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Abstract
Unmanned aerial vehicles (UAVs), with their flexible mobility, are widely used in wireless communication systems to

provide high-quality auxiliary computing offloading services, especially when the original communication infrastructure is

not available. Although many researches nowadays are studying the computing offloading problem of UAVs, service

caching is also an important topic that should be considered in the UAV computing offloading process. The service caching

serves as a database or library on which tasks pre-deployed on UAVs depend, and the computing offloading of tasks is

limited by the deployment of the service caching. A single UAV has insufficient storage resources to deploy all types of

service caching resources. To address the above issues, we propose a cooperative offloading strategy considering service

caching based on Proximal Policy Optimization (PPO) named PPO-CO. First, we construct a system model and develop the

collaborative offloading policy. The user’s task can be accomplished either through collaborative offloading between

UAVs or obtaining the required service caching resources through the remote service caching base station (RBS). Then, we

format the policy as a complex nonlinear mixed integer programming optimization problem whose objective is to decrease

the task execution delay and UAV energy consumption. Due to the challenge of solving the above problem, we solve it by

PPO, a reinforcement learning (RL) algorithm. Finally, to verify the effectiveness of the PPO-CO, we compare it with the

PPO-based offloading strategy without collaboration (PPO-NO), Asynchronous Advantage Actor-Critic (A3C) and Deep Q

Network (DQN) based offloading strategy, and the random offloading policy in different number of user and UAV, task

sizes, and service caching deployment ratios.
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1 Introduction

With the development of the Internet of Things (IoT) and

mobile communication technologies such as 5 G and 6 G,

users are demanding higher requirements for low latency,

wide coverage, and mobility. As flexible mobile devices,

unmanned aerial vehicles (UAVs) deployed with servers

can provide ground terminals with a variety of functions

such as relay communication, computational task offload-

ing, and the distribution of service caching. As UAVs

usually provide Line-of-Sight (LoS) channel links and can

obtain better communication rates in relatively complex

ground environments [1], UAVs will play a significant role

in airborne wireless access in the future layout of a com-

prehensive communication for land, sea and air integration

[2]. Many scenarios now require collaboration between

multiple UAVs to accomplish UAV-assisted computing

and communication. For example, if the original commu-

nication base station is damaged after the disaster, UAVs

can provide emergency communication and computing

services for rescue personnel and equipment [3].

UAVs are widely used in the computing offloading

domain due to their mobility and computational capabili-

ties [4]. However, as resource-constrained device, UAV is

deficient in battery capacity, storage, and computing
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resources. Several scholars [5–8] have studied the

offloading problem of UAVs to face the resource-con-

strained problem. The work [5] considers a single UAV

aiding a single base station for wireless communication in a

multi-access edge system and formulates it as a constrained

optimization problem. In [6], a multi-hop task offloading

scheme is proposed to achieve a more robust multi-UAV

edge computing network. In the literature [7], the authors

consider providing the computing services for ground

vehicles on highways. Due to the mobility of vehicles,

multi-UAVs are utilized to achieve adequate communica-

tion coverage. While the multi-UAV communication net-

work in [7] may be a feasible solution to serve the ground

devices, it fails to exploit the computational power of

UAVs. Based on this, a UAV-supported offloading plat-

form is considered in [8] that provides random movement

and task arrival for multiple mobile ground users, and

minimizes the average weighted energy consumption of all

users subject to average UAV energy consumption and data

queue stability constraints.

The above UAV-assisted offloading problem can be

summarized as a non-convex optimization problem. The

trajectory planning, offloading, and caching decisions of

UAVs affect each other with specific coupling relation-

ships, which are difficult to solve directly. Deep rein-

forcement learning (DRL) has been well exploited as a

promising approach in UAV-assisted computing offload-

ing. Several studies [9–11] have been practiced with DRL

in UAV-assisted offloading scenarios. The optimization

problem of the UAV-assisted framework proposed in [10]

aims to optimize the geographical fairness among all

UAVs, the fairness of each UAV load, and the overall

energy consumption of the UAVs jointly. A low-com-

plexity approach is introduced to optimize the offloading

decision of UAVs for their trajectories by multi-agent

reinforcement learning (MRL). A collaborative computa-

tional offloading and resource allocation scheme based on

model-free DRL networks is proposed in [11], allowing

continuous action space control. The scheme divides the

UAV into multiple UAV clusters and runs an intelligent

agent in each UAV cluster. It uses the Deep Deterministic

Policy Gradient (DDPG), a DRL method, to train each

intelligent agent.

Although computing offloading plays an important role

in the system of UAV, service caching cannot be neglected.

Unlike content caching, which is a static resource, service

caching is also influenced by the computing capacity of the

platform [12]. It affects task-offloading decisions. Service

caching is the content on which the execution of specific

computing tasks depends, which needs to be prearranged in

the server. Several literature [2, 13–18] has investigated in

terms of service caching and content caching.

