUTE REPLY. It also adds node F and node J to
the backward list. Node C constructs a source route AICDJF
and sends a ROUTE REPLY to node A.

Node D has route DCIA and route DJF, but cannot use
both of them. Route DCIA contains a converging node
pair, node C and node I, in the backward list, and the first
diverging node pair of route DJF is in the forward list.
Node E has route EHGBA, but the route contains a con-
verging node pair in the backward list, node E and node H.
Thus, node E does not send a ROUTE REPLY containing
route ABGHEF. Node F does not send a ROUTE REPLY
containing either route AICDJF or route ABGHEF. The
first converging node pair of route FJDCIA contains node
F and node J, and it is in the backward list, which means
the preceding nodes have sent a route containing this link.
Node F also has a route FEHGBA, and the first converging
node pair contains node E and node H. The backward list
contains this link.

In summary, when a node uses a route to the source node to
send a ROUTE REPLY, it adds the first converging node pair to
the backward list. When it uses a route to the destination node,
it adds the first diverging node pair to the forward list and the
first converging node pair to the backward list.

In the second example shown in Fig. 3, we show the case
where the algorithm does not attempt to find all cached routes.
Source node A starts a directed route discovery. Node B has
route BCHEFG. It adds node C and node H to the forward list,
and node E and node H to the backward list. It sends a ROUTE
REPLY containing route ABCHEFG. Assume that node C only
has route CHJFG. It cannot use the route because the forward
list contains the first diverging node pair, node C and node H,
although the route is different from the route sent by node B.

Assume that node C has route CIEFKG. Since it is the
first anchor, it adds only the first converging node pair, node
E and node I, to the backward list. Thus, node E and the
nodes after it do not send a route containing link IE. They
will not send route ABCIEFKG to the source. If any of these
nodes has the same route, it must contain the converging
node pair added by node C. The first rule allows an interme-
diate node to decide whether a route to the source was used
by the preceding nodes to construct a source route.

4.4 Algorithm description

The pseudo code for the algorithm is shown in Algorithm 1.
When a source has only one route to the destination, it sets a
boolean variable called has_rreq in the source route header
of a data packet to be true. This variable is a new form of a
ROUTE REQUEST. It also maintains an integer variable called
request_status for each destination locally, which is set to 1 when
the source piggybacks a ROUTE REQUEST on a data packet.
When the source receives a ROUTE REPLY, it sets the corre-
sponding request_status to be 0, so that it can piggyback another
ROUTE REQUEST when only one route is available. If none of
the intermediate nodes sends a ROUTE REPLY, request_status
for the destination will be 1 till the last route breaks. The source
does not initiate another route discovery using a data packet dur-
ing this period. Request_status will be set to 0 when the source
broadcasts a normal ROUTE REQUEST. We add three vari-
ables to the source route header of a data packet: forward list,
backward list, and has_rreq. The type of both lists is array.

The node forwarding the data packet checks whether it
has a route to the source or the destination. It first checks
whether it has a route to the source (lines: 7–19). This route
should be shorter than or have the same length as the cur-
rent route to the source. The node checks the backward list
to decide whether to send a ROUTE REPLY. It will use the
route if it does not contain any converging node pair in the
backward list. If the route was sent by a preceding node,
that node had added the first converging node pair to the
backward list. If the node uses the route, it will add the first
converging node pair of the route to the backward list.

The node then checks whether it has a route to the destina-
tion (lines: 20–37). This route should be shorter than or have the
same length as the current route to the destination. It uses the
route to send a ROUTE REPLY if the first diverging node pair
is not in the forward list. If the route has been sent, the forward
list should contain the first diverging node pair. If the node uses
the route, it will add the first diverging node pair to the forward
list. As described in Sect. 4.2, we call the node where two routes
diverge or converge an anchor. Due to adding the first diverging
node pair to the data packet, the nodes between the current node
and the first anchor do not send the same route to the source. The
node also adds the first converging node pair to the backward
list. According to the first rule, the nodes after the second anchor Fig. 3 Example 2 of the Directed Route Discovery Protocol

Wireless Networks

do not send a route containing the node pair. If the current node
is the first anchor, it will add only the first converging node pair
to the backward list.

Algorithm 1 Directed Route Discovery(DRD)

If the current node is an anchor in the forward_list, it will
remove the entry because subsequent nodes do not need this
information (lines: 38-42). If the number of entries in the
backward list reaches the maximum value, the current node

will set has_rreq in the source route header to be false, so
that subsequent nodes on the route will not send ROUTE
REPLIES. It will also remove all entries in both lists and
forwards the data packet to the next hop (lines: 43-48). A

source route in DSR contains at most 16 nodes [8], and the
maximum number of entries of both lists is set to be 5.

The node concatenates the route to the source and the route to
the destination found from the cache as a source route and sends

 Wireless Networks

a ROUTE REPLY (lines: 49–66). If the node uses only the route
to the destination, it will concatenate the upstream nodes of the
current route and the cached route as a source route. If it uses
only the route to the source, it will concatenate the route and the
downstream nodes of the current route as a source route.

For the first rule, it is insufficient that the backward list
does not contain the first converging node pair. If a node uses
a route to the destination, it will add only the first converging
node pair to the backward list. However, the route may have
several converging node pairs. The nodes after those node
pairs may have a route to the source, which was sent to the
source before. But the first converging node pair of the route,
which is the last converging node pair of the route sent by
a preceding node, was not in the backward list. Therefore,
this rule requires that a route to the source do not contain
any converging node pair in the backward list.

If the data packet containing a ROUTE REQUEST encoun-
ters a link failure, the node detecting the link failure will pig-
gyback a notification on a ROUTE ERROR. When the source
receives the ROUTE ERROR, it sets request_status for that
destination to be 0 so that the source will start a new route
discovery when only one route is available in its cache.

When a data packet is salvaged after a link failure, the
salvaging node becomes the first node on the new route; oth-
erwise, the first node of the current route is the source node
of the data packet. In the algorithm, we do not handle the
case where a data packet is salvaged, which means the nodes
on the new route will not send ROUTE REPLIES if they
have shorter routes to the destination. The reason is that the
alternative route can be longer than the downstream nodes
of the original source route. If we want to handle this case,
we will use the upstream nodes in the source route header for
comparison. We will use both forward and backward lists to
decide whether to send a ROUTE REPLY. We consider this
case as an optimization in future work.

For AODV (Ad hoc On-demand Distance Vector) [19], a
source node needs to cache multiple routes to the destination
to decide when to start a route discovery. Several multi-path
routing protocols were proposed for AODV [36, 37]. For
distance vector protocols like AODV, DRD requires a few
modifications in order to prevent duplicate routes from being
sent to the source.

4.5 Data flow diagram

The data flow diagram of the algorithm is shown in Fig. 4.

4.6 Discussions

We have several design decisions. First, we keep the size
of the data packet with a ROUTE REQUEST small. The
node sending a ROUTE REPLY adds at most three node
pairs to the data packet, and an entry in a forward list is

upstream := the
upstream nodes of

P.routes containing
net id,

upstream . reverse()

use forward := false
use backward false

yes

No

first anchor
The first anchor on

backward new

next_hop
The next hop on
backward_new

check whether it has a route to the
sources called backward new,

backward new. length<=
upstream.length

 :=

start

:=

A data packet p,
srh.has_rreq is true, p.src
is P.route [0], this packet
was not salvaged before

:= the
downstream nodes of

p.routes containing
net id

downstream

 :=

Fig. 4 The data flow diagram of the Directed Route Discovery algo-
rithm

Wireless Networks

Yes

Yes

Yes

use_backward := true

backward_new contains any
entry in backward_list?

use_backward := false

use_backward is true?

Add (first_anchor,
next_hop) to
backward_list

Check whether it has a route to the des�na�on,
called forward_new,

forward_new.length<= downstream.length,
forward_list.length < MAX_LIST_ENTRY

first_anchor :=
The first anchor on

forward_new

No

No

No

Yes

Yes

Yes

use_backward := true

backward_new contains any
entry in backward_list?

use_backward := false

use_backward is true?

Add (first_anchor,
next_hop) to
backward_list

Check whether it has a route to the des�na�on,
called forward_new,

forward_new.length<= downstream.length,
forward_list.length < MAX_LIST_ENTRY

first_anchor :=
The first anchor on

forward_new

No

No

No

Fig. 4 (continued)

 Wireless Networks

Yes

Yes

Yes

use_forward := true

forward_list contains
(first_anchor, next_hop)?

use_forward := false

use_forward is true?

net_id is first_anchor?

Add (second_anchor,
previous_hop) to

backward_list

Add
(first_anchor, next_hop)

to forward_list,
(second_anchor,
previous_hop) to

backward_list

No

No

No

second_anchor
:=The second anchor on

forward_ new

previous_hop :=
The previous hop of

the second anchor on
forward_ new

next_hop :=
The next hop on

forward_ new

Fig. 4 (continued)

Yes

srh.has_rreq := false,
turn off the route

request flag

srh.forward_len :=0,
srh.backward_len :=0

sendOutPacketWithRo
ute(p), send the data
packet to the next hop

Yes

If net_id is an anchor in
the forward_list, delete

that entry

backward_list.length ==
MAX_LIST_ENTRY?

use_backward is true?

No

No

upstream :=upstre
am.reverse()

upstream :=backw
ard_new.reverse()

Fig. 4 (continued)

Wireless Networks

removed when an anchor forwards the packet. Second, a
source initiates a route discovery when only one route
is available in its cache. If it does so when two or more
routes are available, the frequency of route discoveries will
increase, and routing overhead caused by ROUTE REPLIES
degrades performance. Finally, a node uses a route shorter

than or having the same length as the active data path to
send a ROUTE REPLY. Thus, DRD reduces the total size
of ROUTE REPLIES. A ROUTE REPLY contains both the
source route and the route to be used for sending the packet
to the source.

The algorithm uses a network-wide search in several
cases. First, a source did not send data packets and the last
route breaks. Second, found routes and the current route
have a common link, and the link breaks. Third, cached
routes that satisfy the condition are not available at the inter-
mediate nodes forwarding the data packet. Finally, no cached
routes are available.

As described, a source starts the route discovery pro-
cess before the last route breaks. Since ROUTE REPLIES
contain the routes shorter than or having the same length
as the current route, the source maintains shorter distance
to the destination. Thus, both routing and data packets are
localized. The two rules prevent the nodes forwarding the
data packet containing the true flag from sending duplicate
routes. ROUTE REPLIES are sent when only one route is
available at the source, and the intermediate nodes send only
a few ROUTE REPLIES. Thus, these control packets do
not interfere data forwarding. A cached route contained in
a ROUTE REPLY may be stale. Such routes are removed
through on-demand Route Maintenance described in Sect. 3.

The problem of route searches is complicated, and prior
work mainly focus on reducing search ranges or using
probabilistic methods. There must be a completely novel
approach to solve this problem. Our solution is simple, and
there is no need for theoretical models. There are no ad hoc
parameters in the DRD algorithm, which makes it efficient
in highly mobile scenarios. Fast node movement, frequent
link failures, and transmission interference, such as hid-
den terminals, are the major difficulties for mobile ad hoc
networks; the specific tasks are route discoveries and route
maintenance. Note that we explained the three reasons why
the results were achieved in both Sects. 1 and 7.

5 Comparison with the SLR protocol

Sengul and Kravets [35] proposed a local recovery protocol
called SLR (Source routing with Local Recovery) to reduce
the frequency of ROUTE REQUEST floods. In this section,
we briefly describe the protocol and our observations about
SLR.

When a node detects a broken link, if it cannot salvage
the packet or the packet has been salvaged, it will perform
a bypass recovery. The node buffers the current packet
and all packets in the network interface queue between
the routing layer and the MAC layer that contain the bro-
ken link. A list of downstream nodes of these packets is

upstream.appendPath(d
ownstream)

Yes

Yes

rrep.srh.route :=
upstream, this is the
source route in the

route reply

rrep.src := net_id,
rrep.dest := p.src

upstream :=
upstream.subpath(0,ups
tream.length-2), remove

the net_id

use_forward is true?

upstream.appendPath(f
orward_new)

use_forward is true or
use_backward is true?

sendOutPacketWithRou
te(rrep), send the route
reply to the source

end

No

No

Fig. 4 (continued)

 Wireless Networks

broadcast to one-hop neighbors, to see whether they are
neighbors with any of those nodes. Each node maintains
a MAC cache, which contains the most recent neighbor
state. The node receiving the query searches its MAC
cache for a neighbor listed in the query and includes all
such neighbors in its reply.