In [13, 14], the authors provide optimization from the

content placement perspective to improve the system’s

operational efficiency. The work [13] proposed a cooper-

ative edge caching scheme to jointly optimize content

placement and delivery and the literature [14] minimizes

the average task execution time in multi-access edge

computing by considering the heterogeneity of task

requests, pre-storage of application data, and collaboration

of base stations. In [15, 16], the authors consider the user’s

preference perspective to optimize the system efficiency.

The work [15] takes as an entry point the events in a

specific region of interest to the user and the latest data

flow in that region. In contrast, the literature [16] starts

with the caching problem under demand uncertainty and

constructs an optimization strategy considering caching

and offloading. In [17], the authors extend to the service

caching problem in a multitasking scenario with joint task

offloading and resource allocation.

Some literature [2, 18] has been studied in the context of

UAV scenarios. In [2], a UAV-assisted wireless commu-

nication system using caching technology was designed to

achieve multi-user data transmission and establish a joint

optimization problem of UAV flight trajectory, cache

location, and transmission power to minimize the task

execution delay. In [18], the authors propose a method to

apply mobile edge caching on UAVs in wireless commu-

nication systems and consider it from three user-UAV

association criteria, namely the user received signal to

noise ratio (SNR), user preferences and the delay.

It is worth noting that although there are many studies

[5–8] on UAV-assisted offloading, they assume that the full

range of types of service caching resources are deployed in

a single UAV. Unfortunately, a UAV is not able to cover

all types of service caching resources due to its resource-

constrained nature. Since the service caching also depends

on the computational power of the device, the computa-

tional offloading decision is affected by the service cach-

ing. [12] Some existing studies [13–16, 18] on service

caching mainly focus on the service placement perspective

to improve the operational efficiency of the system, and

they do not consider the UAV offloading decision. Multi-

UAVs can cover a wider range of service caching resour-

ces, and we can utilize the collaborative offloading of

multi-UAVs to achieve efficient acquisition of caching

resources. In addition, UAVs as resource-constrained

devices, the energy consumption is directly related to the

service duration. In order to ensure the quality of service

(QoS) for users, the offloading decision should also con-

sider the delay of task execution. [19] Inspired by the

above two points, we propose the UAV cooperative

offloading strategy based on Proximal Policy Optimization

(PPO-CO) to improve the user ’s QoS and decrease the

energy consumption of UAVs.
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The main contributions of this article are presented as

follows.

• We construct an offloading model for dynamic collab-

oration of multiple UAVs considering service caching.

It includes user task issuance, user-UAV association,

UAV collaboration, and service caching. UAV trajec-

tory planning is considered in the system. Also, to

improve users’ QoS and reduce UAVs’ energy con-

sumption, the above problem is represented as an

optimization problem with the objectives of task

execution delay and UAV energy consumption. It is

formalized as a mixed integer programming problem.

• Considering the complexity and nonlinearity of the

proposed optimization problem, we transform it into a

Markov decision process (MDP). The state, action, and

reward during the system’s operation are defined using

the properties of MDP. PPO-CO, a DRL algorithm, is

proposed to solve the problem.

• To verify the effectiveness of PPO-CO, we compare it

with PPO-based UAV no-cooperative offloading stratey

(PPO-NO), random offloading strategy (Randomly),

Asynchronous Advantage Actor-Critic (A3C) and Deep

Q Network (DQN) based method. We compare them

under the different scales of UAVs and the number of

users, service caching deployment, and task scales.

The rest of the paper is structured as follows. Section 2

presents system models, which consists of offloading

model, communication model, delay model, and energy

model. Section 3 carries out the problem formalization. In

Sect. 4, we transform the problem into an MDP and solve

the problem by our proposed algorithm PPO-CO. Perfor-

mance evaluation and simulation results are discussed in

Sect. 5. Finally, we conclude the whole paper.

2 Model

2.1 System model

As shown in Fig. 1, we consider a system for UAV-

assisted computational offloading, and our system consists

of UAVs, mobile users on the ground, and remote service

caching base station (RBS). The set of UAVs and users are

represented by N ¼ f1; 2; . . .;Ng and M ¼ f1; 2; . . .;Mg
respectively. Each UAV is equipped with a small server for

offloading computational tasks. The UAVs also have a

certain amount of storage space for storing service caching

resources. The ground user randomly generates a compu-

tational task that depends on a specific service caching

type. When the ground base station fails due to natural

disasters, etc., the user’s computation task needs to be

transmitted to and executed by the UAV over a wireless

channel. The maximum computing power of the UAV can

be expressed as FUAV ¼ ff1; f2; :::; fNg. The bandwidth of

UAV can be denoted as B ¼ fB1;B2; :::;BNg.
There are S types of service caching, which is denoted as

s 2 S, 0� s� S. Ds denotes the size of the storage resource

occupied by service caching s [20]. Not all UAVs have

caching instances for each service due to data security and

privacy concerns, load balancing, and limited storage at

each base station [21]. The caching deployment in the

UAV n is represented by

SCn ¼ ½sc0n; :::; scsn; :::; scSn�
T ;

scsn 2 f0; 1g; 8n 2 N ; s 2 S:
ð1Þ

When the service caching s is deployed in the UAV n, it

can be expressed as scsn ¼ 1, otherwise scsn ¼ 0. A mobile

user generates a random task, which relies on a specific

service caching. Only the UAV deployed with the corre-

sponding service caching can execute the task. RBS is a

server with powerful storage resources deployed with all

service caching types. The location of RBS is deployed far

away from the UAVs and users, which causes high trans-

mission latency despite the good resource advantages of

RBS. In order to accomplish the offloading of user tasks,

we divided the offloading of user tasks into three parts: (1)

UAV trajectory planning and task decision making, (2) task

uploading, and (3) collaborative UAV offloading and task

execution. UAVs that do not deploy the specific service

caching required for task execution are not capable of

executing the task, and need to transfer the task to other

UAVs that have deployed the cache to execute it. The

content of the required service caching can also be obtained

through RBS.