When the querying node receives a reply, it repairs the
packets with the broken link using the new connectivity
information. One packet is marked in order to notify the
destination about the broken link. The destination sends an
enhanced ROUTE ERROR to the source to indicate the sal-
vaged route as an alternative route.

We implemented this protocol and found two problems.
First, SLR keeps the full path for each salvaged packet, so
that the destination will send an enhanced ROUTE ERROR
containing the salvaged route. A salvaged packet contains
the route starting from the salvaging node. Under high
mobility, a packet may be salvaged multiple times and will
have a long path. We will not provide simulation results for
SLR because we used high mobility rates and path length
of SLR exceeds the maximum source route length in some
scenarios. Second, SLR sends an enhanced ROUTE ERROR
for each source and destination pair of salvaged packets,
which causes higher routing overhead than DSR, such as at
node mean speed of 15 m/s and 20 m/s. The authors used
node speed between 0 and 20 m/s, which results in an aver-
age speed of 5 m/s [38].

The authors observed that SLR forwards more data
packets over longer routes and has similar packet deliv-
ery latency as DSR, thus comparable to DSR in terms of
throughput. DRD finds more shorter routes than DSR, as
indicated by average data packet size, and reduces packet
delivery latency by 54% at node mean speed of 20 m/s.
Moreover, SLR reduces routing overhead by 20% com-
pared with DSR, while DRD achieves between 60 and 80%
reduction in routing overhead because it reduces the size of
ROUTE REQUESTS and ROUTE REPLIES packets. The
main difference between them is that, SLR repairs a broken
link reactively while DRD proactively finds routes before
the last route breaks.

6 Simulation methodology

We incorporated the algorithm into DSR with path caches.
We used ns-2.28 and random waypoint model [2] in which
node speed was randomly chosen from v 土0.1 v m/s. Note
that we did not use node speed between 0 and 20 m/s,
which results in an average speed of 5 m/s [38]. We per-
formed three sets of experiments. First, we evaluated the
algorithm under various mobility rates, with node mean
speed varying from 5 to 20 m/s. The highest mobility rate
used in the literature is 20 m/s, which is 44.74 miles per

hour and the normal driving speed in highways. Second,
we evaluated how the algorithm performs as network size
increases. We used node mean speed of 10 m/s and 5 m/s
for the 150-node and the 200-node scenarios, respectively.
We used 5 m/s for the latter because small cache size in
DSR causes a large amount of route discoveries under high
mobility and large networks. Using lower speed reduces
the effect of cache size on the results. Finally, we evaluated
it using different loads, such as 10 flows, 20 flows, 30 flows
and 40 flows, in order to see how network load affects it.

We used CBR (Constant Bit Rate) traffic with 4 pack-
ets per second and packet size of 64 bytes as in [2]. The
sources and destinations were chosen randomly. We used
the same evaluation method as in [2] and [32]. The way
the source node and the destination node are chosen is
irrelevant to the performance of DRD. The route discovery
process starts from broadcastings or network-wide flood-
ing. The source node and the destination node move ran-
domly and can be in any locations during the simulations.
We used four field configurations: a 1500 m × 500 m field
with 50 nodes, a 2200 m × 600 m field with 100 nodes [2],
a 2200 m × 1000 m field with 150 nodes, and a 2200 m ×
1200 m field with 200 nodes. The field sizes were chosen
to keep similar node density for different network sizes.
Simulations ran for 900 s. Each data point represents an
average of 10 runs of randomly generated scenarios. The
results will be shown with the error bars in the graphs
representing the 95% confidence interval of the average.
We used the following metrics in the evaluations:

• Packet delivery ratio: the ratio between the number of
packets received by the CBR sink at the destination and
the number of packets originated by the CBR source.

• Packet delivery latency: the delay from when a data
packet is sent until it is received by the destination.

• Route discovery overhead: the total size of ROUTE
REQUESTS and ROUTE REPLIES sent and for-
warded.

• Routing overhead: the total size of ROUTE REQUESTS,
ROUTE REPLIES and ROUTE ERRORS sent and for-
warded.

• Route requests sent: the total number of ROUTE
REQUESTS sent by the sources, which is the total num-
ber of network-wide route searches. Our main goal is to
reduce this metric, and the second goal is to reduce route
discovery overhead.

• Average data packet size: the total size of data packets
received by the destination divided by the total number
of data packets received by the destination.

• Packet overhead: the total number of ROUTE
REQUESTS, ROUTE REPLIES and ROUTE ERRORS
sent and forwarded.

Wireless Networks

• Route errors sent and forwarded: the total number of
ROUTE ERRORS sent and forwarded. DSR piggybacks
the last broken link information to the next ROUTE
REQUEST, and thus this metric also reflects the amount
of ROUTE REQUESTS broadcast in the network.

7 Simulation results

7.1 Packet delivery ratio

Figure 5(a), (c), (e), and (g) show packet delivery ratio. For
the 100-node scenarios, DRD outperforms DSR by 15% at
node mean speed of 20 m/s. The improvement increases
as mobility increases because of the reduction in routing
overhead, which will be described shortly. As mobility
increases, routes break more frequently, and network-wide
route searches cause more MAC collisions and packet losses.
For the 50-node scenarios, DRD has similar performance as
DSR because for small networks, route searches do not incur
much routing overhead. DRD outperforms DSR by 7% for
the 150-node scenarios at node pause time of 0 s.

7.2 Packet delivery latency

Figure 5(b), (d), (f), and (h) show packet delivery latency.
DRD has higher latency than DSR by 0.008 s for 50-node
scenarios at node mean speed of 10 m/s. This phenomenon
may be caused by the higher number of ROUTE REPLIES.
For the 100-node scenarios, DRD reduces packet delivery
latency by 54% at node mean speed of 20 m/s. DRD reduces
route acquisition latency because it discovers routes before
the last route breaks. Moreover, it discovers the routes
shorter than the current data path. As nodes move and
actively cache overheard routes, many short routes around
the data path become available. DRD discovers these routes
in a timely manner, thus significantly reducing packet deliv-
ery latency. For example, it reduces latency by 48% and 45%
for the 150-node and the 200-node scenarios, respectively.
The reduction in packet delivery latency increases as mobil-
ity increases.