2.2 Offloading model

An offloading process divides a period T into several small

time slots. In each time slot t 2 T ¼ f1; . . .; Tg, the user’s
position is assumed not to change. Assume that the length

of one slot is stotal. s is used for the trajectory planning and

offloading decision, and stotal � s is used for the offloading

and task computing.

Let Qt denote the task request information for user m at

time slot t, and it can be denoted as

Qt ¼ Ft; Ss;Dt;mh i; ð2Þ

where Ft represents the number of CPU cycles required for

computing the task, Ss denotes the type of service caching

that the task needs, Dt denotes the amount of data the user

needs to upload, and m is the user who generated the task.

To simplify the complexity of the model, we assume

that the user’s task is non-separable and the task can only
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be computed by the UAV. Only one user will generate one

task at the beginning of each time slot. The user m uploads

the generated task to the associated UAV. The association

variable between the UAV n and the user m can be

expressed as

a ¼ ½a1; :::; aN �T ; an 2 f0; 1g; 1� n�N; ð3Þ

where n represents the serial number of the UAV. When

an ¼ 1, it means that the task is uploaded to the UAV n.

The user’s task can only be uploaded to one UAV, so the

association variable should satisfy the constraint
PN

n¼1 an ¼ 1. Users may not directly connect to the UAV

which has deployed the service caching because the envi-

ronment, changing channel states and distance affect the

communication between UAVs and users. So after the task

has been sent to the associated UAV, the task collaboration

between the UAVs needs to be performed, and the col-

laboration variable between the UAVs is given by

b ¼ ½b1; :::; bN �T ; bn 2 f0; 1g; 1� n�N: ð4Þ

When bn ¼ 1, it means that the cooperative UAV is UAV

n. Also, we assume that only one cooperative UAV can be

selected to cooperate with the association UAV, so it sat-

isfies
PN

n¼1 bn ¼ 1.

The offloading policy is determined based on a, b, and

SC. To facilitate the representation of the offloading pro-

cess, we assume that the user m generates the task witch

relies on the service caching s, the associated UAV is n,

and the cooperative UAV is n1. When the variables satisfy

the conditions of P-1, the P-1 offloading decision is

selected. When P-1 is not satisfied, but the condition of P-2

is satisfied, P-2 is selected. Otherwise, P-3 is executed. The

detail of each offloading policy is as follows.

• P-1 (an ¼ 1; scsn ¼ 1): The user task is offloaded to the

associated UAV n with the service caching. The UAV

can execute the user’s task directly because it has

deployed the service caching resources required for task

completion.

• P-2 (an ¼ 1; scsn ¼ 0; bn1 ¼ 1; scsn1 ¼ 1): The user off-

loads the task to the associated UAV n and UAV n relay

it to the specified cooperative UAV n1 through inter-

UAV collaboration which executed the task indeed. The

associated UAV does not have the service caching data

required to perform the task. It needs to collaborate to

forward the task information to the cooperative UAV

and have it done.

• P-3 (an ¼ 1; scsn ¼ 0; bn1 ¼ 1; scsn1 ¼ 0): If neither the

associated UAV nor the collaborative UAV has the

service caching, the service caching is downloaded to

the associated UAV via the RBS.

2.3 Communication model

Based on the modeling of the flight of UAVs in [21–23],

and our proposed model, the following assumptions are

made in this paper.

We assume that the flight altitude of the UAV is kept

constant, the flight altitude of the UAV is H, and the

position of the n-th UAV at the beginning of time slot t is

Fig. 1 System model figure
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denoted as un½t� ¼ xn; yn;H½ �t. Xm½t� ¼ �xm; �ym; 0½ �t denotes
the position of user m. The RBS’s location is fixed and the

location of it is denoted as uRBS. The distance between the

user m and the UAV n can be given by

dn;m ¼ un½t� � Xm½t�
�
�

�
�
2
: ð5Þ

To prevent collision between UAVs, there exists a mini-

mum distance dmin between UAVs, and the minimum dis-

tance between UAVs is constrained to be

d2min� un½t� � uj½t�
�
�

�
�2; 8n; j 2 N ; j 6¼ n: ð6Þ

The flight speed of the UAV n during trajectory planning is

vn½t� ¼ ½vx½t�; vy½t��, and the final position of the UAV n is

denoted as

un½t þ 1� ¼ un½t� þ vn½t� � s: ð7Þ

We suppose that the UAV has a maximum flight speed of

Vmax. At the beginning of each time slot, the UAV n relies

on the velocity variable vn to get a new position for tra-

jectory planning.

Based on some previous studies [16, 24], we make

assumptions about how UAVs and users communicate and

do not specify a specific communication method. It is

assumed that the connection between the ground user and

the UAV is limited by factors such as the communication

coverage of the UAV and the presence of obstacle occlu-

sion during flight, which changes the communication state

used for communication with the UAV. Based on the work

[10], the indicator of the presence or absence of occlusion

between the ground user m and the UAV n, is expressed as

BLm ¼ ½bl1m; :::; blnm; :::; blNm�
T ; blnm 2 f0; 1g: ð8Þ

blnm ¼ 1 means there is an occlusion between user m and

UAV n, otherwise there is no occlusion.

2.3.1 User to UAV

Based on the channel gain and the distance between the

user and the UAV, as well as the signal-to-noise ratio

between the user and the UAV [25], the data transmission

rate for the data upload process between the user and the

UAV can be further calculated as

rn;m;t ¼ Blog2 1þ qPn

H2 þ d2n;m½t�

 !

;

8n 2 N ;m 2M; t 2 T ;

ð9Þ

where B represents the bandwidth, q is denoted as

q ¼ g0G0

r2þblnm�PNLOS
, G0 � 2:2846 [26], g0 denotes the power

gain of the channel at a reference distance of 1 m, r2

denotes the noise power, Pn means the transmitted power

of the user, and PNLOS denotes the signal loss in the pres-

ence of occlusion.

2.3.2 UAV to UAV

The communication between UAVs is the same as the

communication process between UAV and user, which also

needs to occupy a channel resource for data transmission.

The distance between UAV n1 and UAV n2 is expressed as

Rn1;n2
½t� ¼k un1 ½t� � un2

½t�k2; 8n1; n2 2 N ; n1 6¼ n2: ð10Þ

Based on the previous modeling of the communication

between the UAV and the user we can similarly obtain the

data rate of the UAV n1 and UAV n2 transmission as

rn1;n2;t ¼ Blog2 1þ q0Pn

H2 þ R2
n1;n2
½t�

 !

;

8n1; n2 2 N ; t 2 T ;

ð11Þ

where Pm is the magnitude of the data transmission power

between the UAVs, and q0 ¼ g0G0

r2 . Assume that there is no

occlusion between the UAVs.

2.3.3 UAV to RBS

The distance between the UAV n and RBS is expressed as

Rn;RBS½t� ¼k un½t� � uRBSk2; 8n 2 N ; ð12Þ

and the communication rate is expressed as

rn;RBS;t ¼ Blog2 1þ q0Pn

H2 þ R2
n;RBS½t�

 !

;

8n 2 N ; t 2 T :

ð13Þ

2.4 Delay model

For ease of expression, the following time delay is calcu-

lated assuming that user m generates a task in time slot t.

The associated UAV and the collaborating UAV can be

denoted as n and n1, respectively. The actual UAV per-

forming the task is n0 2 fn; n1g, as determined by the

deployment or non-deployment of the service caching

content in the UAV.

(1) Task transmission delay

The transmission delay used for the task generated by

user m and transmitted to the associated UAV n is

expressed as
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TTr
n;m;t ¼

Dt

rn;m;t
; 8n 2 N ;m 2M; t 2 T : ð14Þ

(2) Computing delay

The computing delay generated by UAV n0 is expressed as

TCom
n0;t ¼

Ft

f n0
; 8n0 2 N ; t 2 T : ð15Þ

Where f represents the computational speed of the UAV,

i.e. the CPU main frequency of the UAV.

(3) Task migration delay

When the actual UAV n0 performing the task is not the

associated UAV n, we need to migrate the task to the UAV

n1. The task migration delay can be expressed as

TTrU
n;n1;t
¼ Dt

rn;n1;t
; 8n; n1 2 N ; t 2 T : ð16Þ

(4) Caching transmission delay

When neither the UAV n nor n1 deploys the required

service caching, the service caching needs to be down-

loaded from the RBS to complete the user’s task execution.

Caching transmission delay can be denoted as

TTrS
n;RBS;t ¼

Ds

rn;RBS;t
; 8s 2 S; n 2 N ; t 2 T : ð17Þ

Since the data length of the result after the calculation is

relatively small, we assume that the delay in the result

return is negligible. Consequently, the total task execution

delay is expressed as

Tn;m;t ¼
TTr
n;m;t þ TCom

n0;t ; P-1

TTr
n;m;t þ TCom

n0;t þ TTrU
n;n1;t

; P-2

TTr
n;m;t þ TTrS

n;RBS;t þ TCom
n0;t ; P-3:

8
><

>:
ð18Þ

We assume that all tasks need to satisfy a maximum task

completion time limit Tmax, i.e. Tn;m;t � Tmax.