7.3 Route discovery overhead and routing
overhead

Figure 6(a), (c), (e), and (g) show route discovery overhead.
DRD reduces route discovery overhead by 57% and 71% for
the 50-node and the 100-node scenarios, respectively. For
the 100- node scenarios, DRD reduces the size of ROUTE
REQUESTS by 90% and the size of ROUTE REPLIES by
74%, as shown in Fig. 7. Intermediate nodes send ROUTE

REPLIES containing routes shorter or with the same length
as the data path; therefore, the size of ROUTE REPLIES is
reduced. The smaller size of ROUTE REQUESTS indicates
that most ROUTE REQUESTS are forwarded by nodes not
far away from the source. Since a source discovers shorter
routes, the nodes close to the source are in the vicinity of the
destination and have cached routes to the destination. Due
to the locality of routing packets, route discovery overhead
increases slowly as mobility increases. For the 200-node
scenarios, DRD reduces route discovery overhead by 81%.

Figure 6(b), (d), (f), and (h) show the total size of rout-
ing packets, namely routing overhead. Routing overhead is
the total size of ROUTE REQUESTS, ROUTE REPLIES,
and ROUTE ERRORS. DRD reduces routing overhead by
52% for the 50- node scenarios and 77% for the 100-node
scenarios. DRD reduces routing overhead by 78% for both
the 150-node and 200-node scenarios. Since it discov-
ers shorter routes as nodes move, the paths traversed by
ROUTE ERRORS are shorter too, compared with ROUTE
ERRORS sent when network-wide searches are used. The
size of ROUTE ERRORS depends on the paths used to send
ROUTE ERRORS. Routing overhead remains low as mobil-
ity increases. Thus, DRD makes DSR scalable with respect
to mobility, since routing overhead is the measure of scal-
ability used in the literature.

7.4 Route requests sent and average data packet
size

Figure 8(a), (c), (e), and (g) show the number of ROUTE
RE QUESTS sent. As long as an intermediate node has a
cached route to the destination, DRD reduces a network-
wide search. Normally several distinct routes will be sent
to the source. The source switches to the shortest one and
starts the next route discovery when one route is left in its
cache. If no ROUTE REPLIES are sent to the source, it
uses flooding to find routes. For the 100-node scenarios,
DRD reduces route searches by 17%. For the 150-node and
200-node scenarios, DRD reduces route searches by 12%
and 17%, respectively. The algorithm reduces the total size
of ROUTE REQUESTS by 75% for the 150-node scenarios
and 79% for the 200-node scenarios, as shown in Fig. 7.
Recall that a ROUTE REQUEST contains a sequence of
nodes traversed by the packet. Thus, ROUTE REQUESTS
sent through broadcast are restricted to the nodes close to
a source.

We measured average data packet size and show the
results in Fig. 8(b), (d), (f), and (h). The average data packet
size of DRD is smaller than that of DSR. Although node
pairs in the source route header of a data packet increase
packet size, only the data packet containing true for has_rreq
has this overhead. The smaller data packet size demonstrates
that DRD finds more shorter routes.

 Wireless Networks

1

0.8

0.6

0.4

0.2

0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

DSR with DRD
DSR

DSR with DRD
DSR DSR with DRD

DSR

5

5

0

10 15 20 5 10 15 20

Mean Speed (m/s) Mean Speed (m/s)

(a) 50 nodes, 20 flows (b) 50 nodes, 20 flows

1

0.8

0.6

0.4

0.2

0

0.6

0.5

0.4

0.3

0.2

0.1

0

DSR with DRD
DSR

10 15 20 5 10 15 20

Mean Speed (m/s) Mean Speed (m/s)

(d) 100 nodes, 20 flows(c) 100 nodes, 20 flows

1 0.5

0.4

0.3

0.2

0.1

0

DSR with DRD
DSR

DSR with DRD
DSR0.95

0.9

0.85

0.8

0.75

0.7
30 60 120 300 600 900 0 30 60 120 300 600 900

Pause Time (s) Pause Time (s)

(e) 150 nodes, 20 flows (Mean Speed of 10 m/s) (f) 150 nodes, 20 flows (Mean Speed of 10 m/s)

0.21

DSR with DRD
DSR with DRD

DSR
0.98 DSR

0.150.96

0.94

0.92

0.9

0.1

0.05

0

0.88

0.86

0 30 60 120 300 600 900 0 30 60 120 300 600 900

Pause Time (s) Pause Time (s)

(g) 200 nodes, 20 flows (Mean Speed of 5 m/s) (h) 200 nodes, 20 flows (Mean Speed of 5 m/s)

P
a
c
k

e
t

D
e
li

v
e
ry

 R
a
ti

o
P

a
c
k

e
t

D
e
li

v
e
ry

 R
a
ti

o
P

a
c
k

e
t

D
e
li

v
e
ry

 R
a
ti

o
P

a
c
k

e
t

D
e
li

v
e
ry

 R
a
ti

o

P
ac

k
et

 D
el

iv
er

y
 L

at
en

cy
 (

s)
P

ac
k

et
 D

el
iv

er
y

 L
at

en
cy

 (
s)

P
ac

k
et

 D
el

iv
er

y
 L

at
en

cy
 (

s)
P

ac
k

et
 D

el
iv

er
y

 L
at

en
cy

 (
s)

Fig. 5 Packet Delivery Ratio and Packet Delivery Latency

Wireless Networks

3500

3000

2500

2000

1500

1000

500

5000

4000

3000

2000

1000

0

DSR with DRD
DSR

DSR with DRD
DSR

0
5 10 15 20 5 10 15 20

Mean Speed (m/s) Mean Speed (m/s)
(a) 50 nodes, 20 flows (b) 50 nodes, 20 flows

20000

15000

10000

5000

0

30000

25000

20000

15000

10000

5000

0

DSR with DRD
DSRDSR with DRD

DSR

5 10 15 20 5 10 15 20
Mean Speed (m/s) Mean Speed (m/s)

(c) 100 nodes, 20 flows (d) 100 nodes, 20 flows
35000

30000

25000

20000

15000

10000

5000

0

40000

35000

30000

25000

20000

15000

10000

5000

DSR with DRD
DSR

DSR with DRD
DSR

0
0 30 60 120 300 600 900 0 30 60 120 300 600 900

Pause Time (s) Pause Time (s)
(e) 150 nodes, 20 flows (Mean Speed of 10 m/s) (f) 150 nodes, 20 flows (Mean Speed of 10 m/s)

30000 30000
DSR with DRD

DSR
DSR with DRD

DSR25000

20000

15000

10000

5000

0

25000

20000

15000

10000

5000

0
0 30 60 120 300 600 900 0 30 60 120 300 600 900

Pause Time (s) Pause Time (s)
(g) 200 nodes, 20 flows (Mean Speed of 5 m/s) (h) 200 nodes, 20 flows (Mean Speed of 5 m/s)

Ro
ut

e
D

isc
ov

er
y

O
ve

rh
ea

d
(K

By
te

s)
Ro

ut
e

D
isc

ov
er

y
O

ve
rh

ea
d

(K
By

te
s)

Ro
ut

e
D

isc
ov

er
y

O
ve

rh
ea

d
(K

By
te

s)
Ro

ut
e

D
isc

ov
er

y
O

ve
rh

ea
d

(K
By

te
s)

Ro
ut

in
g

O
ve

rh
ea

d
(K

By
te

s)
Ro

ut
in

g
O

ve
rh

ea
d

(K
By

te
s)

Ro
ut

in
g

O
ve

rh
ea

d
(K

By
te

s)
Ro

ut
in

g
O

ve
rh

ea
d

(K
By

te
s)

Fig. 6 Route Discovery Overhead and Routing Overhead

 Wireless Networks

1000

800

600

400

200

0

2000

1500

1000

500

0
5 10 15 20 5 10 15 20

Mean Speed (m/s)

(a) 50 nodes, 20 flows

Mean Speed (m/s)

(b) 50 nodes, 20 flows

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

12000

10000

8000

6000

4000

2000

0

DSR with DRD
DSR

DSR with DRD
DSR

5 10 15 20 5 10 15 20

Mean Speed (m/s) Mean Speed (m/s)

(c) 100 nodes, 20 flows (d) 100 nodes, 20 flows

12000

10000

8000

6000

4000

2000

0

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

DSR with DRD
DSR

DSR with DRD
DSR

0 30 60 120 300 600 900 0 30 60 120 300 600 900

Pause Time (s) Pause Time (s)

(e) 150 nodes, 20 flows (Mean Speed of 10 m/s) (f) 150 nodes, 20 flows (Mean Speed of 10 m/s)

16000 DSR with DRD
DSR

12000 DSR with DRD
DSR

14000

12000

10000

8000

6000

4000

2000

0

10000

8000

6000

4000

2000

0
0 30 60 120 300 600 900 0 30 60 120 300 600 900

Pause Time (s) Pause Time (s)

(g) 200 nodes, 20 flows (Mean Speed of 5 m/s) (h) 200 nodes, 20 flows (Mean Speed of 5 m/s)

T
o

ta
l

S
iz

e
 o

f
R

o
u

te
 R

e
q

u
e
st

s
(K

b
y

te
s)

T
o

ta
l

S
iz

e
 o

f
R

o
u

te
 R

e
q

u
e
st

s
(K

b
y

te
s)

T
o

ta
l

S
iz

e
 o

f
R

o
u

te
 R

e
q

u
e
st

s
(K

b
y

te
s)

T
o

ta
l

S
iz

e
 o

f
R

o
u

te
 R

e
q

u
e
st

s
(K

b
y

te
s)

T
o

ta
l

S
iz

e
 o

f
R

o
u

te
 R

e
p

li
e
s

(K
b

y
te

s)
T

o
ta

l
S

iz
e
 o

f
R

o
u

te
 R

e
p

li
e
s

(K
b

y
te

s)
T

o
ta

l
S

iz
e
 o

f
R

o
u

te
 R

e
p

li
e
s

(K
b

y
te

s)
T

o
ta

l
S

iz
e
 o

f
R

o
u

te
 R

e
p

li
e
s

(K
b

y
te

s)

Fig. 7 Total Size of Route Requests and Route Replies

Wireless Networks

3000

2500

2000

1500

1000

500

100

80

60

40

20

0

DSR with DRD
DSR

DSR with DRD
DSR

0
5 10 15 20 5 10 15 20

Mean Speed (m/s) Mean Speed (m/s)
(a) 50 nodes, 20 flows (b) 50 nodes, 20 flows

6000

5000

4000

3000

2000

1000

0

DSR with DRD
DSR

100

80

60

40

20

0

DSR with DRD
DSR

5 10 15 20 5 10 15 20
Mean Speed (m/s) Mean Speed (m/s)

(c) 100 nodes, 20 flows (d) 100 nodes, 20 flows

4000

3500

3000

2500

2000

1500

1000

120

100

80

60

40

20

0

DSR with DRD
DSR

500 DSR with DRD
DSR

0
0 30 60 120 300 600 900 0 30 60 120 300 600 900

Pause Time (s) Pause Time (s)
(e) 150 nodes, 20 flows (Mean Speed of 10 m/s) (f) 150 nodes, 20 flows (Mean Speed of 10 m/s)

1202500

100

80

60

40

20

0

2000

1500

1000

500

0

DSR with DRD
DSR

DSR with DRD
DSR

0 30 60 120 300 600 900 0 30 60 120 300 600 900
Pause Time (s) Pause Time (s)

(g) 200 nodes, 20 flows (Mean Speed of 5 m/s) (h) 200 nodes, 20 flows (Mean Speed of 5 m/s)

N
um

be
ro

fR
ou

te
Re

qu
es

ts
Se

nt
N

um
be

ro
fR

ou
te

Re
qu

es
ts

Se
nt

N
um

be
ro

fR
ou

te
Re

qu
es

tS
en

t
N

um
be

ro
fR

ou
te

Re
qu

es
tS

en
t

A
ve

ra
ge

D
at

a
Pa

ck
et

Si
ze

(B
yt

es
)

A
ve

ra
ge

D
at

a
Pa

ck
et

Si
ze

(B
yt

es
)

A
ve

ra
ge

D
at

a
Pa

ck
et

Si
ze

(B
yt

es
)

A
ve

ra
ge

D
at

a
Pa

ck
et

Si
ze

(B
yt

es
)

Fig. 8 The Number of Route Requests Sent and Average Data Packet Size

 Wireless Networks

DSR with DRD
DSR

5 10 15 20
Mean Speed (m/s)

(a) 50 nodes, 20 flows

DSR with DRD
DSR

5 10 15 20
Mean Speed (m/s)

(c) 100 nodes, 20 flows

DSR with DRD
DSR

0 30 60 120 300 600 900
Pause Time (s)