2.5 Energy model

(1) Task transmission energy

The energy consumption incurred by the user in the pro-

cess of establishing an association to the UAV and

uploading it is expressed as

ETr
n;m;t ¼ PnT

Tr
n;m;t; 8n 2 N ;m 2M; t 2 T ; ð19Þ

where Pn is the user’s transmission power.

(2) Computing energy

The computing energy generated by UAV n0 is expressed
as

ECom
n0;t ¼ kn f n0;t

� �vnTCom
n0;t ; 8n0 2 N ; t 2 T ; ð20Þ

where kn and vn are two positive parameters.

(3) Caching transmission energy

The caching energy generated by UAV n and RBS is

expressed as

ETrS
n;RBS;t ¼ PnT

TrS
n;RBS;t; 8n 2 N ; t 2 T ; ð21Þ

where Pn denotes the UAV’s transmission power.

(4) Task migration energy

Task migration energy generated by UAV n and UAV n1
can be expressed as

ETrU
n;n1;t
¼ PnT

TrU
n;n1;t

; 8n; n1 2 N ; t 2 T : ð22Þ

(5) UAV hovering and flying energy

Efly
0 is a fixed value and it denotes the hovering energy

consumption of the UAV. The energy consumption of the

UAV flighting and hovering can be calculated as

EFly
n;t ¼ Efly

0 þ kvn½t�k2 � s: ð23Þ

Let E
0

n;m;t ¼ ETr
n;m;t þ ECom

n0;t þ EFly
n;t . The total energy con-

sumption is expressed as

En;m;t¼
E
0

n;m;t P-1

E
0

n;m;t þ ETrU
n;n1;t

; P-2

E
0
n;m;t þ ETrS

n;RBS;t; P-3.

8
>><

>>:
ð24Þ

3 Problem formulation

The goal of the problem is to minimize the total task

execution latency to improve the user’ QoS. At the same

time, we need to ensure that the energy consumption of

UAVs is minimized because the energy of UAVs is pre-

cious. Given this, we set the objective of the problem as the

sum of energy consumption of the system and the total task

execution delay. The problem is denoted as P and

expressed as follows.

P : min
a;b;vn;n2N

XN

n¼1

XM

m¼1

XT

t¼1
ð0:5 � Tn;m;t þ 0:5 � En;m;tÞ ð25aÞ

s.t.

un½t þ 1� � un½t�k k2� Vmaxsð Þ2; 8n 2 N
ð25bÞ

½0; 0;H� � un½t� � ½W ; L;H�; 8n 2 N ð25cÞ
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d2min� un½t� � uj½t�
�
�

�
�2; 8n; j 2 N ; n 6¼ j ð25dÞ

XN

n¼1
an ¼ 1; 8n 2 N ; an 2 f0; 1g ð25eÞ

XN

n¼1
bn ¼ 1; 8n 2 N ; bn 2 f0; 1g ð25fÞ

Tn;m;t � Tmax: ð25gÞ

As can be seen, (25b)-(25d) are the UAV trajectory

planning constraints, and (25e)-(25f) ensure that only one

UAV can be selected as the association UAV and the

cooperation UAV, and (25g) is the maximum tolerance

delay constraint.

4 DRL-based solution

Since the P problem is a complex nonconvex problem, it is

a mixed-integer programming problem due to having both

integer and continuous variables. The problem is optimized

into two subproblems, which are P1: trajectory planning

subproblem and P2: task offloading subproblem.

The trajectory planning process and the task offloading

process are coupled in both subproblems. The location of

the UAV affects the user’s selection of the UAV target for

offloading and the selection of different UAV cooperation

strategies. Similarly, the current task offloading decision

affect the next step of UAV trajectory planning [2].

Therefore, these two subproblems cannot be solved inde-

pendently, and the complexity of the solution is high,

which is an NP-hard problem.

4.1 MDP

Our problem can be summarized as an MDP. MDP means

that the current decision is only related to the current state,

independent of the previous state, and the future action

decision also needs to consider only the changed environ-

ment state after the previous action step, independent of the

previous action taken. The UAV makes the action policy

selection based on the current environment state at each

time of path planning and associated user selection, inde-

pendent of the previous UAV operation [27]. Usually an

MDP contains three parts: state space, action space, and

reward function. The final action policy of MDP is selected

to maximize the accumulated reward.

4.2 State

In our system, the current state of the system before the

start of each time slot is represented as

St ¼ fU½t�; �X½t�;Q½t�;BL½t�; SC½t�g; ð26Þ

where U½t� ¼ ½u1½t�; :::; un½t�� represents the current position
of the UAV, and �X½t� ¼ ½ �X1½t�; :::; �Xm½t�� denotes the cur-

rent position of the user. Q½t�, BL½t�, SC½t� denote the

mission information generated by the ground user, the

current user-generated mission situation and whether the

user is obscured, and the deployment of the service caching

in the UAV, respectively.

4.3 Trajectory planning

Since the trajectory planning and computing offloading

decisions of UAVs are coupled, their solution process is

difficult. We consider the UAV trajectory planning and

computing offloading decision centrally and use DRL-

based method to solve it. In each time slot, s is used for

UAV trajectory planning and stotal � s is used for UAV

task offloading and execution. The position of the UAV at

the beginning of time slot t is U½t � 1�. The trajectory of the
UAV is controlled by the flight speed V ¼ ½v1; v2; :::; vN �.
The position of the UAV at the beginning of the time slot

and the flight speed of the UAV at time slot t are used to

obtain the position of the UAV after trajectory planning.