(e) 150 nodes, 20 flows (Mean Speed of 10 m/s)

DSR with DRD
DSR

0 30 60 120 300 600 900
Pause Time (s)

(g) 200 nodes, 20 flows (Mean Speed of 5 m/s)

DSR with DRD
DSR

5 10 15 20
Mean Speed (m/s)

(b) 50 nodes, 20 flows

DSR with DRD
DSR

5 10 15 20
Mean Speed (m/s)

(d) 100 nodes, 20 flows

DSR with DRD
DSR

0 30 60 120 300 600 900
Pause Time (s)

(f) 150 nodes, 20 flows (Mean Speed of 10 m/s)

100000

80000

60000

40000

20000

0
0 30 60 120 300 600 900

Pause Time (s)
(h) 200 nodes, 20 flows (Mean Speed of 5 m/s)

N
um

be
ro

fR
ou

te
Er

ro
rs

Se
nt

an
d

Fo
rw

ar
de

d
N

um
be

ro
fR

ou
te

Er
ro

rs
Se

nt
an

d
Fo

rw
ar

de
d

N
um

be
ro

fR
ou

te
Er

ro
rs

Se
nt

an
d

Fo
rw

ar
de

d
N

um
be

ro
fR

ou
te

Er
ro

rs
Se

nt
an

d
Fo

rw
ar

de
d

Pa
ck

et
O

ve
rh

ea
d

Pa
ck

et
O

ve
rh

ea
d

Pa
ck

et
O

ve
rh

ea
d

Pa
ck

et
O

ve
rh

ea
d

350000

300000

250000

200000

150000

100000

50000

0

350000

300000

250000

200000

150000

100000

50000

0

140000

120000

100000

80000

60000

40000

20000

0

160000

140000

120000

100000

80000

60000

40000

20000

0

35000

30000

25000

20000

15000

10000

5000

0

70000

60000

50000

40000

30000

20000

10000

0

250000

200000

300000

150000

100000

120000

50000

0

DSR with DRD
DSR

Fig. 9 Packet Overhead and the Number of Route Errors Sent and Forwarded

Wireless Networks

7.5 Packet overhead and route errors generated

Figure 9 shows packet overhead and the number of ROUTE
ERRORS sent and forwarded. As shown in Fig. 9(c), DRD
reduces packet overhead by 17% at node mean speed of
20 m/s. The reduction increases as mobility increases
because more link failures occur and source nodes need
to find routes more often. As shown in Fig. 9(e) and (g),
DRD reduces packet overhead by up to 8% and 15% for
the 150-node and 200-node networks at pause time of 30 s,
respectively. As shown in Fig. 9(d) and (h), DRD reduces
the number of ROUTE ERRORS by up to 14% and 15% for
the 100-node and 200-node networks at node mean speed of
20 m/s and pause time of 30 s, respectively. When a source
starts a route discovery, it will piggyback the last broken
link information to the ROUTE REQUEST, and thus such
ROUTE REQUESTS are counted as ROUTE ERRORS.

7.6 The scalability of DRD as network load increases

Figure 10 shows the performance of the algorithm as network
load increases. The maximum load is 40 CBR flows. DRD
improves packet delivery ratio by 22% and reduces packet
delivery latency by 46% compared with DSR. It reduces both
route discovery overhead and routing overhead by 72%. As
network load increases, more routes break because of seri-
ous wireless interference and packet collisions. A link breaks
if the sending node does not receive an acknowledgement
from the next hop after the maximum number of retransmis-
sions, which is seven for IEEE 802.11. Thus, DSR initiates
more network-wide route searches for high load scenarios.
For DRD, routing overhead increases slowly as network load
increases, which indicates that it is robust to network load.

We believe this result is significant and helps us under-
stand the operation of the algorithm better. The average data
packet size is 104.5, 104.4, 103.4, and 101 bytes for DSR,
and is 87.5 bytes for DRD as network load increases. The
smaller packet size of DRD shows that DRD finds shorter
routes even under high load. However, for both DSR and
DRD, packet delivery ratio and packet delivery latency are
unfavorable for the 40-flow scenarios because of a large
amount of wireless interference and packet losses.

8 Conclusions

In this paper, we presented an algorithm called DRD (Directed
Route Discovery) that exploits data transmission for route dis-
coveries. When a source has only one route to a destination,
it sets a boolean variable in a data packet to be true, which
indicates that it needs routes to the destination. This variable
is a new form of ROUTE REQUEST. The nodes forwarding
the data packet send ROUTE REPLIES to the source using

cached routes. To prevent nodes from sending duplicate routes,
we define a forward list and a backward list to record route
diverging and converging information about the cached route
in a ROUTE REPLY. Subsequent nodes use this information to
decide whether to send a ROUTE REPLY to the source node.
The route contained in a ROUTE REPLY is shorter than or
has the same length as the active data path from the source to
the destination. Thus, our algorithm reduces packet delivery
latency and the total size of ROUTE REPLIES.

We show that the algorithm significantly improves packet
delivery ratio and reduces packet delivery latency. For exam-
ple, it improves packet delivery ratio by 15% and reduces
latency by 54% for the 100-node networks at node mean
speed of 20 m/s. Packet delivery latency consists of route
discovery latency and end-to-end delivery latency, which
is determined by hop count or route length. The algorithm
reduces route discovery latency because it finds routes before
the last route breaks, and discovers routes shorter than the
active data path. It also significantly reduces network-wide
route searches and the total size of ROUTE REQUESTS
and ROUTE REPLIES. For the 100-node networks, DRD
reduces route searches by 17%. For the 150-node and 200-
node networks, DRD reduces route searches by 12% and
17%, respectively. For the 100-node networks, DRD reduces
the size of ROUTE REQUESTS by 90% and the size of
ROUTE REPLIES by 74%. Note that route discovery over-
head is the total size of ROUTE REQUESTS and ROUTE
REPLIES. Finally, routing overhead increases slowly as
mobility or network load increases. DRD achieves between
52 and 78% reduction in routing overhead for the 50-node,
100-node, 150-node and 200-node networks. This particular
result demonstrates that it is independent of mobility.