The new position of UAV n can be obtained by

un½t� ¼ un½t � 1� þ vn½t � 1� � s. Due to the use of DRL,

new V can be continuously obtained based on the current

state as time changes, thus obtaining a sequence of UAV

trajectories for different time slots.

4.4 Aciton

The action of an intelligent agent making a decision is

represented as

A ¼ fa; b;V ¼ ½v1; v2; :::; vN �g; ð27Þ

where V denotes the trajectory planning action of UAV, a

denotes the user issuing the task chooses an associated

UAV to issue the task data, and b denotes the collaborative

UAV selected during the completion of the task offloading.

The actual task executor is determined based on the

placement of the service caching in the associated UAV

and the collaborative UAV.

4.5 Reward funciton

The whole system is to reduce the delay and energy con-

sumption generated during the operation of the whole

system by developing a reasonable offloading strategy, so

the reward function must be set in such a way that it can

satisfy the optimization goal of the system. The learning

process of reinforcement learning is to obtain the maxi-

mized long-term reward, and the reward correlates the
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calculation of the reward function with the optimization

goal of the system, and the reward function is expressed as

Rt ¼ �
XN

n¼1

XM

m¼1
ð0:5 � Tn;m;t þ 0:5 � En;m;tÞ: ð28Þ

4.6 DRL and PPO-CO

Reinforcement learning relies on the MDP nature of the

event. We use DRL to complete the trajectory planning and

offloading decision. The control of flight and offloading is a

continuous action. In DRL algorithms, the commonly used

algorithms are DQN, DDPG, A3C, Soft Actor-Critic (SAC)

and other methods. Among them, DQN has only value

network, which can only perform discrete action control

and cannot be applied to continuous action space. DDPG

and other Actor-Critic (AC) network algorithms have two

kinds of networks, one is the action network and the other

is the value network. The action network is used to output

the action strategy, and the value network is used to

evaluate the goodness of the action and output the reward

value, and the goal of reinforcement learning is to optimize

the reward. The reward can be calculated as

�Rh ¼
X

m

RðmÞphðmÞ ¼ Em� phðmÞ½RðmÞ�; ð29Þ

where m represents a sampled trajectory with probability p.

The probability of occurrence of a particular trajectory m
can be calculated from h. Next, the total reward of m is

calculated. The total reward is weighted using the proba-

bility of occurrence of m and summed over all m, which is

the expected value.

In order to make the reward as big as possible, so the

gradient ascent can be used to maximize the desired

reward. It can be expressed as

r �Rh ¼
X

m

RðmÞrphðmÞ: ð30Þ

We use the following equation for the update of the policy

network:

h hþ gr �Rh; ð31Þ

where g denotes the learning rate. The full name of PPO is

Proximal Policy Optimization, and PPO is a simultaneous

policy algorithm that can be used for both discrete action

problems and continuous action problems. Although the

optimization objective of PPO involves importance sam-

pling, it only uses the data of the previous round of policy

h0. PPO objective function adds the constraint of Kullback–

Leibler (KL) scatter, the behavior policy h0 and the target

policy h are very close to each other, and the behavior

policy and the target policy of PPO can be considered as

the same policy, so PPO is a same-policy algorithm. Based

on Trust Policy Optimization (TRPO), PPO uses a regular

term as the trust region constraint, and the coefficients of

this regular term are set according to whether the trust

region constraint is observed or not, thus avoiding using the

pairwise method. Use the same policy distribution ratio as

TRPO, but instead of using the KL scatter constraint. It is

used as part of the optimization objective [28]. The

objective to be optimized by the PPO is denoted as

Jh
0

PPOðhÞ ¼ Jh
0
ðhÞ � bKL h; h0ð Þ ð32Þ

Jh
0
ðhÞ ¼ E st ;atð Þ� ph0

ph at j stð Þ
ph0 at j stð ÞA

h0 st; atð Þ
� �

: ð33Þ

Jh
k

PPOðhÞ �
X

st;atð Þ
min

ph at j stð Þ
phk at j stð ÞA

hk st; atð Þ;
�

clip
ph at j stð Þ
phk at j stð Þ ; 1� e; 1þ e

� �

Ahk st; atð Þ
�

:

ð34Þ

Algorithm 1 shows the update process of the strategy in

PPO algorithm, and Algorithm 2 shows the specific oper-

ation process of PPO-CO.

Traditional PPO algorithms do not consider the collab-

oration process between UAVs, we compare the PPO-CO

method with the PPO-NO method, which utilizes a rein-

forcement learning PPO method to obtain the UAV

offloading when there is no collaborative strategy between

UAVs. The advantage of PPO-CO over traditional methods

is that the collaboration process between UAVs is taken

into account, and the service caching resources of UAVs

can be more fully utilized, resulting in higher rewards.