The type of networks we study is mobile ad hoc net-
works where nodes move randomly and topology changes
are unpredictable. Most previous studies used a maximum
node speed of 20 m/s (average speed of 10 m/s) in simula-
tions. In contrast, we used mean node speed ranging between
5 and 20 m/s, which is 44.74 miles per hour and the nor-
mal driving speed in highways. Therefore, our algorithm
works in highly mobile scenarios. Examples of such net-
works include battlefields and networks containing vehicles
or spacecrafts, such as vehicular ad hoc networks and space
networks. DRD reduces the average distance traversed by
ROUTE REQUESTS and ROUTE REPLIES, and routing
packets are localized between the source and the destination.
Thus, it significantly reduces transmissions and the interfer-
ence to nearby nodes; improving network throughput under
high mobility is hard because mobility causes frequent route
failures. The key feature of the algorithm is that it tracks the
latest location of the destination when it moves through an
active data connection. This work applies to larger mobile ad
hoc networks with more than 200 nodes and sensor networks
where flooding is commonly used for downward traffic to

 Wireless Networks

monitored areas with RPL for LLNs (Low-power and Lossy
Networks).

This work also contributes to the understanding of the
scalability of DSR, or on-demand routing protocols. We
solve the route discovery problem of DSR by reducing the
number of network-wide searches and the total size of route
discovery packets. Our algorithm reduces route discovery
overhead significantly under high mobility and network load.
The results for high load are shown in Fig. 10. Thus, we
solve the traditional broadcast storm problem, because the
algorithm reduces broadcastings by finding routes nearby
the active data path. We believe that broadcasting is still
required and cannot be avoided completely. One future
direction is to study how DRD performs in sensor networks
and how much energy it can save for battery-powered small
devices. It was well-known that transmissions consume more
energy than computations in the early 90 s. We conclude that
it is important to reduce the total number of route searches
in order to reduce transmissions and wireless interference.

Acknowledgements The author would like to thank the anonymous
reviewers for their careful and detailed comments, which help improve
the presentation of this paper.

References

 1. Ni, S., Tseng, Y., Chen, Y., & Sheu, J. (1999). The broadcast storm
problem in a mobile ad hoc network. In Proceedings of ACM
MobiCom.

 2. Broch, J., Maltz, D., Johnson, D., Hu, Y.-C., & Jetcheva, J. (1998).
A performance comparison of multi-hop wireless ad hoc network
routing protocols. In Proceedings of ACM MobiCom (pp. 85–97).

 3. Ko, Y.-B., & Vaidya, N. (2000). Location-aided routing (LAR) in
mobile ad hoc networks. Wireless Networks, 6

 4. Castaneda, R., & Das, S. (1999). Query localization techniques for
on-demand routing protocols in ad hoc networks. In Proceedings
of ACM MobiCom (pp. 186–194).

 5. Haas, Z., Halpern, J., & Li, L. (2002). Gossip-based ad hoc rout-
ing. In Proceedings of IEEE INFOCOM.

 6. Ferriere, H., Grossglauser, M., & Vetterli, M. (2003). Age mat-
ters: Efficient route discovery in mobile ad hoc networks using
encounter ages. In Proceedings of ACMMobiHoc (pp. 257–266).

 7. Beraldi, R. (2008). The polarized gossip protocol for path discov-
ery in MANETs. Ad Hoc Networks, 6(1), 79–91.

 8. Johnson, D., Maltz, D., & Hu, Y.-C. (2004). The dynamic source
routing for mobile ad hoc networks, IETF Internet Draft.

 9. Li, J.-Y., Blake, C., Couto, D., Lee, H., & Morris, R. (2001). Capac-
ity of ad hoc wireless networks. In Proceedings of ACM MobiCom.

 10. Grimmett, G. (1989). Percolation. Springer-Verlag.
 11. Hui, P., Crowcroft, J., & Yoneki, E. (2011). Bubble rap: social

based forwarding in delay-tolerant networks. IEEE Transactions
on Mobile Computing, 10, 1576–1589.

DSR with DRD
DSR

10 20 30 40

Number of Data Flows

(a) Packet Delivery Ratio

DSR with DRD

10 20 30 40

Number of Data Flows

(c) Route Discovery Overhead

DSR with DRD
DSR

10 20 30 40

Number of Data Flows

(b) Packet Delivery Latency

DSR with DRD

10 20 30 40

Number of Data Flows

(d) Routing Overhead

R
o

u
te

D
is

co
v

er
y

O
v

er
h

ea
d

 (
K

B
y

te
s)

P
ac

k
et

D
el

iv
er

y
R

at
io

B
y

te
O

v
er

h
ea

d
 (

K
B

y
te

s)

P
ac

k
et

D
el

iv
er

y
L

at
en

cy
(s

)

1.4

1.2

1

0.8

0.6

0.4

0.2

0

20000
25000

2000015000

10000

15000

10000

5000
5000

0.8

0.6

0.4

0.2

0

0 0

1

DSR DSR

Fig. 10 Under Dynamic Network Load (100 nodes, Mean Speed of 10 m/s, Pause Time 0 s)

Wireless Networks

 12. Fall, K. (2003). A delay-tolerant network architecture for chal-
lenged Internets. In Proceedings of ACM SIGCOMM.

 13. Lee, J. W., Kusy, B., Shihada, B., Azim, T., & Levis, P. (2010).
Whirlpool routing for mobility. In Proceedings of ACM Inter-
national Symposium on Mobile Ad Hoc Networking and
Computing(MobiHoc).

 14. Ladas, A., Pavlatos, N., Weerasinghe, N., & Politis, C. (2016).
Multipath routing approach to enhance resiliency and scalability
in ad-hoc networks. In Proceedings of IEEE International Confer-
ence on Communications (ICC).

 15. Ramrekha, A., & Politis, C. (2010). A hybrid adaptive routing
protocol for extreme emergency ad hoc communication. In Pro-
ceedings of 19th International Conference on Computer Com-
munications and Networks(ICCCN).

 16. Tsirigos, A., & Haas, Z. (2001). Multipath routing in the pres-
ence of frequent topological changes. In IEEE Communication
Magazine (pp. 132–138).

 17. Nasipuri, A., Castaneda, R., & Das, S. (2001). Performance of
multipath routing for on-demand protocols in mobile ad hoc net-
works. In Mobile Networks and Applications (pp. 339–349).

 18. Jacquet, P., Muhlethaler, P., Clausen, T., Laouiti, A., Qayyum, A.,
& Viennot, L. (2001). Optimized link state routing protocol for ad
hoc networks. In: Proceedings of IEEE International Multi Topic
Conference (INMIC), Technology for the 21st Century (pp. 62–68).