Algorithm 1 PPO
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Algorithm 2 PPO-CO

5 Experimentation and performance
verification

In this section, simulation experiments are set up to verify

the effectiveness of PPO-CO. The structure of this section

is as follows. Firstly, the experimental environment, the

settings of the relevant parameters, and the setup of the

comparison experiment are introduced. Then, we analyse

the most available super parameter settings for the PPO-

CO experiment. Finally, we compare PPO-CO with other

algorithms in different scene settings, and verify the

effectiveness of the proposed method.

5.1 Experiment setting

In order to verify the validity of the experiments, this paper

refers to the environment setting parameters and commu-

nication parameters of some simulation experiments with

similar UAV offloading scenarios. The experiment

assumes the position movement of UAVs and users in a

two-dimensional space of 100 m � 100 m, the flight

altitude angle of UAVs is kept at 100 m [29], and the

coordinate position of the service caching base station is

denoted as uRBS = [400 m, 400 m, 100 m] [30, 31]. The

benchmark experiment was set up with three UAVs and

five randomly distributed movable users at different loca-

tions on the ground, with a maximum movement speed of

1 m/s for the ground users and a maximum flight speed of

50 m/s for the UAVs [29]. The size of user task is 1�1.5
Mbits and the size of service caching is 1-9 Mbits. The

number of service caching types is four and the percentage

of caching deployment of UAVs is from 25% to 100%. The

total time of system operation T=400 s, the time of one

time slot is stotal ¼ 10 s [32], and the time used for UAV

flight trajectory planning is s ¼ 2 s. The transmission

bandwidth is set to 1 MHz [33], the noise power of the

receiver is expressed as r2 ¼ �100 dbm with no obstruc-

tion by the UAV, the power gain of the channel at a ref-

erence distance of 1 m is expressed as g0 ¼ �50 dB [6],

the transmission power of the user is 0.1 W [32], and the

transmission power between UAVs is Pm = 1 W [32]. The

power of the UAV to download the service caching from

RBS is PtrS ¼ 0:5 W. The computing power of the UAV is

f UAV ¼ 1:5 GHz [32]. kn and vn are 3 and 10�27

respectively.

For comparison, four baseline approaches are described

as follows:

• PPO-NO: It based on the PPO algorithm for solving,

but no task migration and collaborative execution

between UAVs. When UAVs cannot meet the service

caching requirements of users, they need to use RBS to

provide caching services.

• A3C-CO: The A3C-CO method is based on the DRL

algorithm A3C and combined with our proposed

collaborative offloading strategy. A3C can be applied

to the use of discrete and continuous actions. The

Actor-Critic is put into multiple threads for synchro-

nized training, which can effectively utilize the com-

puting resources and improve the training utility.

• DQN-CO: The DQN-CO method is formulated based

on the DRL algorithm DQN and our proposed collab-

orative offloading strategy. DQN can only be applied to

discrete actions, and we discretize the action space to

adapt to the requirements of DQN.

• Randomly: The location trajectory planning, offload-

ing, and collaboration decisions of UAVs are random-

ized. user-generated tasks will be randomly assigned to

an associated UAV or collaborative UAVs. The signif-

icance of the Randomly offloading strategy is to obtain

the effect improvement of the PPO-CO method on the

target outcome using the baseline method.
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5.2 Experimental results and analysis

5.2.1 Optimal parameter setting

The convergence of PPO-CO in different learning cases

can be seen in Fig. 2. The discount rate of 0.96 is able to

reach convergence of the PPO-CO model at 4000 episodes

when the learning rate is 0.001. The discount rate at 0.99

and 0.90 do not reach convergence in 6000 episodes. It can

be found that both higher and lower reward discount rates

do not result in better model discount rates. In this paper, a

discount rate of 0.96 is used as the best discount rate.

The model convergence of the PPO-CO model is com-

pared in Fig. 3 for three cases of learning rate 0.001, 0.01,

and 0.1 when the discount rate is 0.96. At the learning rates

of 0.01 and 0.1, the model does not obtain the optimal

solution due to the higher learning rates and the larger

parameter adjustment steps of the model. The best con-

vergence and reward results can be obtained at the learning

rate of 0.001, and 0.001 is taken as the most hyperparam-

eterized value of the learning rate.

5.2.2 Performance comparison

In Fig. 4, we compare the convergence performance of

PPO-CO, PPO-NO, A3C-CO, DQN-CO and Randomly.

We evaluate the average total reward of each episodes as

the reward is directly related to the UAV energy con-

sumption and the execution delay of the user’s task cor-

related. Higher reward means lower energy consumption

and latency. All four RL algorithms reach a state of con-

vergence in Fig. 4. The PPO-CO algorithm ends up with

the highest reward value. Since PPO-NO does not include

the UAV collaborative offloading process, the UAV has to

rely on the RBS when it cannot satisfy the task execution

conditions. This leads to a higher time cost, which ulti-

mately reduces the rewards. A3C-CO, although it con-

verges faster, is lower than PPO-CO in terms of rewards.