 19. Perkins, C. E., & Royer, E. M. (1999). Ad hoc on-demand distance
vector routing. In Proceedings of IEEE Workshop on Mobile Com-
puting System and Applications (WMCSA) (pp. 90–100).

 20. De Couto, D., Aguayo, D., Bicket, J., & Morris, R. (2003). A
high-throughput path metric for multi-hop wireless routing. In
Proceedings of ACM MobiCom (pp. 134–146).

 21. Tang, L., Sun, Y. J., Gurewitz, O., & Johnson, D. B. (2012). Opti-
mizations for route discovery in asynchronous duty-cycling wire-
less networks. In Proceedings of IEEE International Conference
on Mobile Ad-Hoc and Sensor Systems (MASS).

 22. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis,
P., Pister, K., Struik, R., Vasseur, J. P., & Alexander, R. (2012).
RPL: IPv6 routing protocol for low-power and lossy networks. In
RFC6550, IETF.

 23. Istomin, T., Iova, O., Picco, G., & Kiraly, C. (2020). Route or
flood? reliable and efficient support for downward traffic in RPL.
IEEE Transactions on Sensor Networks, 16(1), 1–41.

 24. Zakarya, M., Khan, A. A., Qazani, M., Ali, H., A.-Bahri, M.,
Khan, A., Ali, A., & Khan, R. (2024). Sustainable computing
across datacenters: A review of enabling models and techniques.
Elsevier Computer Science Review.

 25. Araniti, G., Bezirgiannidis, N., Birrane, E., Bisio, I., Burleigh, S.,
Caini, C., Feldmann, M., Marchese, M., Segui, J., & Suzuki, K.
(2015). Contact graph routing in DTN space networks: overview,
enhancements and performance. IEEE Communications Maga-
zine, 53(3), 38–46.

 26. Madoery, P., Raverta, F., Fraire, J., & Finochietto, J. (2018).
Routing in space delay tolerant networks under uncertain con-
tact plans. In Proceedings of IEEE International Conference on
Communications(ICC).

 27. Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott,
K., Fall, K., & Weiss, H. (2007). Delay-tolerant networking archi-
tecture. In IETF RFC 4838, Informational.

 28. Wyatt, J., Burleigh, S., Jones, R., Torgerson, L., & Wissler, S.
(2009). Disruption tolerant networking flight validation experi-
ment on NASA’s EPOXI mission. In Proceedings of IEEE First
International Conference on Advances in Satellite and Space
Communications.

 29. Madoery, P., Fraire, J., Raverta, F., Finochietto, J., & Burleigh, S.
(2018). Managing routing scalability in space DTNs. In Proceed-
ings of IEEE International Conference on Wireless for Space and
Extreme Environments (WiSEE).

 30. Ko, Y.-B., & Vaidya, N. (1998). Location-aided routing (LAR) in
mobile ad hoc networks. In Proceedings of ACM MobiCom (pp.
66–75).

 31. Hui, P., Crowcroft, J., & Yoneki, E. (2008). Bubble rap: social
based forwarding in delay tolerant networks. In Proceedings of
ACM International Symposium on Mobile Ad Hoc Networking
and Computing(MobiHoc).

 32. Hu, Y.-C., & Johnson, D. (2000). Caching strategies in on-demand
routing protocols for wireless ad hoc networks. In Proceedings of
ACM MobiCom (pp. 231–242).

 33. Yu, X., & Kedem, Z. (2005). A distributed adaptive cache update
algorithm for the dynamic source routing protocol. In Proceedings
of IEEE INFOCOM.

 34. Yu, X. (2005). Mobility, route caching and TCP performance in
mobile ad hoc networks. Ph.D. thesis, New York University.

 35. Sengul, C., & Kravets, R. (2006). Bypass routing: an on-demand
local recovery protocol for ad hoc networks. Ad Hoc Networks,
4(3), 380–397.

 36. Lee, S.-J., & Gerla, M. (2000). AODV-BR: backup routing in ad
hoc networks. In Proceedings of IEEE WCNC.

 37. Marina, M., & Das, S. (2001). On-demand multipath distance
vector routing in ad hoc networks. In Proceedings of IEEE ICNP.

 38. Yoon, J., Liu, M., & Noble, B. (2006). A general framework to
construct stationary mobility models for the simulation of mobile
networks. IEEE Transactions on Mobile Computing, 5(7).

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Xin Yu received her B.E. degree
in electrical engineering from
the Shandong Polytechnic Uni-
versity (It became a part of Shan-
dong University in July 2000),
China, in July 1995, and her
M.E. degree in computer engi-
neering from Institute of Auto-
mation, Chinese Academy of
Sciences, Beijing, in July 1998.
She joined New York University
in August 2000 and received her
M.S. and Ph.D. degrees in com-
puter science in September 2002
and May 2005, respectively. She
was a postdoctoral researcher at

Thomson Corporate Research (Technicolor), Princeton, New Jersey
from 2005 to 2006 working on wireless mesh networks and IEEE
802.11s related routing proposals. She was an associate at Blackrock,
New York city from 2007 to 2009 working on asset management. She
worked at Cisco Systems, Milpitas, California from 2011 to 2014 on
Video Surveillance Systems in Physical Security Business Unit
(PSBU), WAN optimizations (Encrypted-MAPI protocols), and Cloud
Service Router in the Service Routing Task Group (SRTG), collaborat-
ing with colleagues from Networks and Operating Systems Task Group
(NOSTG) on onePK. She is currently working at Sen Pu Software
Corporation, Jinan, China. Her research interests include mobile ad hoc
networks, sensor networks, and wireless mesh networks, mainly focus-
ing on routing issues.

	Exploiting data transmission for route discoveries in mobile ad hoc networks
	Abstract
	1 Introduction
	2 Related work
	3 overview of DSR
	4 Directed route discovery
	4.1 Motivations and concepts
	4.2 Overview
	4.3 Examples
	4.4 Algorithm description
	4.5 Data flow diagram
	4.6 Discussions

	5 Comparison with the SLR protocol
	6 Simulation methodology
	7 Simulation results
	7.1 Packet delivery ratio
	7.2 Packet delivery latency
	7.3 Route discovery overhead and routing overhead
	7.4 Route requests sent and average data packet size
	7.5 Packet overhead and route errors generated
	7.6 The scalability of DRD as network load increases

	8 Conclusions
	Acknowledgements
	References