DQN-CO, because it can only deal with discrete actions,

has discretized actions which lead to the inability of the

method to find the actions with higher reward values. After

that, comparisons will be made from different task sizes,

caching deployment ratios, user and UAV sizes to observe

the effectiveness and stability of the experimental results

under different situations.

The rewards of the five methods for different total task

sizes in an episode are shown in Fig. 5. In the case ofFig. 2 Convergence of PPO-CO for different discount

Fig. 3 Convergence of PPO-CO at different learning rates Fig. 4 Convergence under different methods
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smaller task sizes, the difference in rewards between the

different methods is small. In the case of larger task sizes,

the reward value of PPO-NO is even lower than that of the

Randomly method. The reason for this situation is that the

difference in the size of the rewards produced by different

offloading methods is not significant in the case of small

task volumes due to the relatively small latency and energy

consumption incurred by the transmission and execution of

the tasks. In the case of a large number of tasks, because

Randomly, despite being a randomized decision, takes into

account collaboration between UAVs, the PPO-NO method

without offloading leads to higher latency and energy

consumption in the face of a large number of tasks. The

PPO-CO consistently outperforms the A3C-CO and DQN-

CO methods in the offloading approach with collaboration.

The results demonstrate that our proposed method is

capable of lower energy consumption and delay with dif-

ferent task sizes.

In figure 6, we consider the effect of different service

caching sizes on the reward. When the size of the service

caching is small, the difference in rewards between the

different offloading schemes is small. The main reason is

that a smaller service caching size will produce smaller

transmission latency and energy consumption, when the

impact on the overall reward is smaller. Collaboration

between UAVs will play a crucial role when the size of the

service cache increases. From the changes in the lines of

PPO-NO, it can be seen that a larger service caching data

size in the no-collaboration scenario will greatly increase

the energy consumption and latency of the system. The

results prove that PPO-CO is able to obtain the highest

reward at different caching sizes.

Figure 7 shows the impact of the change in the pro-

portion of service caching types deployed in the UAV. The

proportion of caching deployments is the same for the

collaborative and non-collaborative approach at 100%, and

the impact of the proportion of caching deployments on the

reward is positively correlated. This is because when the

caching deployment of UAVs reaches 100%, the problem

will degrade to a scenario where service caching is not

considered. At this point the collaboration policy will not

work. Collaboration between UAVs makes sense when the

service caching in the UAV is not able to cover all of the

caching types, and collaboration reduces the energy con-

sumption and latency required for task completion. Col-

laboration on resource-constrained devices like UAVs

facilitates the expansion of the problem of insufficient

resources for individual UAVs and contributes to the

operational efficiency of the whole system.

In Figures 8 and 9 we summarize the rewards for dif-

ferent numbers of UAVs and user scenarios. Figure 8

Fig. 5 Comparison of different task size reward

Fig. 6 Comparison of different service caching size Fig. 7 Comparison of different caching deployment ratios
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shows the overall system reward for different number of

UAVs. At a low number of UAVs, the system as a whole

has a high reward due to the low energy consumption of

individual UAVs. The gap between PPO-CO and PPO-NO

methods gradually shows the advantage of collaboration as

the number of UAVs increases due to the smaller space for

collaboration when the number of UAVs is small. Overall

the benefits from collaboration at different UAV sizes are

higher than those from the non-collaborative approach and

the random collaboration strategy.

Fig. 9 shows the reward values for different numbers of

ground users. For different user sizes, our proposed PPO-

CO method is able to obtain the highest reward values

compared to other methods. This shows that our proposed

offloading method is able to provide computational

offloading services with low latency and low energy

consumption for a certain user size. The rewards value is

decreasing as the number of users increases. This is

because when the number of users increases, more users

will increase the time and energy cost due to the limitations

of the computational and communication capabilities of the

system setup. When the number of users is large, the PPO-

NO method that does not consider the inter-UAV collab-

orative offloading strategy will get lower than the Ran-

domly method that considers randomized collaboration.

6 Conclusion

In this paper we propose a collaborative strategy for UAV-

assisted computational offloading considering service

caching, which aims to reduce the energy consumption of

UAVs and the latency of user task execution. We consider

the dependence of user tasks on specific service caching

during computing offloading. We construct a system model

containing UAVs, ground-mobile users, and RBS, and

jointly consider UAV-user association, collaborative

offloading strategy, service caching provisioning, and UAV

trajectory planning, and model them as a optimization

problem. Then we propose a PPO-based offloading strategy

to ensure timely execution of user tasks and reduce the

energy consumption of the UAVs to obtain longer service

duration. Compared to PPO-NO, our collaborative strategy

can more fully utilize the limited service caching resources

and obtain lower energy consumption and latency, proving

the superiority of the proposed collaborative offloading

approach. Compared to A3C-CO and DQN-CO, two RL

approaches that consider collaboration, our proposed

approach is able to obtain lower system cost. When the

caching deployed in UAVs have low coverage, our pro-

posed collaborative offloading approach is able to obtain

the maximum benefit improvement compared to the no-

collaboration strategy. In addition, our proposed method

can be adapted to different scenarios with different task

data volumes, service caching sizes, number of UAVs and

users.
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